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Quantum mechanics of an anharmonic
oscillator as 041 quantum field theory

Classical treatment:

Lagrangian
. D . D 2
sz——V(:v)zw——w—xz—)\x4
2 2 2
Euler-Lagrange equation < Newton's 2nd law
d OL oL .. 5 3
—_— = & r=wr+ 4\
dt Ox ox T
Canonical momentum
oL :
= — =2
P= bz
Hamiltonian
2 2

H=pi—L=2 4% ;214 \;*
2 2
Change of names:. z — ¢, p —> 7w

q'52 w2

I = _ 2 _ o
> 75 ¢ ¢
- Lagrangian of the 0+1 scalar field
2 2
T w2 4
H = A
5 + 5 ¢° + Ao
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Quantization:

é6 — ¢, W™ — 7

Operators ¢ and 7 act on the wave function

S (6)
FD(0) = pd(0), FD(9) = —z'a%dxqﬁ)
[¢7 7T] =1 -

~2 2
H—>ﬁ:7T2 +°"2$2+>\q’54

Schrodinger picture: ®(¢,t), o, 7
Dynamics is governed by the Schrodinger equa-
tion

o
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Heisenberg picture :
P(¢) = Pschrole,t=0)
$(t> eth(Ee—th
%(t) — ethﬁe_th

Dynamics is determined by Heisenberg equa-
tions

d - S

—o(t) = i[H, o(t

~6(t) = ilH, §(1)]

d - _

() = ilH, 7(1)]
Perturbation theory < expansion in powers of

a .

Typical problem: find the dispersion (= mean
¢2) in the ground state of the anharmonic os-
cillator (Q2[¢?|Q2)
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QM solution:

22 )2

H = Ho+ Hint, ﬁo— + 925, Hing = 2p*

Ground state of the harmomc oscillator

( ):
~ 2
fo|0) = Eol0) — Eo =7, [0) =37

Ground state of the anharmonic oscillator

( ):
I"I|Q> — Evac|Q>

Perturbative solution

T4

In) - eigenstates of Hj (Hermit polynomials),
Epn=w(n+ %)

h2 74
@IF19) = (0¢%/0) — 2y L |n><vgq; 0)
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QFT solution (“interaction picture™)
Some definitions:

Interaction representation:

or(t)
7r(t)

ezHot$G—ZH0t

eZHOtﬁ'e_ZHOt

T{o()d(t')} = 0(t—t")p(t)p(t)+0(t'—t)d(t ) p(L)

U(t,0) = etloteg—eHt UT(t, 0) = ette—tHot

U(t1,t2) = U(ty,0)TT(¢2,0)
Group property:

U(ty,t2)U(tr,t3) = U(ty,t3)

Foundations of QCD -5- 8-13 June 2000
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Formula (Hy(t) = AF(2)):

_ t _
O(t,0) = T exp —i /O dt' 7 (¢

=1 —i/otdt’ﬁl(t’) + 42 /Otdt’/ot/ dt" Hr(¢H (") +
Proof:
%U(t, 0) = —ieiﬁot)\q34e_iﬁt =
—ietHot\gA e~ ot (¢, 0) = —iAg2(¢)T (¢, 0)
d o ot
~(rhs) = —ixg}(t) (1 - z/o at'Hy(¢') + ...)
= —iXgTF(t)(r.h.s.)

Also, U (t, O)‘t:O = (r.h.s.)|,_g =1

=  U(t,0) = (r.h.s.)
Similarly one can prove that

. t1 .
U(t1,tr) = T exp —z'/ dt' H (t)
to
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HUGS 2000 ﬁ”\@%ﬂ@;
O,

How to find (Q2|#2|Q2) using the evolution op-
erator?
Key idea: if you take |0) and wait for a long
time, you'll get |€2).
im e #T|g) =7

T—oo(1l—ie)
(Strictly speaking, we must take T'(1—i¢), then
T — oo, and only then ¢ — 0).

—iHT(1—i€) |O>

lim e
T'— 00

: —iHT (1—i¢) _
TI|_>mOOe %: |IN){N|0)

lim e~ "vacl (179 (10) (0] 0) +
T— 00

z/: |N> <N|O>G—GT(EN—EvaC)‘I'iT(EN—EvaC))

At T — oo
e—eT(EN—EvaC) — O because Ejn > Evac

= Tlim e—iﬁT(l—ie)|o> — |Q><Q|O>e—iEvacT(1—ie)
— 00

Thus
Q) = Iim (e BT (o)) ~te—T|0)

T— o0
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In terms of evolution operators

Q) = lim (e "Feem BT (Q|0))~1T(0, ~T)|0)
(@ = lim (e "FaeFo)T(0]Q)))~{0|T(T, 0)

7% (0[2]) (€2]0) =2 (Fvac—Eo) T

(T'(1 — 7¢e) is always assumed).

By definition of the T-product
U(T,0)$?TU(0,-T) = T{¢7(0)U(T,-T)} =
T{$2(0) exp —i /TT dt' Hr(t')}

Also,

(0|0 (T, ~T)|0) = (0]etHoT =2l TciMoT |g) —

~

62iE0T<O|e—2iHT|O> N <O|Q> <Q|O>e—2i(E\/ac—E0)T

N i T 087 (4
I P (4 O 1)
T o (4
T—o0 <O|T{e—’b f—Tdt H[(t )}|O>
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At T = oo we get

(0| T{32(0)e ™t - #Hi1D)y )

(0| T{e " = A1 (D} )
- master formula for calculations in the inter-
action representation.

(%) =

In the first order in perturbation theory
e~ S dHHI®) 1y /_o; dtd3 (t)
SO
(26%192) = (013%(0) —ix [ at[6(1)(013$(1)37(0)[0)
+0(—)(0|$7(0)$7(1)|0) — (0|$7(0)|0)(0|$7(0)|0)|

The correlation functions of the type
(0|T{32(0)@F(¢)}|0) are called Green functions.
They are calculated using Feynman rules.

Foundations of QCD -9- 8-13 June 2000
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Feynman rules for the Green functions.

Consider the simplest Green function

G(t —t') = (0|T{é1(t)$7(0)}|0)
which is called
To find it, we use the

formal-

ism for the harmonic oscillator:

. woHiR

a — \/Z

o W — 1T

al =

V2w

Properties of ladder operators:
b, 7] =i =
[a,a] =1

— canonical commutation relation in terms of
ladder operators.

al0) = 0 a —
(@Hn"oy ~ |n) al —

Foundations of QCD -10- 8-13 June 2000
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Ho =w(ata+ 3)

Canonical commutation relation =

[Ho,a] = —wa, [Hp,a'] = wat =

piHotgo—iHot — 5o—iwt
~ _ =
zHotaTe—zHot — gleiwt

&El(t) — eiHot$e—iHot —

1 iHotr~ | ~ty.—iHot a o —iwt al piwt
\/2@6 (@+al)e o \/2w T \/2w
Now we can find the “propagator”
(O|T{or(t)r(t')}0) =
9(t — t/) ~ —wt ~t dwt\ (= —iwt! ~1 _dwt!
> (O|(ae + a'e*™")(ae + a'e**" )|0)
+(t - t) =
L (0/(@, e =0y + (¢ 65 ) = el
w 2w
(recall that a|0) = (Olal = 0).
Similarly
(0|T{$7(0)$7(+)}/0) =
o(t
81) (0f(ae™" +aTe™")*(a+a")?|0) + (t > ')

Foundations of QCD -11- 8-13 June 2000
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The result of the calculation can be repre-
sented by

(0|T{$%(0)BF(t)}|0) =

> $1(0)61(0)(t)Pr(t)Pr(8) Py (L)

contractions
Each IS @ propagator

31(1)$1(0) = G(t) = %e—iwltl

represented by a line in a Feynman diagram

The rest is combinatorics

(0|T{3%(0)dF(t)}|0) =

(0|¢7(0)]0)(0]¢7(0)}|0) =

Foundations of QCD -12- 8-13 June 2000
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= (0|T{$7(0)7(t)}|0) — (0|¢7(0)|0)(0|7(0)}|0) =

= > of the connected Feynman diagrams =

= 12G?(#)G(0)

Second term (coming from the denominator)
cancels disconnected diagrams. This is a gen-
eral property: any Green function is represented
by sum of relevant connected Feynman dia-
grams.

— (Q]32|Q) = G(0) — 12ix /_OO dtG2(1)G(0)

1 3\ oo -
= (1-— z/ dte 2ty =

w2 203 J_o

1 6\ X
4—w2(1 — E) + O(\%)

This may be a wierd way to calculate (q52> in
quantum mechanics, but it generalizes to field
theories.

Foundations of QCD -13- 8-13 June 2000
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QFT for the Klein-Gordon field

P(Z,t) —

(if mz = O it would be observable like electric
field).

(0% —m?)¢p(z) =0 —

— analog of Maxwell’'s equations.

2 _ 0 0

Classical theory:
Lagrangian L = [d3zL(Z,t),

1 m2
L= =0,p0 ¢ — —p°
— Lagrangian density for the free KG field

m2

_ 1 m* o |4
ﬁ—zauﬁbauﬁb 2¢ AQ

— Lagrangian density for the self-interacting
KG field .

Euler-Lagrange eqn reproduces the KG equa-
tion

Foundations of QCD -14- 8-13 June 2000
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Quantization of the free KG field

For simplicity: one-dimensional KG field ¢(x,t)

Idea: KG field & superposition of harmonic
oscillators.
of the KG field:

- harmonic oscillators at each point of the lat-
tice with pairwise interaction.

(2 _ 2 2
L(t) — G’Z[ nQ(t)_(¢n+1(t)2a an(t)) . . ¢721(t)]
Change of the label: ¢, — d(xn,t) =

L(t) =
b2 (xp, rnta,t) —d(zn,t))?  m2
ay [Qb (2 1) (p(xn+t ;)azﬁb( t))< 7¢2(ﬂ3n,t)]
In the a — 0O this reproduces

the above KG Lagrangian
Foundations of QCD -15- 8-13 June 2000
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Quantization of a set of oscillators.

Canonical momenta: T = 5ot = adpn

ay [77 (zn,t) + (¢(zn+ta, t) ¢($n,t)) + m ¢2($n,t)]
In the continuum limit we get

7T2(£U,t) qb/(ib,t)Q m2 2
H= [ do["=22 + 22 4+ T?(a,)
As usual, for quantization of the set of os-
cillators we promote ¢, and m, to operators
satisfying canonical commutation relations

[&Em,%n] = 10mn, [ngngn] = [Tm,n] =0
In terms of ¢(xn) and w(xy) this reads

B(em), 7 (zn)) = b
which reduces to
[p(2), 7 (y)] = i6(x — ),
[¢(2), ()] = [7(x),7(y)] =0

in the continuum limit,
Foundations of QCD -16- 8-13 June 2000
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For the 3-dimensional KG field the canonical
commutation relations are

[3(2), 7#(§)] = i6>(z — y),
[0(2), 6(D] = [7(£), 7(§)] =0

Ladder operators

It is easy to check that

gl = (2m)353(5 - §) } N
—_[=T =t

g | = |ahay| =0

anonical commutation relations.

Foundations of QCD -17- 8-13 June 2000
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Classical Hamiltonian

3 V¢(~’L’ )2  m? 2,
H= /d m (&) : +7¢ (,1)]

~Dr = = T2\ 2 2
_ (%) . Vo(I) me -,
¢H=/£
:L’[ 5 -+ 5 + 5 ¢ (SL‘)}
In terms of ladder operators

i = [ PpEyala;

(we throw away the oo constant).

N
= [H, asz] = —Epag, [H, a,]L = Pa’ﬁ' =
ez'Htaﬁe—th — aﬁe—zEpt7 etha;e—th — a;ezEpt

The Heisenberg operators are defined as usual

~

3(&,t) = e@(@)e Mt 7(7,t) = 7 (5)e 1
Qb(x) =/ ﬁ<af_sz + EL zp:c)

= : .
—ipr __ a%sz)
p

() = —if \/TEpEp(a—e

where x = (&,t) and pz = Ept — pZ

Foundations of QCD -18- 8-13 June 2000
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Basic property
aﬁ|o> =0

where |0) is the ground state of the quantized
field (= the lattice of oscillators).

Proof:

Suppose az0) 7 0. Denote this state by |[X).

A|X) = Hay0) = [A,d|0) + azH|0) =
—Epag|0) + EpazEp|0) = (Eg — Ep)|X)
We see, that the state | X) has enegry less than

the ground state energy which is impossible
= aﬁ|0> = 0.

Foundations of QCD -19- 8-13 June 2000
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Go(z—y) = (0|T{¢1(x)1(y)}|0)

3
0(xg —yo)<0|/ Ty (aﬁe_’m —I-&; W)

d3 /
[ e e #) o) + @ o
al0) = (0la' =0 =
Go(x —y) =

3 /

6(x0 — o) IW e PV)(0lazil|0) + (v < y)

apal) =853G-7) =

Go(z —y) = .
0(x0 — yo) | e Ere=0otil@0) 4 (z & y)

It can be rewritten in the rel.-inv. form:

d*p : 1
Go(z —y) = lim —ip(z—y)
o(z —y) = e—0 167r4i€ m2 — p2 —

Foundations of QCD -20- 8-13 June 2000
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Self-interacting Klein-Gordon field

1 2
L= / d3x§8M¢8“¢—m7¢2—>\¢4

2(7 = (= 1\2 2
H=/d3az[7r (§7t)+v¢(;7t) ‘I‘n; §Z§2(f,t)+)\¢4]

Quantization - same as for the free KG field:
¢ — ¢(Z), ™ — 7(L)
[6(D), 7(P] =>@ ~ ), 6,8l =I[77]=0

/d3 7'(' (:C) V(béﬂ:) m2 2(_,)+)\¢ }

Heisenberg plcture: é(x) and 7r(a:) depend on
time
b(z) = (&, 1) = eMtG(z)e !
7(x) = 7(2,t) = Mi7(7)eHH?
Vectors of state (like the vector of ground state
|€2)) do not depend on time.

Foundations of QCD -21- 8-13 June 2000
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Cross sections are determined by Green func-

tions (Q|T{¢(x1)d(22)...0(zn)}|S2)

pl p2
Jx 7 d
0} _ 1 2
— = — T
\ 22
-~ N S=(PtP) = 4E o,
pl p2

S(p1,p] = p2,ph) =
1+6(Cp1— X p2)T(p1,05 — p2,pb)
| S/7 theorem:

S(p1,p] — p2,p5) = Jim N(p? — m?)
pF—m?

/d4xéllx/1d4x421x/2€—ip1w1—ip’lac’1—|—ip2x2—ip’2ac’2

(QT{¢(z1)d(x1)d(22)d(25) }|$2)

Foundations of QCD -22- 8-13 June 2000
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Perturbation theory: H = Ho + Hint

H _/d3 7T (37) V(/bgl?) m? 2(_,)]

Hi = | Bt (a
Interaction representation defined as in QM
51(z,1) = ol g(@)e 1Mol 7 /() = lotz(z)e ot
Literally repeating all the steps we get
<Q|$($1)($($n)|9> —
(O|T{B;(21)...37(zp)e /= dtHI Dy o)
(0T {e* |- #H11} 0

where |0) is the “perturbative vacuum” (= ground
state of Hp).

[0 dtH(t) = — [d*cL;(z) =

(Q]p(x1)..-0(xn)|2) = )
OIT{B1(21)...¢1(xn)e" | 4 oL1(@)Y 0)
(0|7 {e’ ] *=L1(@)} |0
This master formula is relativistic invariant

(although the intermediate steps were not).
Foundations of QCD -23- 8-13 June 2000
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Cross section in the first order in \.

(0|T{$I($1)$I($/1)$1(5E1)$I($/2)i>\/d4$$§1($)}|0>
=

contractions

B1(21)B1(21)B1(21)B1 ()i [ d*ady(2)31(2)61(2)31 (o)

Each contraction is a free propagator

¢1(z1)¢(x) = Go(z1 — )

= Feynman diagram for the

X1 X2

Foundations of QCD -24- 8-13 June 2000
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Feynman diagram in the

G(p1,p — p2,p5) =
/d4$lllx/1d4w421$/2€—ip1w1—ip’lw’1+ip2w2—ip’2w’2
(QIT{d(x1)p(z])d(x2)p(25) }R) =
24\
2 2
(m2 — p2)(m2 — py°)(m2 — p3)(m?2 — p¥)
LSZ theorem =
T(p1, P} — p2,ph) = 24X + O(\?) =
The meson-meson cross section is
do  9\?

el N 4
dQ 72 +O(>\ )

+ 0(\?)

Foundations of QCD -25- 8-13 June 2000
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In higher orders in perturbative expansion in
powers of A we have more complicated dia-
grams such as

P, k P
k - _ 1
p Pk pP K
P "

p1+p’1-k

Feynman rules for the Green functions in mo-
mentum representation:

e 1 for each propagator with momen-
m<—p<—1ie€
tum p.
e 24 ) for each (24- combinatorial co-
efficient)
d*k
o f167T for each momentum k.

Foundations of QCD -26- 8-13 June 2000
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Path integrals in quantum mechanics

Anharmonic oscillator
-2 2
H=Hy+V, ﬁoz%,V:%AQ—I—)\i“
~ ) w2'~2

(note that here Hg does not include *5-2<).
Wave function in Dirac notations is W (x,t) =
(3| W (1))
where |¢)- eigenstates of the coordinate oper-
ator z:  Z|z) = z|x). B
Evolution is described by the operator e “H?:

W(tp) = e HU D (g))
In terms of wave functions

W(zyp,tr) = (zp[W(1)) = /dﬂ?i<5€f|6_imtf_ti)|5137;>W(5137;,ti)

= K(zp,tp @ t) = (wgle” T0|ay) -
kernel of the evolution operator (

).
Physical meaning: we release the oscillating
particle in the point x = x; at time t = ¢; and
K(xy,ts; x;,t;) is @ probabilty to find this par-
ticle in the point x = x ¢ at later time t = {;.

Foundations of QCD -27- 8-13 June 2000
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Path integral for the evolution kernel

Insert 1 = [dz|z){z| n times (At = tf_ti))

n

(
/dacl.../dacn(acf|e_iﬁAt|xn>...<$2|e_iHAt|a:1>(a:l|e_iﬁAt|$i>

For small At

xf|e_iH(tf_ti)|xi> —

(wple” Az _1) =
dp —iHAt
[ SEtanlp) (ple™ Ay _q) =
2
;Z_peip(a?k—:ck_l)e—i%At—iV(:ﬁk)At —
T
TL.—T 2 )
1 e’ ( k 2£t 1) —1V (xp) At
2mi At

(wgle™ O 710|z) =
(wp—2p—1)*
n/2 zAtZ[ —V(zy)
(2 At> / dary - / dne e
T

= N_1/D:c(t)ezftfdt( V(@)

Foundations of QCD -28- 8-13 June 2000
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Path integral and classical mechanics

Restore h for a minute

K(xp,ty mipt;) = N_lf Da(t)erSE@E®)

x(t;)=x;

This formula can be used as a postulate of
quantum mechanics instead of Schrodinger equa-
tion.

Classical limit.

At h — 0 (classical limit) this integral is deter-
mined by a stationary phase point correspond-
ing to minimum of the action S(z(t)) =

least action principle - given the initial and fi-
nal points, the classical path is a path with
minimal action.

In quantum mechanics, all trajectories are pos-
sible. Each trial path is weighted with e* and
we have to sum over trial configurations due
to the superposition principle of quantum me-
chanics (for undistinguishable paths, we must
sum the amplitudes).

Foundations of QCD -29- 8-13 June 2000
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Path integrals for the Green functions

Consider the two-point Green function

G(t1,t2) = (QT{p(t1)(t2)}<2)
At first, we prove that (ty; =t; —t;)

G(ty,tr) = lim <O|T{€_iﬁtﬁ$(t1)$(t2)}|0>
1,02 _tf—>oo,ti—>—00 <O|e—iﬁtﬁ|0>

Proof:
Take t1 > to. Consider the numerator

Num(t1,t2) = (0e~1tr1ge= 2 ge—iHt2i| )
Recall that
o—iHto;|0) ti? o0 e~ 1Bvact2i| )(Q|0) } N

. ter—> .
<O|€—’1,Htf1 f:>OO <O|Q><Q|e—zEvactf1

lim Num(tq,tr) =
t f—00,t;——00

(0]Q)[Pe~Fvacltyittad () geitlt125|)

Foundations of QCD -30- 8-13 June 2000
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Similarly, the denominator is

Den = (O|e_iﬁtfi|o> — |<O|Q>|26_iEVaC(tfi)

Num

Den
On the other hand

=

— otbvac(t12) <Q|q§e—iﬁt12q’g| Q)

<Q|eiﬁt1$e—iﬁt12$€—iﬁt2|Q> — eiEvact12<Q|$eiﬁt12$|Q>

. Num
= lim

= G(t1,t
tf—>oo,ti—>—oo Den ( 1 2)

Path integral for G(¢1,t>).

We know that

Den — (O|e_iﬁtf@'|0> _ /D¢ei fti_f L(t)dt
The numerator
NUMm — <0|e—iﬁtf1$e—iﬁt12q§€—iﬁt2z‘|O> —
[ dé1dgn(0le 15|61) (91]e ™ H12G]65) (gole~ 1210}
[ dérdgn(ole™ 1t |g1)g (1]eH112]g2) o (9o]e~H121|0)

Foundations of QCD -31- 8-13 June 2000
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Each path is weighted
with F(q)l) = F(q)(tl))

Property

¢la)= ¢ L(t)dt
F
/ / (tl) ¢1 (¢1)

/¢(t1) ¢1 D¢67’ fbt]. L(t)dt
P(b)=¢y,
¢(a):¢a

— D ifbaL(t)th ¢ N
s0)=gy O ° (6(t1))

i [
Num = /D¢¢(t1)¢(t2)e fti L(t)dt

[ Dod(t1)p(to)et J—oo LDt
[ Depet [0 LDt

= G(t1,t2) =

In general

[ Dép(t1)...¢p(tn)etS(P)
fqueZS(ﬁb)

Foundations of QCD -32- 8-13 June 2000
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Euclidean path integral

Analytic continuation of the evolution operator
to the imaginary time r = —it gives

J24 - 1 - f;f;f dt <—¢22(T) +V(w(7))>
(T rle” (Tf_TZ)|a:i> =N~ /Da:(T)e
(z(7) denotes now the derivative with respect
to 7.)
The finite-sum version of this formula

(wple A=z =

(zp—p_1)°

2 _
2mi At

is very convenient for practical calculations since
the integrals of this type can be computed us-
ing the Monte-Carlo methods. This is the sim-
plest example of the in a
quantum theory.

Foundations of QCD -33- 8-13 June 2000
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Feynman diagams from path integrals

Consider the two-point Green function

| Doo(t1)¢(t2)e(P)
<Q|T{¢(t1)¢(t2)}|9> fDqﬁesz)
for the anharmonic oscillator.
At small \
S = 50 + Sint

2

12
so=[ar[ 730~ 52|
Sint = [ dtag* (1)

Note that, unlike p.28, we include %2 in So.

[D¢ ¢(t1)p(tn)ed0(@)FiSint(¢)

(QT{p(t1)d(t2)}2) = [ DpetSo(¢)+iSint(4)

Perturbative expansion < expansion of etint in
the numerator and denominator.
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In the first order in perturbation theory we get

S Doo(t1)o(t2) | dtp* (t)et50

ID¢€7’SO
2 Doo(t1)p(t2)et>0 [ Do [ dtp*(t)
fDQbGzSO fDQbGzSO

It is the same expansion as in interaction rep-
resentation picture (see p.9):

e

(QIT{(t1)d(t2)}2) = (0|T{er(t1)dr(t2)}[0) —

ix [ dt[(0IT{81(t1)1(2)8F (1) }O)
—(0|T{$(t1)$1(t2) }|0)(0|47 (£)|0)]
because

150
[DO0E O — (Ol {31(t2) -1 (ta)) 0
Proof: this is simply the master formula for
path-integral representation of Green functions
(see p.32) applied for the unperturbed har-
monic oscillator. (Recall that ¢; is a Heisen-

berg operator for H = Hp).
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Path-integral derivation of Wick's theorem

| Dpp(t1)...¢(tn)e" 0 _

Go(ty,...tn) = [ ngeiSO
> = Go(t1 —t2)Go(t3 —t4)...Go(tp—1 — tn)
contractions
Define the functional
[ D¢€iSO+ifdtJ(t)qb(t)
Z(J) = :

fquGZSO
Expansion of this Z(J)
in powers of the J(t) generates the set

of Green functions Gy:
Z(J) =
D
. 1
1+ Z/dtGo(t)J(t) + 5/dt1dt2J(t1)J(t2)Go(t1,tz)

-3
(/
§/dtldtht:SJ(tl)J(tQ)J(t:g)Go(tl,t2,t3) +

The generating functional Z(J) is a gaussian
integral (albeit a path one) so we can try to
calculate by appropriate shift of variable.
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Accurately
Z(J) =
—9h2 _wy2 P(tr)=¢ z'so+z'ft.f dtJ(t)p(t)
J dpgdpie 27Je 2% f¢(t_];:¢_fD¢e i
W2 w2 tr)= -
[ dppdie 2Te 2% ff((tz-];)wqu Doere

Let us make a shift ¢(t) — o(t) + ¢(t) in the
path integral in the numerator. The exponen-
tial in the numerator will turn to

—2 (o5 + 8% = S(6i + 3D + iSo(o + 8) +
t —
IR ZOICORTIONE
W — W — , = [tf Y
S5 - SR+ iso@) +i [ LI 03
— — N ESE ST,
~w(07dy — ¢ +i [ dt(dd— w?65)

W W : - [tf
597~ 597 +iSo(9) +i | T dtT()(9(1)
/t %f dt($$ — w?ed) = =
-_Z t —
39/ + [T atol(-0 + DB +I®)] =
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25— 2B +iso@) +i [ jf atJ (D3 (t)
—2 87 = 567 +iS0(0)
+(o(ty) —wop)pr — ((t;) + we;) g
+ [ atol(—0F + D)3 + I0)]

We choose ¢(t) in such a way that it eliminates
the linear (black) term in the exponential
= we get the differential equation

(07 — w?)B(t) = J(t)
with boundary conditions

G(ts) = wy, é(t;) = —wd;
The solution of this equation is

_ t/ 1 .

3 = [ Gu—t)It), Gol(t—t) = ——eTl=
t; 2w

where Ggo(t — t') is the “propagator” for har-

monic oscillator (see p. 11).

w w ,
— — §¢]20 — §¢7,2 + ’LSO(Qb)
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= the numerator reduces to

} o
/dqbfdgbz/D¢6_§(¢?+¢22)6150+th2 dtJ(t)e(t) —

tf dtdt' J()G(t—t) J ()

/d¢fd¢z/D¢e_7(¢f+¢22)e’SO

tf ) o
= Z(J)) = f dtdt' J(t)G(t—t') J(t)

At ty — oo,t; = —oo we get
Z(J) = e 3 ) dtdt J(DG(—1) I (1)
Expanding this in powers of J we obtain

Go(t1,t2) = Go(t1 —t2)
Go(t1,t2,t3,ta) = Go(t1 — t2)Go(t3 — t4) +
Go(to —t3)Go(t1 — t4) + Go(t1 — t3)Go(to — t4)
Go(t1,t2,13,1t4,15,16) =
Go(t1 — t2)Go(tz —t4)Go(ts — tg) + ...

while all the G, with odd n vanish

= Wick's theorem (see p. 12).
Foundations of QCD -39- 8-13 June 2000
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Functional integrals

Consider again lattice model for 141 Klein-
Gordon field

72(x b(x — d(x))?
ﬁ:aZ[ (Qk)+(¢( k—|—1;a2¢( k) +V(¢k)]

2 .
where V(¢) = "5 for the free KG field of

V() = ™ + Ap* for the self-interacting field.
For one oscillator, we found the path integral
representation for the evolution kernel

(o5l ;)
where |¢) were the eigenstates of the coordi-
nate operator ¢.

For 2N oscillators of our lattice model, the
eigenstates of the coordinate operator &En are

H{ék}) = lo—N)d—N—1)---|o—1)|P0lP1)---|ON)
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By construction,|[{¢x}) are eigenstates of ‘“field
operator’ ¢y:

orl{oK}) = oul{oK})
The evolution kernel is
it :
{orH le i) {p K}
As in the case of harmonic oscilator, in order
to find the path integral representation for the

evolution kernel we divide tg; into small inter-
vals At and insert

1= /d¢—N|¢—N><¢—N|---/d¢—N|¢—N><¢—N|

— / Ndy {ox}) {bx}
We get

{orH e Flil{ok}) = [ Ndaf{orH e T2 {ox}™)
{or} e Ao} ) ({ord e A {gxc})

Foundations of QCD -41- 8-13 June 2000



HUGS 2000 c{%m@;%ﬂ@}
WY

For small At the evolution kernel for our lattice
Hamiltonian is simply a product of evolution
kernels for individual oscillators:

o e A (1) =

n+1  n\2 n n\2
N . (¢ ¢k) (¢k+1 ¢) n
(2 1A ) emAtZk[ A 52 —V(¢p)
IXVAN
=
PN , 1 nN
fle—iMty; iy [ ]
{oK} | {éx}") SriA

R O C e O LN
/I‘Idgb” zaAtan[ 2At2k _ /~c+21a2 k —V (D)

AsS in the case of one oscillator, it is convenient
to label the integration variables by the time
tnp and position x; rather than by n and k

qﬁ?];b — ¢(xk7tn) —=
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oVl oy = [ 1" [ gty )

. (¢(zp, tn + AL) — ¢z, tn))?
exp {zaAt ]%; [ k YN k

T a,ln) — Llyln 2
(Ot tn) 2@ty o, 0,))

In the “continuum limit" a, At — 0 we get
{oH e il {g}") =
: ()2 (#(@t)?
/D¢(x,t)ezfdmdt[ 2 o V(gb(:c,t))]

where [{¢}*) is a describing
the state where the field is equal to ¢(x,1t).

The final form of the for the
evolution kernel is

7 . P(ty)=¢
(o} et gyy =[O0

Dé(x, £)eiS
sy=g; DO
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Because of the comlicated structure of the
wave functional |{¢}?) it is more convenient to
work in terms of Green functions where the
initial and final states are simple (perturbative
vacua).

Repeating the steps which lead us from the
path integral for evolution kernel to path inte-
grals for the Green functions, we get

<Q|T{(E($1atl)---&g(xn,tn)|§2> —
fqu(a:,t)gb(:cl,tl)...qb(xn,tn)eis
[ Do(x,t)etS
In four dimensions everything is the same (ex-
cept we must start from 3-dimensional lattice)
=

- - _ I D¢(x)p(w1)...4(xn)er
(QT{p(x1)...0(xn)|Q2) = T Do(a)eiS
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The generating functional for Green functions
[ DepeiSoti [ da(2)(x)

fqueiSO
As in the QM case, linear term in the nu-
merator must vanish after the shift ¢(x) —

¢(z) + o(x)

= the differential equation

Z(J) =

(8% —m?)¢(z) = J(x)

with the boundary conditions
0 -, t -
a¢(p7 t) _:>>OO Wp¢(p> t)
0-, ., t —
aqb(p) t) _:>>OO Wp¢(pa t)7

reflecting the perurbative vacua at ¢t — too.

(¢(5,1) = [ d3ze' (&, 1))

Solution:
3(2) = [ da/Go(w — &I (&)

4 .

N — . d'p 1 —ip(z—a') ;
where Go(x —2') = [ 16735 m2—p?ic® IS
a free propagator =
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Z(J) = e_%fdwdw,J(iE}Go(w—w')J(:c’)

Expanding this generating functional in pow-
ers of J one obtains Wick’s theorem, just like
for the anharmonic oscillator =

| Dp(z)p(x1)...¢(xn)e™
| Do (z)etd

(QT{¢(x1)...0(xn)|2) =

— sum of Feynman diagrams

The Euclidean version of the functional inte-
gral for Green functions is
(B(1)...d(xn)) = J Dg(z)p(x1).. cb(a:n)e

| De(x)e=>
where the the boundary conditions are ¢(&%,t) —
O at t — +o0. The correlation function
(p(x1)...0(zy)) is the analytical continuation of
the Green function (Q|T{¢(xz1)...¢(xn)|Q2) to imag-
inary times t; — —t;. The lattice form of the

Euclidean functional integral is very convenient

for computer calculations.
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QED

Classical electrodynamics is a theory of elec-
tromagnetic field (describred by F,, = (E, H) -
field strength tensor) interacting with charged
Dirac bispinor field ¥ (x).

First pair of Maxwell's eqgs:

™ (z) = ef” ()

where j, = ¥y
- 4-vector of the electomagnetic current (in
particular, ejo = e’y = p(z)- charge density)
Second pair of Maxwell’'s egns <« description
in terms of potentials
Fuy = 0uAy — (1 <> v)
where A, = (d, A) - scalar and vector poten-
tials ( ).
The choice of potential is ambiguous =

one can add A, — A, + Oua with
an arbitrary a(z) and E and H will not notice
it.
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Dirac equation in an external electromagnetic
field:

i PY(x) = my(z)
The electomagnetic coupling constant e is the
charge of electron.

Electrodynamics Lagrangian:

L) =~ Fu(@) P () + 3(2)( P — m)b(x)

Euler-Lagrange equation = Maxwell's egns +
Dirac eqgn.

Gauge invariance:

Y(x) = ePyp(z)
P(x) — e UD)P(z) = L(z) = L(x)
Ap(z) = Ap(z) — Loua(z) |
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O A, = 0, k=1,2,3

In Coulomb gauge Maxwell's egns turn to

2o (&,t) = p((£,1)), 9%Ap(zx) = ji(x)

= Apg = P is not an independent dynamical
variable:

t :
d(Z,t) = e/d3 ! ) Coulomb potential
47r|:17 — I

The electromagnetic coupling constant e (=
charge of the electon) is small

e . 1 e2 . 1
An 137 Anhe 137
= We can use perturbative expansion

L=Lp~+ Lp+ Lint

Lp= —%FMV(ZIZ)F'W/(:U) —free e.m. Lagrangian
Lp=1vY(x)(i —m)yY(x) —free Dirac Lagrangian
Lint = e(z) Ay (z) —interaction Lagrangian
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Quantization of the free e.m. field

1

We will quantize the electromagnetic field in
the Coulomb gauge.

(4+) - Non-physical degrees of freedom are ab-
sent.

(-) - Intermediate steps are not Lorentz invari-
ant.

Without sources Ag =0 =
we try Ap(xz) as canonical coordinates
Canonical momenta:

0 =0L0A; — does not exist N
mh = 0LOA;, = —A), — DAQOxF = — A, = EF
. 1 -
Hp = /d%(w’mk L) = /d3x§(E2 + H?)

(recall that E2 + H?2 is the energy density of
e.m. field).

Foundations of QCD -50- 8-13 June 2000



HUGS 2000 c{)

Quantization: we promote A.(Z,t) and . (Z,t)
to operators A.(¥) and 7 (&) satisfying the
CCR

[Ai(2), A;(N] =0

7:(Z), wj(y)] =0

7(8), A,;(iN] = [B;(%), A;()] = i6;;0°(F — 7))
A problem: last line contradicts to Maxwell’'s
egs.

We want to have Gauss law V - f? = 0 as in
classical physics, but

[B;(2), A;(§)] = 1667 (& — §) =

V- E(@), A;()] = i0463(& — §) # 0
A trick that works in QED (but not in QCD):
[7:(@), (D] = 656°(& — )

tre3c - def [ 3 kikj\ _ik(z—7
Ssd (i ) /dk(az-j—%>ez<w )

Foundations of QCD -51- 8-13 June 2000
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Expansion in ladder operators

= d3k MDY (aARE | 1A —ikE
A / oE, 2 1 N (k‘) (ake + a, € )
where e*(k) - and Ej, = |k|
k1 z
€(k)
3@(?)

[ai\,'\i‘/} = 0 )

[aL/\,Am = 0 » = CCR

apa| = (@m33k-F)

1 22 = 2 UL
== [Pu(B + ) = | PrBiala)
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pa = E aT/\
CCR= L 7k Ek

a*Op) =0
|0p) — the perturbative vacuum for free e.m.
field (ground state of the Hamiltonian Hp).
Heisenberg operators:

A(:B t) — ezHFtA( )e—zHFt
(%, t) = ezHFtw(a:)e_zHFt

k

’I,HFt ZHFt —_ a>‘e 1Bt
ezHFt IQM —zHFt — AlL)\ et Lkt

= d3k =
A(CIJ) _/ )\(k) (ai\e—zkx_i_f\w\ —zkx)
2k \Z 1 2

Propagator of the transverse photons

Dyj = (0p|T{A;(z) A;(y)}|0F) =

d*k —ik(a—y)__ L s _ kik;
16744 —k2 — e \ ! 2
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Quantization of the free Dirac field

Lp =P(@)(i §—m)y(z)

Canonical coordinate: ¥ (&,t)

— canonical momentum 7 = g—i = o)l

H = /d%mﬁ(—iﬁ'ﬁ + m)

Quantization: ¢ (Z,t) — (@), ©(Z,t) — 7(Z)
CAR (canonical anticommutation relations):

(@), 9@} = {($T(@),dT (@} =0
{(D(@),91(7)} = 63(& — 9)

Ladder operators

d3n | N -
6@ = [EL | Y @, )¢ + 5o, s)e P
V2Ep Ls=1
= d3 -—»—»_
b@ = [ ﬁ > (5, ) + ala(s, s)e
2Lp |s=1,4 _
u(p,s) — Dirac bispinor for the electron,
v(p,s) — for the positron.
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CAR for the ladder operators

{as, ag’}/: 0 {63, Bﬁ}/: 0

{ay,a;,f } =0 {B}S,Bﬁf} =0 =

{@5,a5 ) = 35— P)dsy (B350} = 3(F—igy
{4, 9} = {4, 4} =0, {$(@), 9P} =5~

fp = [ B2d(@)(=i7V +m)d (@)
= [ o3 (afagolE)

CAR < CCR would lead to + <« —
= Hamiltonian would not have the ground state.

a%|0p) = b%|0p) =0
|0p) = the perturbative vacuum for Dirac field.
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Heisenberg operators are defined as usual

D@, 1) = eMDIP(@) e Dt P(, ) = Dl (@)e D!

oiHptss,—iHpt — a%e—iEpt )
eiHDta,_,Se_iHDt —_ CLT ezEpt

Ve

=

~ p
same for b and bt J

3
3@y = [~EL | (aguCs e 7" + B, )eir”
V2Ep Ls=1
. :
> (3 5(p,s)e PT 4 G Cu(p, s)e?”

N . d>p
b= [ AR |

Propagator of the Dirac particle

S(z —y) = (0p|T{¥(z)¥(y)}0p) )
T{y(@)P(y)} = 0(z0 — yo)¥ ()P (y)—0(yo — x0) b (y)Y
CAR +
>s u(p, 8)u(p, s) =p+m, sv(P,s)v(p,s) =p—m

' mt b ip(a—y)

= Sle—y) = (2m)%im2 — p2 — e

Foundations of QCD -56- 8-13 June 2000



HUGS 2000 c@“@)%%
N

Quantization of electrodynamics in the
Coulomb gauge

L) =~ Fur (@) P (2) + 5(2)G P~ m)p(a)

Canonical coordinates: A;,v, canonical mo-
menta: 7% = EF 7 =T,

H = Hp+ Hp + Hijnt + Hcoulomb

Hint(t) = e [ d®oA@ 08 )m (@ 0)

2
e . .
Hcoulomb(t) = _E/d3x¢($at)v2¢($at)
— 1 =
= / Prd3yp(Z,t)————p(7,1)
Ar|Z — 7|

p(z) = eyl (2)¢(2) y
(Recall that ®(z,t) = e [ d3z/ 2T

Art|d—a
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Quantization: A;(Z,t) — A;(Z), v(&,t) — (D),
m;(Z,t) — m;(%), n(&,t) — 7(¥).

Canonical (anti) commutaton relations — same
as in a free theory.

QED Hamiltonian

H = ﬁD + ﬁint + ﬁCoulomb

Hint = e | oAy @F@N0(@)
1

4rr|d —

2
= € ~f = ~f =
Hcoulomb = —5/d3fvd3yp(w) mp(y)

Hp leads to the Feynman propagator S(z —y).
EIF leads to the propagator of the transverse
photons thjr

Lt d* L e—ik(m—y)
py / (2m)4i —k2 — e
( o B+ ko Uk + 1> ) kzmmu>

k2 k2
n=(1,0,0,0)
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e First (red) term is a
for the photon.

e Second (black) term does not contribute
to physical matrix elements due to

Ward identity: Multiplication of the ampli-
tude of the emission of the photon with
momentum k by k, vanishes provided all
the electrons and positrons are

(= p? =m?)

e Third (blue) term = inunyﬁf_'og_ygﬁ is the in-
stantaneous interaction which cancels the
contribution coming from Hcouiomb

=
One can omit Hcoylomb from the Hamiltonian

and use the rel.-inv. Feynman propagator

—ik(x—y) gpv

- / (277)4 —k2 —
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<Q|T{¢\($1)---{Z(xn)14u(yl)---Au(yl)}|Q> —
OIT {1 (21) D1 (xn) AL (y1)-.. AL (yn) et *E 197} | 0)
(0T {ei"L1dw} |0)
where |0) = |0r)|0p). )
Expanding in powers of £; = eA]yH¢; one
obtains a set of the correlation functions of the
type

(OIT {1 (1) br(xn) A (1) Al (yn)}|0) =
> zZl(flfl)---151(11/’71)14,6(3J1)---z4£(:yfn,)

contractions
where

Pr(x)d(a) = S(z—2') and Al (y)AL(y") = DL, (y—y)

= (Q|T{P(x1). D (zn) Ap(y1)..-Au(y1) Q) =

sum of Feynman diagrams with the photon
propagator D{f,,(a:—y), Dirac propagator S(z —
y), and the vertex ~,.

Fourier transformation =
Foundations of QCD -60- 8-13 June 2000
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Set of Feynman rules for QED Green functions
in the momentum representation:

m—y :
® 2 2 for each Dirac propagator

9uv
° P2Lic for each photon propagator

e ¢ for each electron-electron-photon vertex

d*p
o | Te.4; Tor each loop momentum.

The matrix elements of the S-matrix are ob-
tained using the LSZ theorem.
Example: Compton scattering

Foundations of QCD -61- 8-13 June 2000
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G/ﬂ/(p27 ka pi, kl) —

e m+ P>
k%k% (m? —p%)
(7 m—+ p1+ k1 N m—+ p1— ko N )
"'m2 — (p1 + k1) m2 — (p1 — kp)2
m~+ p1
(m —pl)

LSZ theorem:

T(p1,k1; 1,51 = p2, ko A1,82) =

lim  lim  kJeplk3e),?
ki2—>0p —m?2

u(po, sp)(m+ p2)Gu(p2, k2, p1,k1)(m+ p1)u(pi,s1)
_ m+ p1+ K

= e*t(py, 52) </é>\2m2 n (pi T kll)Q £
A1 m—l_ /pl_ /k2

T £ m? — (p1 — k2)?

Cross section is ~ |T|?.

é>‘2> u(p1,51)
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A try on CCR in QED

[Ai(@), Aj ()] = [7:(2), 7;(5)] = O
[7:(2), A (y)] = [Ey(D), A;(i)] = i6;j6° (& — §)

A problem: we want to have Gauss law V-E —
O as in classical physics, but

[V - E(&), A;(i)] = i0x6°(& — §) # O
The trick that works for both QED and QCD
(and for other gauge theories as well):

We impose the Gauss law on physical states
instead of imposing it on the operators.

[7:(2), A;(P] = i6;;6°(& — 7)

but

6 ' E|wphysical> =0
This still appears to contadict to CCR since
(Wonys| [V - E(Z), 4;(§ >1|wphys> i0,6°(Z — §) # 0

< phys|v E( )A( ) ( )V E( )|thys> =0

but actually there is no contradiction since the
I.h.s is ill-defined (see the QM examle below).
Foundations of QCD -63- 8-13 June 2000
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Baby version of a gauge theory

Consider a mechanical model with the Lagrangian
(r12 =21 — 2)
L(A(t),z1(t),z2(¢)) =
. D . D w
S+ 2+ A%+ (i1 + i) A - Zat

The Euler-Lagrange equations of motion are

d OL OL .. ,

_— = = A =

105, on,  “rTATwr2

d OL OL . .

S =0 o A=—

dt Ox > oxr1 2+ w12
d OL OL
dtOA DA 12t

This Lagrangian is invariant under the follow-
ing “gauge transformation”

r1(t) — z1(t) + a(t)
ro(t) — mo(t) + alt)
AG) — A — a(d)
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We can use this freedom to get rid of the vari-
able A by choosing a(t) = [dtA(t).

- { .351: WI12, izz —WTr192
x1+x2>=0

First two equations describe two particles with

m — 1 connected by a spring and the last one

means that the sum of their momenta is O.

This problem may be described by the La-

grangian

% 5w
L(z1(t),x2(t)) = ? 5 5712

PLUS
the additional requirement that the total mo-
mentum of the two particles vanishes:

p1(t) + po(t) = 0.
Thisis an example of the

Foundations of QCD -65- 8-13 June 2000

e



HUGS 2000 ﬁd@%@;
WY

At first, let us forget about the constraint p1(¢)+

po(t) = 0.
New canonical coordinates:
X = (x1 + x2)/2 - coordinate of the c.m.

r = X1 - separation
)
L(X(1), z(t)) = X2 ””Z _ §x2

New canonical momenta:
P=2X=p;+ps, p=2%=1(p1—p2)

Quantization:

)
e — —Z
> TP =5

Solutions of the Schrodinger egn are

H =

W(X,z) = e Xepy(a)

Yn(x) - wavefunction of the n-th level of har-
monic oscillator (Hermit polynomial).
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Q: How to generalize the classical constraint
that the observable P = py 4+ po vanishes to
quantum mechanics?

Wrong A: Require that the operator correspond-
ing to this observable P = p; + p> vanishes -
contradicts to CCR [p;, z;] = —id;;.

Right A: Require that we consider only the
“physical” states Wyhys = Y antn(x) with total
momentum P =0 — F(P)Wynys = 0 =we will
observe P = 0 in all experiments.

Apparent “contradiction”

(Wohys! [P, X][Wphys) = 0 or d?
In explicit form (|thys> = Wyac for simplicity).

w2

2T —

w o, 0
/d:cld:cge_ﬁx%2 ——+ —, 21+ 2ol e
or1 Oxo

2

w 0 0 w
/d:cld:cge_ﬁw%2 — 4+ — (:Ul —+- xz)e_iwm
or1 Oxo

which is 0 or co depending on your taste (the
integral is divergent along the coordinate X =
1+ x2).
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Path integral for the constrained system

—iHt _
<W£hys| ' |thys> = 7
If we know how to solve the constraint,

—iHt
(Wl ele HI Wl ) =

r(ty)=x i ﬁ_éxz
/dxfdxz phys(xf)wphys(:vz)/ ! fDZI?(t)e fti (4 > )

(t;))==;

Suppose we cannot solve the constraint (like in
QCD). Still, our goal is the path integral with
intermediate integrations over the dynamical
coordinates only (we want to aviod the inte-
grals divergent along the non-dynamical vari-
able X). A way to achieve this is to repeat
the derivation of the path integral, inserting at
each t; the projector on physical states

1phys — Z |wphys><wphys|
instead of the total set of states.
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Lphys = [ dp1dp2d(p1 + p2)|p1)|p2
[ dx1dz6(x1 + 2 — a)|zy)|xo) (T
an arbitrary number. Check:

){p2|{p1]
o|{x1| where a is

<yl|<92|1phys|wphys> —
/dp1dp25(p1 +p2)€_ip1y1_ip2y2/dfv1dfv2

e@p1w1+2p2$25(x1 + xp — a)>wphys(x12) — thys(y12)
lohys = /incfwie_zplxl_zp2@|p1>|P2><w1|<~’L‘2|

dp; = dp1dp26(p1+p2), dz; = dridrad(zi+ra—a)
Insert 1pphys N times:

<ujf —0Hfuj

/
<ujphys

phys> —
—iFIAtl

hysIe

| —zHAtl —zHAt|w

phys€ phys-:-€ phys>

—iHAt -
(& Ufphys

kv k — — TR At
/d:r: dp;e ipye] — P53, p1)|p2){T1|{T2]
k k 2
k—P1 4 P> w2 2
H*'=%5+%5 — 5%
Foundations of QCD -69- 8-13 June 2000




HUGS 2000 c{j %93

e—zHAtw —zHAtw —

phys€ phys —
/dwk+1dpk+1|pk+1>| b1y —i(pE T h Tl ph T gkt ghtl Ay

k+1
/d:pkdp e%(pl(fﬁ L by +ph(ah —wlﬁ)—H’“At)<xlf|<$l§|

In the end of the day

—iHt
(Wl ele T Hiripwi

/d:z:f\Uphys(xlz)dazzwphys(xlz)

o ikl k+1_ k+1e k+1_ kyi gh+1ay
Nk dphe™ (P @ ) T (ah T ek + )

In the continuum limit this gives

duetothemorecomplicatedstructureofW ardidentityinQC'I
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The meaning of the 6(X; — a;) is to restrict
the integral over non-dynamical variables X:

/rlka(S(Xk_ak) =1— /I‘Ikadxch(Xk—ak)W(xk) —

If the explicit form of this variables is unknown,
one can use the arbitrary functions fi.(X,x)
(X = Xq,..Xn, x = x1,...zn) because

J
provided the equation f.(X,z) = 0 has no
multiple roots.

/ NdX,6(f, (X, x) det

df; (X, )

dX;

Definition:

= {P;, fr} — Poisson brackets

OF; 8G OF.: 0G ;
{Fz’an}—Zap 5x +8 ‘——t — (F < G)
) O Xk, Pr O

Poisson brackets are invariant with respect to
change of canonical coordinates =

df; (X, )

dX;

= {(p1 +p2)i, fr(x1,22)}
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In the continuum limit fi(z1,22) — f(x1(t),z2(1))
and {p1 + p2)i, fr(z1,22)} =

{(p1 + p2)(t), f(x1(t"),z2(t")} which is a varia-
tional derivative:

0G OF 0G
(F(t), Gt} = /dt _+ __(F
op1(t) 0z (')  Opa(t) dzo(t))
The final form of the path integral for the con-

strained system:

—iH
(Wl le” Hirijw

/ da:f\lfphys(a:m)da:i phys($12)

[ D61 + p2(8)) [ Dai(t)
det{p1(t) + p2(t), f(z1(t), z2(t)}
exp {i (p1(t)21(t) + p2(t)z2(t) — H(1))}

d(p1 + po) - Gauss law
- “choice of gauge”

phys>
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QCD

QCD is a theory of interacting quark and gluon
fields and

r— —%TrGWG’“’ + 3 3G D —m)d,

g - coupling constant.
Gauge invariance:

P(@) - @) ()
5(2) = ST(@)P(x) L £(e) o ()
Au(x) — Au(x) — éST(CC)auS(CC) )

S(z) -an arbitrary matrix (S = ei®at®
t%- Gell-Mann matrices).
Classical theory: non-linear equations

DMGW/ = Jv, (i D—m)y(x) =0

Quantum theory < perturbation theory (pQCD)
-+ lattice simulations.
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Perturbation theory - like QED:

L=Lp+ Lp+ Lint

1 a a
— 3%
Lp=—FiF

LpY (G P —m)iy

Lint = _gTrF,LLV[AM7 Ayl + Z%Zq Aq

Free Lagrangian = 8 issues of electrodynamics
labeled by a =1 + 8

—

Feynman rules are the same, except now we
have the self-interaction of gluons.

This is almost true - Ward identity in QCD is
different — ghosts.

Foundations of QCD -74- 8-13 June 2000



HUGS 2000 c{%m@;%ﬂ@}
WY

Functional integral for QCD

Coulomb gauge: oAy = 0.
Gauss law:

C =VE + g[A, E]
C is a of gauge transformations:
o) d%S(f)O(f)&(f)e—fd%S(f)é(f) — S(2)P(2)
(for A(Z) - similarly)
— (' should annihilate physical states:

CA’(f)|\l’phys> =0

The functional integral (in

pure QCD = ) looks like in QM:
z;(t) — AT, 1)
p;i(t) — B} (Z,t)

o(p1 +p2)(t) — 6(C%*,t)) — Gauss law

S(f(z1(t),z0(t)) — 6(8,A%Z,t)) — choice of gauge
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/=

[ DE{(2) DA ()8(0, A (2))5(C%(2))

—i d%(Ea(x)-zi(m)+l(ﬁa2+ﬁa2)>
det{C"(z), 0, A" (y)}e / ’

The Poisson bracket is
{CUx), 8, A (y)} = M6*(z — y)
M = v25ab . gfabcakAC(x)

The chromoelectric field Ef(x) is an indepen-
dent integration variable — we do not have the
condition Ef(x) = G{y(x) yet.

The constrained é-function can be written as
a (functional) phase integral

N5(C*(@)) = [ DAge! | #o450°()

= the Gaussian integration over Ef(x) can be
performed by shift Ef(x) — Ef(z) + G0 =
Foundations of QCD -76- 8-13 June 2000
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7 =
/ DA%(2)5(3), A% (2)) det{ M5 (z — y)}
o~ % [ A% (G, (2) G (2))
This is a functional integral for pure QCD
(gluodynamics) in th Coulomb gauge. In the
theory of functional integrals over the fermionic

variables ( ) it is
proved that

det M = /DE(x)Dc(x)eifd4x5a(a;)Mabcb(zc)

=

In Lorentz gauge

= §(0, A% (x)) must be replaced by 6§(8,A%(x))
and the operator M by

M = 825ab . gfabcaluAc,u(x)
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Functional integral for pure QCD in the
Lorentz gauge

/=
Il DAz(a:)5(8uAa”(a:)) det{Mpé(x —y)}
o~ % [ d*x (G, (2) G (2))

det M} = /Dg(x)Dc(x)eifd4335a(;c)Mabcb(x)
=

[ =
| DAL [ De@) De(@)5(8, A% ()

i d4:v(—%Gﬁy(:p)G““’/(w)—|—5a(:c)820a(:p)—gau5a(:p)g fabCAcu(x)cb(x))

= ghosts propagate like scalar particles and
interact with gluons. Ghosts live in loops only.
Physical meaning: ghosts cancel the contribu-
tions of non-physical gluons which remain in
loops.
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