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I. HARMONIC OSCILLATOR

Stationary Schrödinger equation forharmonic oscillator reads

− h̄2

2m

d2ψ(x)

dx2
+
mω2x2

2
ψ(x) = Eψ(x) (1)

Make a change of variable y = x
√

mω
h̄
⇔ x = y

√
h̄
mω
⇒

y = x

√
mω

h̄
⇔ x = y

√
h̄

mω
⇒ d

dx
ψ(x) =

√
mω

h̄

d

dy
ψ(y) (2)

and the Schrödinger Eq.(1) takes the form

d2ψ(y)

dy2
− y2ψ(y) = − 2Eψ(y) (3)

where E ≡ E
h̄ω

and the boundary conditions are as usual: ψ(y)→ 0 as y → ±∞.

Useful rewriting: for any f(y) write down formulas

(
d

dy
− y)(

d

dy
+ y)f(y) =

d2f(y)

dy2
− y2f(y) + f(y)

(
d

dy
+ y)(

d

dy
− y)f(y) =

d2f(y)

dy2
− y2f(y)− f(y) (4)

and rewrite them as follows

1
2
( d
dy
− y)( d

dy
+ y)f(y) + 1

2
( d
dy

+ y)( d
dy
− y)f(y) = d2f(y)

dy2 − y2f(y)

1
2
( d
dy
− y)( d

dy
+ y)f(y)− 1

2
( d
dy

+ y)( d
dy
− y)f(y) = f(y)

(5)

First, let us prove that for any solution of Eq. (3) E is non-negative. Consider∫
dy ψ∗(y)(

d2ψ(y)

dy2
− y2ψ(y)) (6)

=
1

2

∫
dy ψ∗(y)(

d

dy
− y)(

d

dy
+ y)ψ(y) +

1

2

∫
dy ψ∗(y)(

d

dy
+ y)(

d

dy
− y)ψ(y)

= − 1

2

∫
dy {( d

dy
+ y)ψ(y)}∗( d

dy
+ y)ψ(y)− 1

2

∫
dy {( d

dy
− y)ψ(y)}∗( d

dy
− y)ψ(y) ≤ 0

where we used first line in Eq. (8) and integration by parts. Thus, for any ψ the l.h.s. of

Eq. (8) is negative which means that if ψ is a solution of Eq. (3)∫
dy ψ∗(y)(

d2ψ(y)

dy2
− y2)ψ(y) = − 2E

∫
dy ψ∗(y)ψ(y) = − 2E ≤ 0 (7)

so E ≥ 0 in accordance with the classical picture.
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Now, theorem:

If fn(y) is a solution of
d2fn(y)

dy2
− y2fn(y) = − 2Enfn(y) (8)

the function

fn+1(y) = (
d

dy
− y)fn(y) (9)

is a solution of the same equation with En+1 = En + 1

d2fn+1(y)

dy2
− y2fn+1(y) = − 2(E + 1)fn+1(y) (10)

Proof: first, we can rewrite d2φ(y)
dy2 − y2φ(y) as follows

d2φ(y)

dy2
− y2φ(y) = (

d

dy
− y)(

d

dy
+ y)φ(y)− φ(y) = (

d

dy
+ y)(

d

dy
− y)φ(y) + φ(y) (11)

Now, let us apply the formula (11) to φ(y) = fn+1(y) = ( d
dy
− y)fn(y)

d2fn+1(y)

dy2
− y2fn+1(y) = (

d

dy
− y)(

d

dy
+ y)fn+1(y)− fn+1(y)

= (
d

dy
− y)(

d

dy
+ y)(

d

dy
− y)fn(y)− (

d

dy
− y)fn(y)

= (
d

dy
− y)(−2En − 1)fn(y)− (

d

dy
− y)fn(y) = (−2En − 2)(

d

dy
− y)fn(y)

= − 2(En + 1)fn+1(y), Q.E.D. (12)

Similarly, one can prove that

fn−1(y) = (
d

dy
+ y)fn(y)

is a solution of the equation

d2fn−1(y)

dy2
− y2fn−1(y) = − 2En−1fn(y) (13)

with En−1 = En − 1.

Now, assume that ψn(y) is a solution of Eq. (3) with E = En. From eq. (13) we see that

if we consider ( d
dy

+ y)Nψn(y), we get a solution of Eq. (3) with E = En −N . Since for any

solution E ≥ 0 this must stop at some N and the only way to stop is to get 0 at some step.

Thus, the solution ψ0(y) with the lowest E must satisfy

(
d

dy
+ y)ψ0(y) = 0 (14)
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which easily yields

ψ0(y) = e−
y2

2 (15)

and

E0 =
1

2
(16)

Next, from Eq. (10) we see that the solutions with En = 1
2

+ n can be obtained as

ψn(y) =
( d
dy
− y

)n
e−

y2

2 (17)

Now, let us return to the original variable x = y
√

h̄
mω

and see what we have learned.

The wave function of the ground state is

ψ0(x) =
(mω
πh̄

) 1
4 e−

mω
2h̄
x2

(18)

where the constant in front of the exponent was obtained from the normalization condition∫
dy|ψ0(x)|2 =

√
mω

πh̄

∫
dx e−

mω
h̄
x2

= 1 (19)

The energy of the ground state is

E0 =
h̄ω

2
(20)

The wave functions of excited states are obtained from Eq. (17)

ψ0(x) =
(√ h̄

mω

d

dx
− x

√
mω

h̄

)n(mω
πh̄

) 1
4 e−

mω
2h̄
x2

(21)

by proper normalization. The energies of the excited states are

En = h̄ω(
1

2
+ n) (22)

First few wave functons

ψ0(x) =
(mω
πh̄

) 1
4 e−

mω
2h̄
x2

, ψ1(x) = 2

√
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h̄

(mω
πh̄

) 1
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2h̄
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ψ2(x) =
1√
2
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2
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)(mω
πh̄

) 1
4 e−
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2h̄
x2

ψ3(x) =

√
mω

3πh̄

(
2
mω

h̄
x3 − 3x

)(mω
πh̄

) 1
4 e−

mω
2h̄
x2

(23)

In general,

ψn(x) =
1√
2nn!

(mω
πh̄

) 1
4 e−

mω
2h̄
x2

Hn(x

√
mω

h̄
) (24)

where Hn(y) is the so-called Hermite polynomial of order n.

The corresponding solution of time-dependent Schrödinger equation is then

ψn(x, t) =
1√
2nn!

(mω
πh̄

) 1
4Hn(x

√
mω

h̄
)e−

mω
2h̄
x2

e−iω(n+ 1
2
)t (25)
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