Problem 5.1 To study neutron absorption cross sections at very low energies, one must often slow down (moderate) energetic ($\approx 1\,\mathrm{MeV}$) neutrons that are produced in reactors. Show that paraffin would be a better moderator than aluminum, by specifically calculating the maximum energy that a $1\,\mathrm{MeV}$ neutron can transfer in a collision with a proton (within paraffin) as opposed to that with an Al nucleus.

As we saw in Problem 2.9 (see Eq. (2.48)), in a head-on collision with a target nucleus of mass number A, a neutron scatters backwards $(\theta = \pi)$ with an energy

$$E_n = \left(\frac{A-1}{A+1}\right)^2 E_0,\tag{5.1}$$

where E_0 represents the energy of the incident neutron. If the target is paraffin (essentially a chain of CH_2 units), then ignoring the presence of C, for A=1 we get

$$E_n^{\text{(paraffin)}} = \left(\frac{A-1}{A+1}\right)^2 E_0 = \left(\frac{1-1}{1+1}\right)^2 E_0 = 0.$$
 (5.2)

On the other hand, if the target nucleus is aluminum ($^{27}Al^{13}$), we have A=27, leading to

$$E_n^{\text{(aluminum)}} = \left(\frac{A-1}{A+1}\right)^2 E_0 = \left(\frac{27-1}{27+1}\right)^2 E_0$$

 $\approx 0.86E_0.$ (5.3)

Thus, we see that paraffin is a much better moderator, since after one collision a neutron can lose all its energy.