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Wilson lines as effective degrees of freedom in high-energy processes.
A search for the 2+1 effective theory.

Small-x DIS as an evolution of Wilson lines

Non-linear evolution equation

Effective field theory for the small-x evolution.

DIS from heavy nuclei: saturation

High-energy effective action from scattering of QCD shock waves
Conclusions and outlook
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Wilson lines = effective degrees of freedom
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Particles from clusters with different rapidity
perceive each other as Wilson lines.
In the target frame
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sow (n~n,) “Wilson ling" - infinite gauge link
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Wilson lines = effective degrees of freedom

Particles from clusters with different rapidity
perceive each other as Wilson lines.
In the target frame

/ "( "A"fields

“Wilson line" - infinite gauge link

* "B fields In the spectator frame
p> sow (n~n,)
‘ Ll = s
\ fast (N~nNg)

= U(x, ﬁ) (n = slope) is thé relevant degree of freedom for high-energy
scattering.
U(x,,n) =|—ocon+x,,00n+ x|

2, y] = Peilodulz—y)u At (uz+(1-u)y
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A search for the 2+1 effective theory

Wanted:

A S—00
o7 Ui(na) iy Ui (773)>QCD S

1A
/DUZL,U oiri Ui(na) pip} (nB)eXp{/ dﬁ/d27«1£ U)}

Uz' = UH@'U and 6ip;34U’i(77A) = efdQZPz (21)Ui(zL,mA)
g

p(z,) and pP(z,) - sources for the Wilson-line operators (p; = pTéé’ip,

p € SUg)
How to approach this goal?

* pQCD
# sQCD (s for semiclassical)
# symmetries?
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Power counting for sources in the LLA

In pQCD, the parameters of the expansion are g2, g*n, and g*[p;", pF]n

(n =1Ins).
LLA: > < 1, ¢>°n~1  (NLOis ~ ¢g*n < 1).

3 regimes:

® p;, ~ 1 (v*v* scattering) Lié BFKL pomeron
® P~ é > 1 (p ~ A/ for the heavy-ion collisions) = ¢®p*pPn > 1

= g*ppPn<¢ 1 = beyond the LLA.
Best hope for this region is sQCD.

o pA 1B~ é (DIS from the heavy nuclei) = g2p,§4pf77 > 1 but
g*pitpPn < 1= LLAIs OK.
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“Phase diagram” for DIS

saturation region
: ( can be under stood
. by small coupling methods)

In 1/X A |
' BFK L

non-pert/urbative

region
(not much isknown DGLAP
coupling islarge) <
Aéco o, << 1

(XS~1
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Small- x DIS from the nucleus

Fast quark moves along the straight line =

guark propagator reduces to the Wilson line collinear to quark’s velocity
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At high energies, the amplitude of v* A — ~+* A scattering reduces to the
matrix element of a two-Wilson-line operator (“color dipole”).

A2

A(s) = /koL](kﬁ(A\Tr{U”A(kL)UT”A(—kL)}|A>+...

Energy dependence of the amplitude A(s) is determined by the dependence of
the Wilson lines on the rapidity 14 defined by the slope of the line.
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In the spectator frame

Technically, it is more convenient to use the spectator frame

High-speed nucleus shrinks to a “pancake” =

= Feynman diagrams in a shock-wave background.

Quarks (and gluons) do not have time to deviate in the transverse direction =

/ dadts e P (T (2 + 2)74(2) 1)

_ / TRL A YTH{U™ (kU™ (<)) 4 =

A2

As) = / (AT (U7 (kU (<R )}A) +

7-‘-2
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Evolution equation

To get the evolution equation, consider the dipole with the slope H 71 and
Integrate over the gluons with rapidities 177 > 1 > ns. This integral gives the

kernel of the evolution equation (multiplied by the dipole(s) with the slope
corresponding to 1)s).

“““
¢“ ¢
.

r]1>r]>r]2 as(nl_nz)K ®
;&A* A
RIRLE —
i" n,>n>n n,>n>n,
P, : o e

In the frame || 7, the gluons with 7 < 1), are seen as a pancake =
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One-loop evolution

The structure Is

| x — z: free propagation]
X

U%(z,) - instantaneous
Interaction with the n < 7
shock wave]

X
[z — . free propagation]

U = Te{t"U.LUS} = (U,UN)™ = (U U™ +a(m—n2) (UUTUUT)™
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Non-linear evolution equation

o

@—U(:m,yﬁ —
o (Z— )%

T d — — — —
4m ZL( L= Z1)%(ZL —yL)?

LLA for DIS in pQCD = BFKL
LLA for DIS in sQCD => NL eqgn
(s for semiclassical)
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Non-linear evolution equation

;U(ﬂuy?ﬂ)
~ = 2

_ﬁ dz| — (_,:E zy_,)L =\
4 (T —Z0)%(ZL —71)

U(zy,y) =

LLA for DIS in pQCD = BFKL
LLA for DIS in sQCD => NL eqgn
(s for semiclassical)
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Non-linear evolution equation

— U —

o (SUL,?JL)
- = A2

_ﬁ dz| — (_,:E Zy_,)L =\
4 (£ —21)%(ZL —yL)

LLA for DIS in pQCD = BFKL
LLA for DIS in sQCD => NL eqgn
(s for semiclassical)

Example - LLA for the structure functions of large nuclei: «y ln% ~ 1,
a2AY3 ~ 1
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Non-linear equation sums up the Example of the diagrams left behind

“fan” diagrams by the NL egn: pomeron loops
-------------- yL -yl
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Timeline

Gribov, Levin, Ryskin (1983) - GLR egn suggested
Mueller, Qui (1986) - DLA limit of GLR eqn proved
1.B. (1996) - the above egn derived

Kovchegov (1999) - the above eqn rederived (in the dipole model) and
used for the large nuclel

Braun (M.A.) (2000) - NL = GLR + 3-pomeron vertex from Bartels et. al.
JIMWLK(2000) - obtained from the RG eqgn for Color Glass Condensate
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Initial conditions for the small-x evolution

(N|Tr{U(z1,10)UT(0,n09)}|N) - color dipole with the energy sy = swy
Initial point of the evolution sg:

# small from the high-energy viewpoint: o, In % <1

# large from the viewpoint of the low-energy physics: % > 1
For small dipoles (size << 1fm)

1
(N|Te{U (21,m0)U"(0,m0) }IN) ~ 27 woG(wo, p* = 2—2)
|
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Nuclear structure functions

Large nuclei: initial conditions <= Mueller-Glauber formula.

L
XJ_+ZJ_
-------------- P ]
b Nn(ajJ_,bJ_) p—
1
QAU+ 2)U(2)]4)
R C

Nn(xb bJ_) = |1 — e_g2ch(x2L)Lb:|

2
Xy

)= N1

1
G (] )PUOG(UOaM2 =)
1

Saturation scale: Q2 = 1/x2, such that S, (xs,,b,) =1 — N(xs,b1) ~ 1
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Saturation

Theoretical estimates yield Q. (7) ~ Qe ™"

v decreases = a,(Q,) — 0.

Numerical results

QS | | | ‘ ‘ ‘ — AU 2
14 x=10° ‘Nd QS T
1.2 + Mo | 10 .
q " Zn 8
. Ca 2
0.8 2
0‘ | | | | | =
~-6-5.5-5-45435325

06:Ne
25 50 751001251501 75200
A

Both numerical and theoretical estimates show that even if we start from small
target fields (e.g. v*) with S, (z,) < 1

lg X

BFKL . NL .
rp — 0 = S,(r.)increases = saturation = CGC?
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High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of
scattering of two shock waves. Regge limit: [/ > everything else

N /

shock waves
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High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of
scattering of two shock waves.

N /

shock waves

» Big Q: Produced particles/fields << S.g?
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High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of
scattering of two shock waves.

E>>m
»
AN /
shock waves
# Q # 0: What is a scattering of two QCD shock

waves?

» Big Q: Produced particles/fields << S.g?
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Rapidity factorization

g,

ni

nm

c.m.

At first, we integrate over “red” glu-
ons moving with rapidities in the
central region 1) ~ 7¢.m -

They interact with the *“external”
fileds (to be integrated over later)
with rapidities n ~ n4 and 17 ~ 1p
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Rapidity factorization

Consider the propagation of the red
gluon in the background of blue glu-
ons with greater rapidity
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A, ~ d(z_)
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A, ~ d(z_)
Interaction with the shock wave Is instantaneous
=> no time to deviate in transverse plane
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A, ~ d(z_)
Interaction with the shock wave is instantaneous

=> no time to deviate in transverse plane

=> the interaction is described by the Wilson line

V. = oops + 21, —oopa + 21],  [w,y] = Pe'th dulem Auluat (=)
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A+ ~ o(x_)
Interaction with the shock wave is instantaneous

=> no time to deviate in transverse plane

=> the interaction is described by the Wilson line

V,=loops + 21, —00ops + 21|, |z,y| = Peiafy du(z—y)* Au(ur+(1-u)y)

Propagator in the shock-wave background = (free propagator)
X (Instantaneous interaction with the shock wave ~ V)X (free propagator)
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Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: A, ~ d(x_), A_ = A, = 0.

=
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Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: A, ~ d(x_), A_ = A, = 0.
Axial (temporal) gauges: the shock wave Is a piece-wise pure gauge

AT =V(20)0(2) + Va(z)0(—21), Ap=A_=0, Vi= v*gaiv

Glz,y) = [deV] (x| )gVi(2 (= )V (2 )t Vi(y )
=
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Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: A, ~ d(x_), A_ = A, = 0.
Axial (temporal) gauges: the shock wave Is a piece-wise pure gauge

AT =V(20)0(2) + Va(z)0(—21), Ap=A_=0, Vi= v*gaiv

=3

Glz,y) = [deV] (x| )gVi(2 (= )V (2 )t Vi(y )
(z—2) (z—y)

The source for such a field is
expi [ @21 (Vi(21) = Vi(z1)} (0, F-1,0).)

(0,F_;,0), = fdu[ZLy upr + 21 [ F_ij(upr + 21 ) |upr + 21, 21|

Wilson lines —p.2:



Second shock wave

Consider now the propagation of
the red gluon in the background of
green gluons with greater rapidity
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Second shock wave

Covariant gauges:
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Second shock wave

Axial gauges: U, = Ul é@'U

The source iIs
exp{i/d%L(?/{f — Z/{%)(ZJ_)((), F—I—ia O)z}

0, Fy;,0] = de[ZL, upe + 2o | Fpi(ups + 21 ) [ups + 21, 21 |

= [0, 0opa]. iz [oops, 0]. + [0, —oopal. iz [—oops, 0],
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Scattering of two shock waves

Gluons in the central region of rapidity move in the “external” fields of two
shock waves

In the axial gauges
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Scattering of two shock waves

Gluons in the central region of rapidity move in the “external” fields of two
shock waves

In the axial gauges

Integration over A fields gives the effective action

6ZSeﬂ”(UquaA77) :/DA GZSQCD(A>+ZICZ2ZJ_{(V{_Vé)z(O,F—@,O)z—f—(Uf—U%)z[O,F-|_@,O]z}
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Rapidity < slope of the Wilson line An=mn — 1

-- - Z

4

o o \\Y2
eteft (Ui, Vi, Am) :/DA eiSQCD(A)-I-ifdQZL{(Vf—Vé)z(O,F—i,O)z+(Uf—U§)z[0,F+¢,0]z}

(0, F_;,0), = (0,00n1),10;(cony,0), + (0, —oony),20;(—oonq, 0).,

0, F_;,0], = |0, congl,10;[oons, 0], + |0, —oons|,10;|—ocons, 0],

Sei gives the small-z evolution of the Wilson-line operators
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Classical YM equation

BASIC IDEA: o, = a5(Q,) < 1 = SEMICLASSICS IS RELEVANT

McLerran & Venugopalan
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Classical YM equation

BASIC IDEA: o, = &S(QS) < 1 = SEMICLASSICS IS RELEVANT
McLerran & Venugopalan

DMF,,,, = ——(sources)

A,
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Classical YM equation

BASIC IDEA: o, = &S(QS) < 1 = SEMICLASSICS IS RELEVANT
McLerran & Venugopalan

DMF,,,, = ——(sources)

A,

Two methods of the solution on the market:
# Numerical simulations. Venugopalan & Krasnitz

# Perturbative expansion in strength of one of the shock waves
McLerran et al, Kovchegov & Mueller
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Classical YM equation

BASIC IDEA: o, = &S(QS) < 1 = SEMICLASSICS IS RELEVANT
McLerran & Venugopalan

DMF,,,, = ——(sources)

A,

Two methods of the solution on the market:
# Numerical simulations. Venugopalan & Krasnitz

# Perturbative expansion in strength of one of the shock waves
McLerran et al, Kovchegov & Mueller

& expansion in powers of commutators [U, V] (calculated up to [U, V%)
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The expansion in commutators

if U, V] =0

= piece-wise pure gauge .
QED-like: no interaction = no particle production
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The expansion in commutators

if U, V] =0

= piece-wise pure gauge .
QED-like: no interaction = no particle production

If (U, V] # 0 one can take this ansatz
A = A9 =0, AO =yYi0(x,) + UO(—2y) + ViO(z_) + Vib(—z_)

as a trial configuration for the classical solution and improve it order by order in
\U, V] by calculating Feynman diagrams in the background of the trial configu-
ration.
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The expansion in commutators

Linear term (source) for the trial configuration

T, = D ([Z/{lb Vil — 1+ k)0(2z)0(2_) + 3 similar terms

A, = Z/{iﬂ(aﬁ

+)

+ U (=) + VEO(z-) + Vo, 0(—2-) + Q,

Wilson lines

—-p.2



The expansion in commutators

Linear term (source) for the trial configuration

T, = D ([L[lb Vil — 1+ k)0(2z)0(2_) + 3 similar terms

A, = Z/{ﬁ@(m) + Z/{iﬂ(—m) — Vﬁﬂ( )+ V2u (—z_) + Q,

Solve the YM eqgn for @Q,(x) by iterations < calculate Feynman dia-
grams in the external field A(
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1/2-order approximation: a piece-wise pure gauge field

121_{_ — 121_ — O
A" = WLz )0(x_) + Wil(—x)0(x_)

Wi(z1) = Ui+ V| + Ej = pure gauge
Wi(z,)) = UL+V +EL = ..
Wi(z) = U +Vi+ Bl = ..
Wo(z,) = UL+ Vi+EL = ..

In the first order

a _ 2 t t q1\ab (v — 2)§ | o b
Ei(x,) =ig|dz(UU + V, VI —1) (Ui, Vi), — 1 k)

212 (x — 2)7

bF gauge D*Q, = 0 — (i0; + g[Us + Vi, )E* =0
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(), in the first order
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(), in the first order
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(), in the first order
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(), in the first order
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(), in the first order

QUL (k) = WeQE W] =

(D)p
p2,u
k+

E'=FE, - E} —E+E =W, — W, — WL +Wj

1 . .
{25 Vi — Vi, B — B +

5127 Uy — Uy, B — B + 2Ej}

Check: bF gauge condition (0" + gk, )Q,, = 0
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(), in the first order

QUL (k) = WeQE W] =

(L)
pZ,u

1 . .
{25 Vi — Vi, B — B + 2

k2 U k_
E'=FE, - E} —E+E =W, — W, — WL +Wj
Check: bF gauge condition (0" + gk, )Q,, = 0

Lipatov vertex (effective vertex of gluon emission):

1 o 2 ZYWVF _
LV (k) = KQY, (k) =

k2=0
opt 4 2L - LIV, — Vo, Bl — Ei) + 25—1% Uy, B

Effective action = product of two Lipatov vertices.
In the [U, V']? order

L5 L™ = 4B, E®

- Ej)

Ui — Usi, Y, — Ej) + 2B+ |
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Shortcut to the effective action

The trial configuration:
A_=A, =0and
+ 6(_$+)H(fﬁ_)WLz + 6(_$+)(9(_ZE_)WE

In each of the four quadrants of the space the
field is a pure gauge

Wri = Uy + Vi + By
Wi = Us; + V1 + B

Whri = Uy + Vo + R
Wpgi = Uz + Vo + By

Wilson lines — p.3(



Shortcut to the effective action

The trial configuration:
A_=A, =0and

+ 6(_$+)H(fﬁ_)WLz + 6(_$+)(9(_ZE_)WE
In each of the four quadrants of the space the
field is a pure gauge

Wei = Uy + Vi + By
Wi = U + Vi + L
Wri = Ui + Voi + Eg;
Wpgi = Uz + Vo + L

T, =20(zy)0(z-)E; =

Seft = /dzdz’Tia(z)Tai(z’) ~ aSAn/dzzLEf(zL)Eai(zL)

Wilson lines — p.3(



Gauge-invariant form of the effective action

Seff(‘/l) ‘/27 U17 U27 An) —

J aSA arai
Vi = Vo) Uy =)} + = LIL

L? Q(WF — Wi — Wpg + WB)?
— Z(EF — B — ERp+ EB)?
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Gauge-invariant form of the effective action

Seff(‘/l) ‘/27 Ul) U27 An) —

) CVSA a7 ai
Vi = Vo) Uy =)} + = LIL

~
S
I

; Q(WF — Wi — Wpg + WB)?
= 2(Er — EL — Egr + EB);

Gauge invariant representation (SMITH):

1

4LaiL'(il — tI'[OOph F—i7 _Oopl]OOPQ [Oop27 F—I-i7 _OOPQ]OOIH
X [Oopla _Oopl]—oopg [—OOPQ, OOPQ]—OOpl T CYCHC perin.

loop, F_;, —oop1] = [ duloopy, up | F_;(ups) [upr, —ocopi ]
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Gauge-invariant form of the effective action

Seff(‘/la ‘/27 U17 U27 An) —

) OzSA a7Tal
(V1 — Vg)m(ul — Z/{Q),? -+ 1 anL

L,? — Q(WF — W — Wg + WB),?
— Q(EF — b — Ep + EB),?

Gauge invariant representation (SMITH):

1
ZLQZL? — tr[OOph F—i7 _Oopl]OOp2 [OOPQ? F‘H’ _OOpQ]OOpl

X [Ooph _Oopl]—oopQ [—OOpg, OOPQ]—OO]M + CYCHC perm.

loopy, L, —oopy] = ffooodu[oopl, upy | F_;(upy)|upy, —oop:]
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Functional integral over the Wilson-line variables

64»?n_;v3n)g@4?1_LGM)ai
1 3 3 . 3
= / DU DU DV DV

exp { (V" = Vi) - Ug)

— (U = U = V)

+ (D = Dy — Uy

Tin . NN N\ a n n\ai . Mn — M — a (1 4n— n— at
/ DA€ZS—|—7,(V17 =V ) Uy Uy ) i (Vy 1_V2 1)n(U1 1_7/{2 Y
Nn—1

VT VU T Uy ) e Ly (VI U ) Ly (VT U
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Functional integral over the Wilson-line variables

o1t (U1,U2, Vi, Vaim —n2)

DU}7 DU DV DVQU ifd?x ) [(Vi—Va) (U Uyt a2—|—f771d77£ (U1,Uz,V1,Va,n)]
Up=U !
0

L(Ukﬁ?vkan) — _(Vl VQ)@ an

(U —Ug)™ —i=t LU, V)L™ (U, V)] |

L; is local in terms of 11/’s but unfortunately non-local in terms of U and V.

This formula contains both “upside down” and “bottom up” small-x “fan”
evolutions = pomeron loops

A>>1, B>>1 pomeron loops
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S« = nhon-linear evolution egn: proof

At small V

p’Lp Ul U p’bp
pL pL
= the integral over V' is gaussian.

Li S —2<U UQ)ab(Vl VQ)Z

Rewrite

e’LSeﬂ‘(Ul 7U27V1 7V2 3711 _772) —

/ DU DU DV DV”D)\ 7] Zfd%u(vl Va)? (um_um)m
Uny=U

iV1=V2)] U =UM ) dn [ dPx  {—i(V] = V)¢ 5 (U U ) —as XA T+ as AT LE (U V)]

)\j‘;i = “white noise” : 2%@?(3@))\3?(%» =0*(x—y)L0(n—1')
Integral over V' =-
Lo +0;0 +0;0
5(@ [Z/{l B Z/{2 (Ul 82k U2 an )Ak]) Wilson lines — p.3:



S« = nhon-linear evolution egn: proof

0; Ok, 0; Ok,

f;;’ — 5;77’ — ;—‘Z(Ufn 7 _ UQT?? 5 )ab)\gb
Solution: U = et o A CHAND U,
For the dipole
tr(UlacU Ugy )1 = /D)\ 1 —asf | dnfdPz XA
x tr{ﬁ%%dn SOy i S
X eQastangdn/%(Ugfn”\%é)U2yU1Tye—2ozs af,,;?Bdn’;—Qi(Ufjn AG) .
%tr(UlchQTxUQyUlTy) = /dzl C _(3;);<Z)i mE [_ thr(leUQmeU?yUlTy)

(U UL U UL ) (U1 UL U, UL, )|
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Conclusions

# High-energy hadron-hadron scattering < collision of two QCD shock
waves (Color Glass Condensates?)

# For two nuclei, A and B, the expansion in commutators of Wilson lines is a
symmetic expansion in both % or % parameters.

» L(U,V) > pomeron loops (= unitarity?)
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Conclusions

# High-energy hadron-hadron scattering < collision of two QCD shock
waves (Color Glass Condensates?)

# For two nuclei, A and B, the expansion in commutators of Wilson lines is a
symmetic expansion in both % or % parameters.

» L(U,V) > pomeron loops (= unitarity?)

Outlook
e The [U,V]* termin L
# Big Q: What is the field produced by the collision (in all orders in [U, V'])?
® & Big Q: S in (in all orders in [U, V']) ?
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Addendum

An example of Feynman diagram not taken into account by the diamond action

Wilson lines — p. 3
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