Problem 4.4 If the stable isotope of sodium is ²³Na, what kind of radioactivity would you expect from (a) ²²Na and (b) ²⁴Na?

We know that 23 Na 11 is stable. The isotope 22 Na 11 has one less neutron, while 24 Na 11 has one extra neutron relative to 23 Na 11 . Consequently, a proton in 22 Na 11 can undergo an inverse β decay to yield

$$^{22}\text{Na}^{11} \rightarrow ^{22}\text{Ne}^{10} + e^+ + \nu_e,$$
 (4.37)

where $^{22}{\rm Ne^{10}}$ is a naturally occurring stable isotope of $^{20}{\rm Ne^{10}}$. Similarly, the extra neutron in $^{24}{\rm Na^{11}}$ can undergo a β decay to yield

$$^{24}\text{Na}^{11} \to ^{24}\text{Mg}^{12} + e^- + \bar{\nu}_e,$$
 (4.38)

where 24 Mg 12 is stable.