I. HARMONIC OSCILLATOR

Stationary Schrodinger equation forharmonic oscillator reads
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Make a change of variable y = z,/%* & v =y
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and the Schrodinger Eq.(1) takes the form
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where £ = h— and the boundary conditions are as usual: ¥(y) — 0 as y — 0.

Useful rewriting: for any f(y) write down formulas
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and rewrite them as follows
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First, let us prove that for any solution of Eq. (3) £ is non-negative. Consider
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where we used first line in Eq. (8) and integration by parts. Thus, for any ¢ the Lh.s. of
Eq. (8) is negative which means that if ¢ is a solution of Eq. (3)
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so £ > 0 in accordance with the classical picture.



Now, theorem:

If f.(y) is a solution of
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Proof: first, we can rewrite d)( ) — y2¢(y) as follows
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Now, let us apply the formula (11) to ¢(y) = fri1(y) = ( —y) fuly)
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Similarly, one can prove that

is a solution of the equation
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with &, =&, — 1.

Now, assume that v,(y) is a solution of Eq. (3) with & = &,. From eq. (13) we see that
if we consider (d% + )Y (y), we get a solution of Eq. (3) with & = £, — N. Since for any
solution £ > 0 this must stop at some N and the only way to stop is to get 0 at some step.
Thus, the solution 1y(y) with the lowest & must satisfy
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which easily yields
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Next, from Eq. (10) we see that the solutions with E,, = 5 + n can be obtained as
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Now, let us return to the original variable x = y4/ % and see what we have learned.
The wave function of the ground state is
MW\ § _mw,2
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where the constant in front of the exponent was obtained from the normalization condition
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The energy of the ground state is
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The wave functions of excited states are obtained from Eq. (17)
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by proper normalization. The energies of the excited states are
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First few wave functons
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where H,(y) is the so-called Hermite polynomial of order n.

The corresponding solution of time-dependent Schrodinger equation is then
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Figure 6-19 Probability
density 2 for the simple
harmonic oscillator plotted
against the dimensionless

variable u = (mw/#)?x ,
forn =0, 1, 2,3, and 10.
The dashed curves are the
classical probability

densities for the same energy,
and the vertical lines

indicate the classical turning
points x = *A.
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Figure 6-20 Energy levels in the simple harmonic oscillator potential. Transitions obeying
the selection rule An = *1 are indicated by the arrows (those pointing up indicate absorption).
Since the levels have equal spacing, the same energy %w is emitted or absorbed in all allowed
transitions. For this special potential, the frequency of the emitted or absorbed photon equals
the frequency of oscillation, as predicted by classical theory.

A property of these wave functions that we will state without proof is that

+o
f W, dx =0 unless n=m=*1 6-59
This property places a condition on transitions that may occur between allowed states.
This condition, called a selection rule, limits the amount by which n can change for
(electric dipole) radiation emitted or absorbed by a simple harmonic oscillator:

The quantum number of the final state must be 1 less than or 1 greater than
that of the initial state.

This selection rule is usually written
An = *1 6-60

Since the difference in energy between two successive states is fw, this is the energy
of the photon emitted or absorbed in an electric dipole transition. The frequency of the
photon is therefore equal to the classical frequency of the oscillator, as was assumed
by Planck in his derivation of the blackbody radiation formula. Figure 6-20 shows an
energy level diagram for the simple harmonic oscillator, with the allowed energy
transitions indicated by vertical arrows.



