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I. PARTICLE IN THE FINITE POTENTIAL WELL

A. Convenient mathematical definition

It is convenient to define so-called step function

θ(x) = 1 x ≥ 0 (1)

θ(x) = 0 x < 0 (2)

Finite potential well: V = 0 if a > x > −a and V = V0 otherwise can be written as

V (x) = V0 θ(|x| − a) (3)

1. Method of soluton of stationary Schrödinger equation

Stationary Schrödinger equation

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (4)

We will consider the case V0 > E (the case E > V0 will be considered later).

− h̄2

2m
d2ψ(x)
dx2

= Eψ(x) a > x > −a

− h̄2

2m
d2ψ(x)
dx2

= − (V0 − E)ψ(x) |x| > a
(5)

Method of solution: solve in three separate regions and use matching condition: φ(x) and

ψ′(x) must be continuous at x = ±a

Helpful trick: use the symmetry. The potential in the Eq. (5) is symmetric under

replacement x ↔ −x so the solution can be symmetric ψ(x) = ψ(−x) or antisymmetric

ψ(x) = −ψ(−x). Let us consider them in turn.

B. Symmetric case

The equation (5) in the region |x| < a can be rewritten as

− h̄2

2m

d2ψ(x)

dx2
= Eψ(x) ⇔ d2ψ(x)

dx2
= − 2mE

h̄2 ψ(x) = − k2ψ(x) (6)
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(since k = p
h̄
). The general solution is

A cos kx+B sin kx (7)

so the symmetric solution is

ψ1(x) = A1 cos kx, (|x| < a) (8)

where the constant A1 is to be determined later.

In the second region |x| > a the equation (5) reads

− h̄2

2m

d2ψ(x)

dx2
= − (V0 − E)ψ(x) ⇔ d2ψ(x)

dx2
=

2m(V0 − E)

h̄2 ψ(x) = κ2ψ(x) (9)

where κ =
√

2m(V0−E)

h̄2
. The general solution reads

Aeκx +Be−κx (10)

so the symmetric solution looks like

A2[e−κxθ(x− a) + eκxθ(−x− a)] (11)

or

A3[eκxθ(x− a) + e−κxθ(−x− a)] (12)

The second solution is not acceptable since the function (20) is increasing as x±∞ so the

integral
∫∞
−∞ |ψ(x)|2 diverges and cannot be normalized.

Thus, we obtain

ψsym(x) = A1(cos kx)θ(a− |x|) + A2[e−κxθ(x− a) + eκxθ(−x− a)] (13)

Now we will use two conditions, i.e. that the function (21) and its derivative are continuous

at x = a (by symmetry, these statements will be also true at x = −a).

ψsym(x)
x→a−0

= A1 cos ka

ψsym(x)
x→a+0

= A2e
−κa

 ⇒ A2 = A1(cos ka)eκa (14)

Here we used convenient mathematical notation x→ a±0 ≡ x = limε→0 a± ε (x approaches

a from the left or from the right). Similarly,

ψ′sym(x)
x→a−0

= −A1k sin ka

ψ′sym(x)
x→a+0

= −A2κe
−κa

 ⇒ A2 = A1(sin ka)
k

κ
eκa (15)
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We get the equation

A1(sin ka)
k

κ
eκa = A1(cos ka)eκa ⇔ cot ka =

k

κ
=

k√
k2

0 − k2
(16)

where k0 =
√

2mV0
h̄2

. Thus, we have a transcendental equation for k

cot ka

√
k2

0

k2
− 1− 1 = 0 (17)

This equation may have a finite number of solutions or no solutions at all if k0 (⇔ V0) is

smaller than some critical value.

The constant A1 is obtained from the normalization condition
∫∞
−∞ |ψ(x)|2 = 1
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C. Antisymmetric case

The antisymmetric solution of Eq. (6) is

ψ1(x) = B1 sin kx, (|x| < a) (18)

where the constant B1 is to be determined later.

The antisymmetric solution of Eq. (6) at |x| > a looks like

B2[e−κxθ(x− a)− eκxθ(−x− a)] (19)

or

B3[eκxθ(x− a)− e−κxθ(−x− a)] (20)

Again, the latter solution is not acceptable since the integral
∫∞
−∞ |ψ(x)|2 diverges and cannot

be normalized.

Thus, the antisymmetric solutions have the form

ψasym(x) = B1(sin kx)θ(a− |x|) +B2[e−κxθ(x− a)− eκxθ(−x− a)] (21)

The two matching conditions are

ψasym(x)
x→a−0

= B1 sin ka

ψasym(x)
x→a+0

= B2e
−κa

 ⇒ B2 = B1(sin ka)eκa (22)

and

ψ′asym(x)
x→a−0

= B1k cos ka

ψ′asym(x)
x→a+0

= −B2κe
−κa

 ⇒ B2 = −B1(cos ka)
k

κ
eκa (23)

We get the equation

B1(cos ka)
k

κ
eκa = −B1(sin ka)eκa ⇔ − tan ka =

k

κ
=

k√
k2

0 − k2
(24)

or

1 + (tan ka)

√
k2

0

k2
− 1 = 0 (25)
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Again, the constant B1 is obtained from the normalization condition
∫∞
−∞ |ψ(x)|2 = 1
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The form of the obtained functions φsym and ψasym is shown in the following diagram


