I. PARTICLE IN THE FINITE POTENTIAL WELL
A. Convenient mathematical definition

It is convenient to define so-called step function

Olz) =1 x>0 (1)
f(z) = 0 x <0 (2)

Finite potential well: V =0 if a > x > —a and V = V|, otherwise can be written as

V(z) = Vo 0(|z| - a) (3)

1. Method of soluton of stationary Schrodinger equation

Stationary Schrodinger equation

R )
2m  dx?

+V(2)p(z) = Ei(x) (4)

We will consider the case Vy > E (the case E > V{ will be considered later).

2 x
— O = — (Vh— E)(a) |z > a

Method of solution: solve in three separate regions and use matching condition: ¢(z) and
¢'(x) must be continuous at x = +a

Helpful trick: use the symmetry. The potential in the Eq. (5) is symmetric under
replacement x <> —z so the solution can be symmetric 1(z) = ¥(—z) or antisymmetric

(x) = —1(—x). Let us consider them in turn.

B. Symmetric case

The equation (5) in the region |z| < a can be rewritten as

7 d(x)

B d*Y(x) — 2mE
2m  dz?

= BY@) & ot = - v() = - k) (6)




(since k = £). The general solution is
Acoskx + Bsinkx (7)
so the symmetric solution is
1(x) = Ajcoskr, (|z| < a) (8)

where the constant A; is to be determined later.

In the second region |z| > a the equation (5) reads

SR - e T 220D )
where Kk = %%_E) The general solution reads
Ae"™ + Be " (10)
so the symmetric solution looks like
Asle™™0(x — a) + " 0(—x — a)] (11)
or
Asle™0(x — a) + e 0(—x — a)] (12)

The second solution is not acceptable since the function (20) is increasing as x + oo so the
integral [*°_|¢(x)|* diverges and cannot be normalized.

Thus, we obtain
Ysym(z) = Aj(coskz)f(a — |z]) + Asle ™ 0(x — a) + €""0(—x — a)] (13)

Now we will use two conditions, i.e. that the function (21) and its derivative are continuous

at x = a (by symmetry, these statements will be also true at z = —a).

VYeym () 220 A coska

= Ay = Ai(coska)e™ (14)
¢sym ({L‘) x—>:a+0 A267ﬁa

Here we used convenient mathematical notation x — a+0 = = = lim._,p a+ ¢ (z approaches

a from the left or from the right). Similarly,

/ rz—a—0 .
. =" —Ajksink k
wym) LRI = Ay = Ai(sinka)—e"™ (15)

(@) TEY —Agree A



We get the equation

Al(sinka)ﬁe’“’ = Ai(coska)e™ & cotka = ko
K K

where ky = 1/2%‘/1. Thus, we have a transcendental equation for k

k2
cot ka k—g—1—1 (17)

This equation may have a finite number of solutions or no solutions at all if kg (< V) is
smaller than some critica
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The constant A; is obtained from the normalization condition [*_ |¢(x)]*> = 1



C. Antisymmetric case

The antisymmetric solution of Eq. (6) is
Yi(x) = Bysinke, (12] < a) (18)

where the constant B; is to be determined later.

The antisymmetric solution of Eq. (6) at |z| > a looks like
Bole™™0(z — a) — ™ 0(—x — a)] (19)
or

Bsle™0(x — a) — e "0(—x — a)] (20)

Again, the latter solution is not acceptable since the integral [*°_ |1 (z)|? diverges and cannot

be normalized.

Thus, the antisymmetric solutions have the form
Yasym(¥) = Bi(sinkz)f(a — |z|) + Bele ™ 0(z — a) — e""0(—x — a)] (21)
The two matching conditions are

Yasym () 220 B sinka

= By = Bj(sinka)e™ (22)
2ﬂausym(ilﬁ I_>:CL+O BQG_HG
and
’ z—a—0
— = Bikcoska k
Y (@) a0 ! = By = — By(coska)—e™ (23)
;sym(x) = —Boke™" k
We get the equation
k ra : ra k k
Bi(coska)—e™ = — Bi(sinka)e & —tanka = — = —/——— (24)
K K k¢ — k2

or

1+ (tanka)y/ = —1 = 0 (25)
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Again, the constant Bj is obtained from the normalization condition [*_ | (z)*> = 1



The form of the obtained functions ¢gym, and asym is shown in the following diagram
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Figure 6-12 Wave functions
¥ (x) and probability
distributions 2(x) for n = 1,
2, and 3 for the finite square
well. Compare these with
Figure 6-4 for the infinite
square well, where the wave
functions are zero atx = 0
and x = L. The wavelengths
are slightly longer than the
corresponding ones for the
infinite well, so the allowed
energies are somewhat
smaller.



