
1 Rutherford Formula in Classical Mechanics

.

1.1 Motion in a (x,y) plane in a central potential V (r)

It is convenient to use polar coordinates

x = r cosφ, y = r sinφ (1.1)

In general, both r and φ change as particle moves:

center of force

.
r

m

Figure 1. Polar coordinates in x, y plane.

vx = ẋ = ṙ cosφ− rφ̇ sinφ

vy = ẏ = ṙ sinφ+ rφ̇ cosφ (1.2)

The kinetic energy in polar coordinates takes the form

T =
m

2
(v2
x+v2

y) =
m

2

[
(ṙ cosφ−rφ̇ sinφ)2 +(ṙ sinφ+rφ̇ cosφ)2

]
=

m

2

[
ṙ2 +r2φ̇2

]
(1.3)

The total energy is conserved

E =
m

2
(v2
x + v2

y) + V (r) =
m

2

(
ṙ2 + r2φ̇2

)
+ V (r) = const (1.4)

Similarly, the angular momentum ~L = Lêz is conserved

Lz = (~r × ~p)z = xpy − ypx = m(xẏ − yẋ)

= m
[
r cosφ(ṙ sinφ+ rφ̇ cosφ)− r sinφ(ṙ cosφ− rφ̇ sinφ)

]
= mr2φ̇ = const

⇒ L = mr2φ̇ = const (1.5)

1.2 Effective potential

Due to the conservation of angular momentum the problem of motion of a particle in a
central potential V (r) can be reduced to 1-dimensional problem with an “effective potential”:

E =
m

2
ṙ2 +

m

2
r2φ̇2 + V (r) =

m

2
ṙ2 + V (r) +

m

2
r2 L2

m2r4

=
m

2
ṙ2 + V (r) +

L2

2mr2
=

m

2
ṙ2 + Veff(r) (1.6)
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Thus, the energy of the particle in central potential is equal to the energy of the particle
moving in one dimension (at r > 0) in the effective potential

Veff(r) = V (r) +
L2

2mr2
(1.7)

Since E − Veff(r) = m
2 ṙ

2 ≥ 0, the equation

V (r) +
L2

2mr2
≤ E (1.8)

determines the region of space where the motion can occur.
Also, we can determine the form of the trajectory r(φ) from the following consideration.

From Eq. (1.6) we get

ṙ =
dr

dt
= ±

√
2

m

√
E − Veff(r) (1.9)

where the sign depends on whether r(t) is increasing (sign “+”) or decreasing (sign “-”) at
time t, In other words, the sign depends on the direction of radial motion (sign “+” for the
motion out and sign “-” for the motion in). We will consider motion “in” and take “-” sign.

From Eqs. (1.5) and (1.9) we see that

dφ

dt
=

L

mr2
⇒ dt =

mr2

L
dφ

dr

dt
= −

√
2

m

√
E − Veff(r) ⇒ dt = − dr√

2
m

√
E − Veff(r)

(1.10)

Comparing the two expressions for dt we see that

−
√
m

2

dr√
E − Veff(r)

=
mr2

L
dφ

⇒ dφ = − L√
2m

dr

r2
√
E − Veff(r)

⇒ φ2 − φ1 =

∫ φ2

φ1

dφ′ = − L√
2m

∫ r2

r1

dr′
1

r′2
√
E − Veff(r′)

(1.11)

1.3 Scattering

Consider motion of a particle in central potential V (r) which we assume to vanish at infinity

V (r)
r→∞
→ 0. The energy of a free motion at t→ −∞ is E = m

2 v
2
∞ and the angular momentum

is L = mv∞b where b is called an impact factor. The typical picture of the scattering from
a repulsive potential is shown in Fig. 1

One can have in mind Coulomb potential V (r) = qQ
4πr as a typical example.

The point at the minimal distance r0 is the inversion point for given energy E and
angular momentum L. Since ṙ(r0) = 0 from Eq. (1.6) we see that r0 is a solution of the
equation

Veff(r0) = E ⇔ V (r0) +
L2

2mr2
0

= E (1.12)
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If we know r0, the angle φ0 can be obtained from the formula (1.11). Taking φ1 = 0 at
r =∞ and φ2 = φ0 at r = r0 we get

φ0 = − L√
2m

∫ r0

∞
dr′

1

r′2
√
E − V (r′)− L2

2mr′2

(1.13)

(The minus sign is due to the fact that ṙ < 0 if the particle is approaching the scattering
center).

After reaching r0 the particle moves again to infinity and the change of angle between
r0 and infinity is

φ′0 =
L√
2m

∫ ∞
r0

dr′
1

r′2
√
E − V (r′)− L2

2mr′2

(1.14)

Note that φ0 = φ′0 and the trajectory is symmetric with respect to line parallel to vector
~r0 (see Fig. 2)

.
v

0 b

r0

Figure 2. Scattering from a repulsive potential

For future use, it is convenient to represent φ0 in terms of b and v∞ as

φ0 =

∫ ∞
r0

dr′
b

r′2
√

1− b
r′2
− V (r′)

mv2∞/2

(1.15)

The deflection angle (the angle between velocities at plus and minus infinity) is

θ = π − 2φ0 (1.16)
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1.4 Cross section

Consider a uniform beam of particles incident on a central potential

beam of particles

v

.
center of force

Figure 3. A beam of particles incident on a central potential

Flux Φ is a number of particles per unit area per unit time
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Figure 4. Transverse view of a beam of particles

Each particle has a definite b abd v∞ and will be deflected by angle θ = |π− 2φ0|. Let
us consider now particles in a ring between b and b+ ∆b. The number of particles crossing
area of a ring b < r < b+ ∆b per unit time is

dn = 2πb∆b Φ (1.17)
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Figure 5. Particles in a ring between b and b+ ∆b

These particles will be deflected by angle between θ and θ + ∆θ, see Fig. 6. (Due to
azimuthal symmetry, the deflection angle ∆θ does not depend on φ).

Cross section dσ is defined as

dn(θ) = Φdσ(θ) (1.18)

Note that dσ has the dimension of an area since dn has a dimension of 1
time (from Eq. (1.17)

dn = number of particles
time ).

4



b +   b

v

b

center of force
.

  

Figure 6. Scattering of particles with impact parameter between b and b+ ∆b

Since θ = |π − 2φ0(b)| one may think of b as a function of θ and get from Eqs. (1.17)
and (1.18)

6Φdσ(θ) = 6Φ2πbdb ⇒ dσ(θ) = 2πb
∣∣db(θ)
dθ

∣∣dθ (1.19)

The reason for modulus
∣∣db(θ)
dθ

∣∣ in the r.h.s. of this equation is that dσ(θ) is a positive
definite quantity (=number of particles

flux ) while b(θ) is generally decreasing function of θ (the
greater the impact parameter b, the smaller is the deflection angle θ), see Fig. 6.

It is convenient to write down the derivative of the cross section with respect to solid
angle (so-called ”differential cross section” dσ

dΩ). Recall that dΩ ≡ sin θdθdφ ⇒

dσ(θ) =
b

sin θ

∣∣db(θ)
dθ

∣∣dΩ ⇒ dσ

dΩ
=

b

sin θ

∣∣db(θ)
dθ

∣∣ (1.20)

The total cross section is defined as

σtot ≡
∫
dΩ

dσ

dΩ
(1.21)

so it is a number of particles scattered in a unit time in all directions divided by flux.
Example: scattering from a rigid ball of radius a. The potential is

V (r) = 0 if r ≥ a and V (r) = ∞ if r < a (1.22)

From Fig. 7 we see that sinφ0 = b
a (for b < a, at b ≥ a the particle will not be deflected)

so

θ = π − 2 arcsin
b

a
⇒ b

a
= sin

π − θ
2

= cos
θ

2
⇒ db

dθ
= − a

2
sin

θ

2
(1.23)

and therefore

dσ

dΩ
=

b

sin θ

∣∣db(θ)
dθ

∣∣ =
a cos θ2

2 sin θ
2 cos θ2

× a

2
sin

θ

2
=

a2

4
(1.24)
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Figure 7. Scattering from the rigid ball

Not that the obtained cross section

dσ

dΩ
=

a2

4
(1.25)

is isotropic (does not depend on θ. In other words, regardless of where the detector is
placed, it will detect the same number of particles per unit time per unit solid angle (for a
given flux Φ).

The total cross section is

σtot ≡
∫
dΩ

dσ

dΩ
=

∫
dΩ

a2

4
= 4π × a2

4
= πa2 (1.26)

(which means that we defined the cross section (1.19) in accordance with our everyday
intuition).

1.5 Rutherford formula

Consider two particle with masses m and M � m and charges ze and Ze. The effective
potential is

Veff(r) =
Zze2

r
+

L2

2µr2
, µ ≡ mM

m+M
' m (1.27)

(see Fig. 8)
The inversion point r0 can be found from the equation

E = Veff(r0) =
Zze2

r0
+

L2

2mr2
0

(1.28)

or, in terms of v∞ and b

2α
b

r0
+
( b
r0

)2
= 1, α ≡ Zze2

mv2
∞b

(1.29)
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Figure 8. Effective potential for a scattering from a Coulomb center

This is a quadratic equation with a (positive) solution

r0 =
b√

1 + α2 − α
(1.30)

Quick check: for a head-on collision b→ 0 so α→∞ and

r0
b→0
=

b

α
√

1 + α−2 − 1
' 2αb =

2Zze2

mv2
∞

(1.31)

Now we can find the angle φ0. Since we are considering repulsive force (Zz > 0) the
trajectory looks like Fig. 9

.
v
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r0

Figure 9. Scattering of particles from a Coulomb center

and therefore θ = π − 2φ0 where φ0 is given by Eq. (1.15)

φ0 =

∫ ∞
r0

dr′
b

r′2
√

1− b
r′2
− 2Zze2

mv2∞r′

u′=1/r′
=

∫ 1
r0

0

du′√
1− b2u′2 − 2αbu′

(1.32)

x=u′b
=

∫ b
r0

0

dx√
1− x2 − 2αx

= arcsin
x+ α√
1 + α2

∣∣∣∣∣
b/r0

0

=
π

2
− arcsin

α√
1 + α2
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because ( br0 + α)2 = 1 + α2, see Eq. (1.30). The deflection angle takes the form

θ = π − 2φ0 ⇒ 2 arcsin
α√

1 + α2
⇒ sin

θ

2
=

α√
1 + α2

(1.33)

and therefore
1

sin2 θ
2

= 1 +
1

α2
= 1 + b2

(mv2
∞

Zze2

)2
(1.34)

To find differential cross section from Eq. (1.20) we need to rewrite the impact parameter
b as a function of deviation angle θ which is easily done inverting the above equation:

b(θ) =
∣∣∣Zze2

mv2
∞

∣∣∣ cot
θ

2
(1.35)

The differential cross section (1.20) takes the form

dσ

dΩ
=

b

sin θ

∣∣db(θ)
dθ

∣∣ =
∣∣ zZe2

2mv2
∞

∣∣∣2 1

sin4 θ
2

(1.36)

This is the famous Rutherford’s formula.
Properties:

• dσ
dΩ is independent of the sign of charges ze and Ze (≡ cross section is the same for
attractive and repulsive Coulomb potential).

• dσ
dΩ ∼

1
θ4

for small angles (large impact parameters) ⇒

• The integral for the total cross section (1.21) σtot =
∫
dΩ dσ

dΩ diverges at small θ

The last property means that the total cross section σtot is poorly defined for Coulomb
potential since all particles are deflected regardless of how large is b. This behavior (diver-
gence of σtot) is a characteristic of potentials falling as 1

r at large separations.
Remarkable fact about the Rutherford formula is that for Coulomb scattering Classical

Mechanics, Quantum Mechanics, and Quantum Field Theory all lead to the same result!
(Otherwise, physicists in the beginning of 20th century would be extremely confused...)
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