I. THE SOLUTION OF THE SCHRODINGER EQUATION IN THREE
DIMENSIONS

A. Infinite square well in three dimensions

Consider the three-dimensional time-idependent Schrodinger equation

<_2’Zv2 V) 0ir) = Bur). (1)

This is a three-dimensional partial differential equation and the approach to the solution of
this equation depends very much on the character of the potential.

A simple example of this is to consider the three-dimensional version of a particle in a

cubical box. The potenital is

—

V(F) = 0 if O0<zxz<lL, O<y<L, 0<z<lL
V(r) = oo otherwise (2)

The Schrodinger equation for this potential can be written in Cartesian coordinates as

h2 82 82 82

2m
Similarly to one-dimensional case, the boundary conditions are

z<0 or x >1L
or
¢(I7y72) =0 if y<0 or y>L

or

z<0 or z>1L

which means that the wave function vanishes outside the box (and by continuity, on the

sides of the box).

This equation can be solved using separation of variables by trying the ansatz
(x,y,2) = X(2)Y (y) Z(2). (4)

Substituting this into the Schrodinger equation and dividing by the wave function gives

B h? 82X(x)_ h? 82Y(y)_ n? 0%Z(z)
2mX(x) Ox? 2mY (y) 0y? 2mZ(z) 0z?

- E. (5)



This clearly results in a separation of the three coordinates. If this equation is to be true
for all possible values of x, y and z, it is necessary that each separated term be constant.
This allows us, for example, to write

R PX, ()
2mX, (z) 022

= En,, (6)

or
0 PPX,(2)
2m  Ox?

This is the equation for one-dimensional box with (normalized) solutions

= E, X, (2). (7)

2
an (.I') = \/;SHI klx, ]{,‘1 — % (8)
vanishing at z = 0, L. The eigenvalue FE,, = h;,],? = % where p, = hk;. Similarly, we get
2 . ™o h2k2 p>
YnZ (y> = Z s1n k2y, k2 = T, En2 = 2m2 = ﬁ
2 R P
Zule) =ik ke = TR Be = G = o )
Thus, the solution of Schrodinger equation (5) is
23 . : .
Unynang (T,Y,2) = <Z> sin ky 2 sin koy sin k32 (10)
with energy
2,2 1 2 252
Em,nz,ns = 27; = o (nf + ng + ng) (11)

The energy and wave function are characterized by three quantum numbers, each arising
from a boundary condition on one of the coordinates.

In general, there are multiple combinations of ny, ns, ng leading to the same energy (14).
An energy level that has more than one wave function associated with it is said to be

degenerate. The ground state for this potential is non-degenerate

2.3 nr?
Uiz, y,2) = (E)Qsin%sin%sin%, Ey = 3 2;; (12)
but already the first excited state with energy F; = 6% has degeneracy 3:
2,8 2 nr?
Po11 = (Z)Qsin%sin%sin%, E =6 2:;
2\ 3 2 hm?
rgr = (E)Zsin%sin%sin%, E =6 2;;
2.3 mx | my . 27z h*n?
P2 = (z) SlnfsmfysmT, E =6 v (13)
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Figure 7-1 Energy-level diagram for (a) cubic infinite square well potential and (b) noncubic
infinite square well. In the cubic well, the energy levels above the ground state are threefold
degenerate; i.e., there are three wave functions having the same energy. The degeneracy is
removed when the symmetry of the potential is removed, as in (b). The diagram is only schematic,
and none of the levels in (b) necessarily has the same value of the energy as any level in (a).

The degeneracy is related to the symmetry of the problem, and anything that destroys
or breaks the symmetry will also destroy or remove the degeneracy. If, for example, we
considered a non-cubical box V =0 for 0 < z < Ly, 0 <y < Ly, 0 < 2 < L3, the boundary

condition at the walls would lead to the quantum conditions

lel = TNy, kng = TNy, k’3L3 = Tns
and we will get
h’m® 2 2 2
Emmz,n:s = %( 1 TN +n3) (14>

Let us prove that wave functions corresponding to different energies are orthogonal

/dV ¢;1,m2,m3 (:L‘, Y, Z)@Z)m,nz,n:a ('ra Y, Z) =0 if Ernymamas # Eni o s (15>
Proof: consider

JAV sy (229, ) H o s, 2) =

. h? [ 02 0? 0?
= /dV wml,mQ,ms(waya Z)[— om <85€2 + aT/Q + 822> }wm,nzm(%yaz)



- Enl,nz,na /dv w:nl,mg,mg (I7 Y, Z)¢n1,n2,n3 (.I, Y, Z) (16)

because Uy, n,.ns (2, Y, 2) is a solution of Schrédinger equation (3) with eigenvalue E,,; 1, ns-

On the other hand, we can integrate r.h.s. of Eq. (16) two times by parts and get

/dv w:u,mg,mg (.flj, y’ Z>ﬁwn1,n2,n3 (‘x7 y7 Z)
h? ( 0? 0? 0?

= /dv wm1,m2,m3(x>y7 Z) [ - % @ + 873/2 + 822> }wnl,nz,ns(ma Y, Z)

2m

= Emimoms /dv wm,ﬂz,ﬂs(%% Z)w;u,mz,m;; (-77’ Y, Z) (17)

B9 9 9\, .
= /dv wnl,n2,n3($a Y, Z) [ T o ((91,2 + 873/2 + (?2,’2) }wmhmz,m:&(ma Y, Z)

*

since wml mams

(x,y,2) is a solution of Schrodinger equation (3) with eigenvalue Ey,, 1y .ms

(recall that energies are real). Comparing two expressions (16) and (17) we see that

J AV ity @9 2o (@, 2) = 0 (18)

unless Epy moms = Enynams- Lhis is a general property: wave functions corresponding to
states with different energies are orthogonal.
Mathematical statement: eigenfunctions of a Hermitian operator corresponding to differ-

ent eigenvalues are orthogonal. (Hermitian operator = operator with only real eigenvalues).

II. THE SCHRODINGER EQUATION WITH A CENTRAL POTENTIAL

We now consider the solution of the three-dimensional time-independent Schrodinger

equation for a central potential

Vir)=V(r)) =V(r). (19)

For example, for Coulomb potential of electron V(r) = — ﬁir where Ze is the charge of

the nucleus.
Since the potential depends only on the distance from the origin, the Hamiltonian is
spherically symmetric. It is therefore convenient to represent the Schrodinger equation in

terms of the standard spherical coordinate system shown in Fig. 4.
r = rsinfcos¢ roo= Jar4yr+2?
y = rsinfsing < 0 = arccos? (20)

— — y
Z = rcoso ¢ = arctan?
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FIG. 1. The spherical coordinate system.

It can be demonstrated that for f(z,y,z) = F(r,0,9)

(82 0? 02 1872 1 0 ( 8) 1 0?

2+ L 2V F(r0.4) = (- 90 \SM0ap |+ o5
+ + )F(r, ) (T8T2T+T2Sin909 o r2sin® 6 0¢p?

F(r,0

(21)
and therefore the statiponary Schrodinger equation in spherical coordinates can be written
as

h? 1 02 1 0 o 1 92
{_2m [TWH 2500 90 (Sin9> + WW] +V(T)}@/}(T,9, ¢) = EY(r,0,9).
(22)

This can be simplified by treating it as a mathematical problem. We will proceed to do this

and then will explore the physical consequences afterward.

A. Solution of Schrédinger equation in spherical potential by separation of variables

The standard approach to solving partial differential equations is to use the method of
separation of variables, which we have already used several times. We assume that the wave

function is a product of functions each depending upon a single variable. Let

U(r.0,9) = R(r)P(0)Q(¢) (23)



Substituting this into (22), dividing both sides by R(r)P(0)Q(¢) and multiplying both sides

by 25 r2sin” 6 gives

rsin?6 02 sinf 0 0 2m 1 02
R() 07 rR(r)+ P0) 90 (sm ( )) + 2 r*sin” 0 ( V(r)) 0(0) 067 (¢) =0
(24)
Note that only the last term depends upon ¢ and that no other variable appears in this

term. This equation can be true for all values of r, # and ¢ only if the last term is equal to

a constant. Let

1 0?7
0098 (¢) = —m?*. (25)
This is can be rewritten as )
0
957 (¢) + m*Q(¢) = 0. (26)

This is the familiar harmonic equation that has solutions of the form

Q(¢) =™ (27)

Since the solution must satisfy Q(¢) = Q(¢ + 27), the constant m must be an integer.
Using (25) in (24), and dividing both sides by sin?# gives

ro 0 2m 1 O (. ,0 m’
Ry are ") T BV GG a0 (Smeae d <9>> Tawg 0 @)

Here the first two terms depend only upon r while the third and fourth terms depend only
upon 6. For this equation to be satisfied for all possible values of r and 6, the third and
forth terms must add to a constant. Let
1 0 0 m?
———— [sinf—PO) | — ——==-I(l+1). 29
Sn0P(9) 96 (Sm a9 7 )> vy R Gl (29)

(we will show later that [ is integer). This can be rewritten as

2

snlleaae <Sin9§9 P(9)> - S%QP(@) +I(1+1)P(#) =0. (30)

The solution to this equation is simplified by changing variables to x = cosf. In terms of

the new variable (30) becomes

2

;; ((1 — %) aip(@) + (z(z +1) -7 mx2> P(z)=0. (31)

This is Legendre’s equation and is known to have finite solutions on the interval —1 < z <1

only if [ is an integer with [ > 0.



First consider the solutions for m=0. These solutions are the Legendre polynomials P;(z).

Traditionally these polynomials are normalized such that

p(1) =1
and the first few solutions are
P() ([E) =1
P(x) ==z

Py(z) = ; <3$2 - 1)

Ps(z) = ; <5x3 — 31:)

(36)

Note that these are polynomials of order [ and that they are even when [ is even and odd

when [ is odd.

For m # 0, the solutions to (31) are the associated Legendre functions. For m > 0 the

associated Legendre functions are given by

R0 = (1" e

The permissable values of m are then given by — < m <.

B. Spherical Harmonics

We now have solutions for angular functions Q(¢) and P(0).

P (z).

(37)

(38)

It is convenient to com-

bine these into a single normalized function of both angles. These functions are called the

spherical harmonics and are defined as

20+ 1) —m)!]?
Ar(l +m)!

Yio(6,6) = || 7 B(cosd)

Yim(0,6) = (~1)" [

In particular,

As we saw above, spherical harmonics are solutions of the equation

- L g(sinﬁg)—l— ! 82]3/,,”(0,@ = (Il +1)Yim(0,0)

sin 0 00 00/ " sin? 0 0?2

] P™(cos §)e™? .
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FIG. 2. First few spherical harmonics.

The spherical harmonics are orthonormal ( = orthogonal and normalized)

/ QY5 (0, 6)Yim(0,0) = /0 "sin 06 /0 746 Y (0, 0)Yim(0,0) = Sudu (42)

where d,,,,, is the Kronecker symbol: 9,,, = 1 if m = n and ¢,,, = 0 otherwise.
We will see later that the differential operator in the l.h.s. of this equation has a meaning

of operator of square of angular momentum (up to factor i?).

III. QUANTIZATION OF ANGULAR MOMENTUM

From our discussion of Rutherford scattering in classical mechanics:
For a particle in central potential, the classical motion lies in a fixed plane perpendicular

to angular momentum L, which contains the coordinate origin.



Figure 7-3 The orbit of a
classical particle with V = V(r)
lies in a plane perpendicular to L.
The components of the momentum
p parallel and perpendicular to r
Orbit are p, and p,, respectively. The
momentum p makes an angle A
with the displacement r.

FIG. 3. Motion of a classical particle in the central potential.

Moreover, assuming the motion occurs in the x,y plane, we have derived that due to the

conservation of angular momentum
L. = mr’p = const (43)

the problem of motion of a particle in a central potential V(r) can be reduced to 1-

dimensional problem with an “effective potential”:

m L?
2 m?2r?

Veg(r) = V(r)+

(44)

Thus, the energy of a particle in central potential is equal to the energy of a particle moving
in one dimension (at r > 0) in the effective potential Vg ()

E = S+ V(r) (45)

For our purposes, it is convenient to rewrite this formula in terms of components of momen-

tum

2 2
py L
+ Ver(r) = 2m + 2mr?

p?
2m

E = +V(r) (46)

where p, = mr is the component of momentum along the radial direction.
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Let us look then at the Schrodinger equation (22)
2 2 2 2
{—hla'r’ L l L 0 (sin98> + L9 1 + V(r)}¢(r,9, ¢) = Ev(r,0,¢).

omror:  2m |r2sin6 00 ol r2sin? 0 0¢?
(47)
It is possible to show that quantum mechanical operator corresponding to p? is
190 ,0
777" —_—
r20r  Or

and comparing Eqs. (46) and (47) we see that the second term in the Lh.s. of Eq. (47)

should be identified with operator of square angular momentum

., 1o, 0 1 &
L¢(T,9>¢) = —h [smﬁ%@me%)+m3i¢2}w<r797¢) (48)

As we saw from the solution of Eq. (41), eigenfunctions of this operators are spherical

harmonics and eigenvalues are I(I + 1):
L*Yin(0,6) = DIl +1)Yim(0,0) (49)

Thus, we have the very important result that, for all potentials where V' = V' (r) the angular

momentum is quantized and its allowed magnitudes (eigenvalues) are given by
L=|L|=m/l(l+1) (50)

where [ is referred to as the angular momentum quantum number or the orbital quantum
number.

In addition, from the form of the operator of z-component of angular momentum (see

Table 6-1)

A 0
Lz = —Zh% (51)

we see that the z component of the angular momentum is also quantized

~

L.e™® = mhe*™m? (52)
and its allowed values are given by
L, = mh, m = 0,+1,£2, ...+ (53)

The physical significance of Equation (50) is that the angular momentum L, whose magni-
tude is quantized with values h,/l(l + 1), can only point in those directions in space such
that the projection of L on the z axis is one or another of the values given by mh. Thus,
L is also space quantized. The quantum number m is referred to as the magnetic quantum

number.
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z Figure 7-4 Vector model
illustrating the possible
L=tIlI+1) =h\2@2+ 1) =h6 orientations of L in space
and the possible values of L,
for the case where € = 2.

FIG. 4. Quantization of vector of spin.

IV. THE COULOMB POTENTIAL
A. The Radial Equation

Substituting (29) into (28) gives
r 0 2m

Ry or "R g

which can be rewritten as

n’ <1d2r I(+1)

2

(E-=V(r)—=1l(l+1)=0, (54)

> R(r)+ V(r)R(r) = ER(r). (55)

om \rdr?2
This is the eigenvalue equation for the radial coordinate and since it explicitly depends
upon the integer [, the eigenfunctions will in general be represented by R,;(r) where n is
the energy quantum number.

The complete solutions of the Schrodinger equation can then written as

wnlm@a) = Rnl<r)Yim(07 ¢) (56)

where the particular form of R,;(r) will depend upon the choice of potential V' (r). Note

that the wave function not only depends on the energy quantum n but also on [ and m.
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The wave functions for bound states must be normalizable. That is
[ i () () = 1. (57)
This implies that
- /0 TR (r) /0 7o /0 40 sin0 Yy (6,)Yim (0, 6) = /O T areRA(). (58)
Also, the wave functions are orthogonal, so we have the orthonormal set i, (r, 0, @)

/dgajw:ﬂl’m’ (T, 97 Qb)wnlm (Ta 67 ¢) (59)

() 27 T
_ / dr 2 R,y (1) Ry () / do / 0SNG Y, (6, 0)Yim(0,0) = GGt Sym
0 0 0

B. Radial equation for Coulomb potential

A simple version of hydrogen-like atoms can be obtained by solving the Schrodinger

equation with a Coulomb potential

Vir) = 2k (60)

r

Strictly speaking, the parameter m in the Schrodinger equation for the electron in the atom

should be a “reduced mass” m = -RelectronMmuciens hyt gince Myyelous S Melectron OUT M can be

Melectron +Mnucleus

identified with electron’s mass.
We will focus on the bound state solutions of the Schrodinger equation which will occur
for negative energies. That is where £ = —|F|. In this case we can write the radial equation

as

R(r) = —|E|R(r) . (61)

(1 d* I+ 1) Zke?
‘2m<rdr2“ o R R

Multiplying both sides by —QFL—ZL, moving all terms to the left-hand side and expanding the

second derivative term gives

> 2d I(l+1) 2mZe* 2m|E|
—_—+ —— — — R =0. 62
(dr2 + rdr 72 + h2r I (r) (62)

It is convenient to define a dimensionless radial variable

[18m|E
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The radial wave equation in terms of p is then

dp* " pdp > p 4

<d2 2d I(+1) A 1
+ +

where
2mZke*  Zke* ['m mc?
\ = = =Jo,| —— 65
B2 ho\[2[E] - “M\ 2E] (65)
and
ek 1
“=he T (96)
is the fine structure constant (k = 47350 ).

It can be demonstrated that in order for the function R(p) to be normalizable (see Eq.

(58) the constant A must be integer greater than I
A=n=n+1+1 (67)

where n’ > 0 is called radial quantum number and n total quantum number.

Using our previous definition (65) of A we get

mc?
=7 ) 68
n «Q 2E| (68)
and therefore
Z2a’mc?
E,=—E,| =— , 69
B =207 (69)

which is in agreement with the energy spectrum of the Bohr atom.

For future use, we will also need the explicit form of the dimensionles variable p

) - V8mIE| 2z (70)

h aon
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Energy )

2
/V(r)=-"z—r°

Figure 7-5 Potential energy of an electron in a hydrogen atom. If the total energy is greater
than zero, as E', the electron is not bound and the energy is not quantized. If the total energy is
less than zero, as E, the electron is bound. Then, as in one-dimensional problems, only certain
discrete values of the total energy lead to well-behaved wave functions.

C. Degeneracy

Since the energy depends on on n and this in turn depends on n’ and [, there will be
states that are degenerate in energy. With n’ > 0 and [ > 0, then n > 1. This means that
0 <1< n-—1. Now for each value of [, —I < m <[, so there are 2] + 1 degenerate states for

each [. The total degeneracy will then be given by

§(2H1)=2M+n=n2.

7
2 5 (71)

While the degeneracy in m occurs of any central force, the degeneracy in [ is characteristic

of the Coulomb force.
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FIG. 5. First few radial functions for the Coulomb potential.

D. Radial Wave Functions

The general form of radial wave function for Coulomb potential is

Falr) = - {(22)3 TlcEa }é pe ),

nag/ 2n[(n+ )3
where
drregh’ h
CLO = B =
me amc

is the Bohr radius and L{(p) is so-called associated Laguerre polynomials.

15
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E. Summary of Quantum numbers

The allowed values of and restrictions on the quantum numbers n, [ and n associated

with the variables r, 6, and ¢ are summarized as follows:

n = 0,1,23..
I =0,1,2,.n—1
m = —1,—1+1,...—2,-1,0,1,2...0 (74)

The fact that the energy of the hydrogen atom depends only on the principal quantum
number n and not on [ is a peculiarity of the inverse-square force. It is related to the result
in classical mechanics that the energy of a mass moving in an elliptical orbit in an inverse-
square force field depends only on the major axis of the orbit and not on the eccentricity.
The largest value of angular momentum [ = n—1 corresponds most nearly to a circular orbit,
whereas a small value of [ corresponds to a highly eccentric orbit. The quantum number m
is related to the z component of angular momentum. Since there is no preferred direction

for the z axis for any central force, the energy cannot depend on m.



17

A Energy, eV
s P D F G
n I=0 1 2 3 4
oo —_— = = —— — — 0.00
4 = AN -0.85
3 =/ /[~ ~1.51
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©
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Figure 7-6 Energy-level diagram for the ©
hydrogen atom, showing transitions &N
obeying the selection rule A¢ = *1.
States with the same n value but different
€ value have the same energy, —E,/ n?,
where E, = 13.6 €V, as in the Bohr theory.
The wavelengths of the Lyman
a(n = 2—n = 1) and Balmer
a(n = 3 —n = 2) lines are shown in nm.
Note that the latter has two possible
transitions due to the € degeneracy. 1 - T T T T T T T T T T T T - —136eV

Figure 7-6 shows an energy-level diagram for hydrogen. These states are referred to by
giving the value of n along with a code letter: S stands for [ =0, P for{ =1, D for [ = 2, and

F forl = 3. (These code letters are remnants of the spectroscopist’s descriptions of various
series of spectral lines as Sharp, Principal, Diffuse, and Fundamental.) The allowed electric

dipole transitions between energy levels obey the selection rules
Al = 1, Am =0 or *+1

That the quantum number [ of the atom must change by +1 when the atom emits or absorbs
a photon results from conservation of angular momentum and the fact that the photon itself

has an intrinsic angular momentum of 1%.



dt = (rsin 6 do)(r do) dr
=r?sin 6 drde do

Figure 7-7 Volume element dt in spherical coordinates.

V. WAVE FUNCTIONS OF THE HYDROGEN ATOM
1. Ground state

In general
wnlm<r) = Rnl<7a)Y2m<97 (b)

so forn =1, 1 =m = 0 we get (the Laguerre polynomial is just 1 in this case)
_z,
Y100(r) = Crooe” @0

where C' is the normalization constant. From

_2z, a3 1
1 :/d3$ |1p100(r)|2 = ’0100‘2/613116 @ = Zi??ﬂ' = 0100 = ;(Z/CLO)

Probability to find electron in a spherical shell between r and r + dr

e

P(r)dr = ||*4mridr = 47‘(‘7’201200672%

18
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Figure 7-8 Probability density y*U for the ground state in hydrogen. The quantity els*(s
can be thought of as the electron charge density in the atom. (a) The density is spherically
symmetric, is greatest at the origin, and decreases exponentially with . This computer-
generated plot was made by making hundreds of “searches” for the hydrogen electron in
the x-z plane (i.e., for & = 0), recording each finding with a dot. (b) The more conventional

graph of the probability density |t.pm0|2 vs. r/a,. Compare the two graphs carefully.

[This computer-generated plot courtesy of Paul Doherty, The Exploratorium.)

A. Excited states

=

19

In the first excited state, n = 2 and [ an be either 0 or 1. For [ = m = 0 again we have a

spherically symmetric wave function, given by

Pa00(1) = Cano <2 - —

For [ =1, m can be 1, 0, or -1. The corresponding wave functions are

zr

Qo
YAS

oz, .
Po141(7) = Cyro—e 2a0” sinfe

Qo

_z
Po10(1r) = Corp—e 20" cosd

+ig

(78)

(79)
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Figure 7-9 Radial
probability density P(r) versus
r/a, for the ground state of
the hydrogen atom. P(r) is
proportional to 2|, |2

The most probable distance r
is the Bohr radius a .
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Figure 7-10 (a) Radial
probability density P(r) vs.
r/a, for the n = 2 states in
hydrogen. P(r) for £ = 1 has
a maximum at the Bohr value
2%a,. For £ = 0, there is a
maximum near this value and
a smaller submaximum near
the origin. The markers on
the r/a, axis denote the
values of {r/a). (b) P(r) vs.
r/a, for the n = 3 states in
hydrogen.
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