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Rutherford Scattering 

Scattered α particles from thin foils 

Gold foil 

α particle 

Usually: 

But occasionally (rarely): 



Effect of atomic electrons 

Mass of α  ≈ 4×103 MeV/c2 

Mass of e- ≈ 0.5 MeV/c2 
Electrons cannot cause large deviations. 
Further, if mass of the atom is spread 

throughout the atomic volume, only minor 
deflections would be observed. 

Let’s analyze more carefully …  



Analysis of the collision 

Momentum conservation: 

Energy conservation: 
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Analysis, cont’d. 

Combining these equations, gives 

  For mα >> mt, LHS > 0 and motion of α is along 
incident direction. 

  For mα << mt, LHS < 0 and motion of α is along 
backward direction. 

  For electrons as target, the first condition applies 
and hence backward scattering does not occur. 
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Other comments on the scattering 
  If mass and charge are evenly distributed, the theory 

predicts only small scattering angles with prob(θ >90) ~ 
10-3000 

  Experiment revealed prob(θ >90º) ~ 10-4 

  If one assumes scattering from a single electron in the 
material, θmax=0.016º.  Considering the # of atoms 
(~2300) across the thickness of the foil, this number 
increases to (√2300) × 0.016º = 0.8º (assuming one 
electron per atom can scatter). 

  Even if the α particle scattered from all 79 electrons in 
each atom of gold,  

  Conclusion:  Only a massive concentrated “nuclear” center 
can give rise to observed large angle scattering. 



Coulomb Scattering 

  Energy/Momentum conservation gives the 
correct asymptotic values for the particles 
involved in the scattering. 

  To go further, we must consider the Coulomb 
force between the α and the atomic nucleus. 

  Both are positively charged, so the force is 
repulsive. 

  First, an aside on UNITS … 



Units Conventions (with some exceptions) 

  Mass, Energy, Momentum:   
  eV/c2, eV, eV/c 
  MeV/c2, MeV, MeV/c 

  Otherwise:  “cgs” units:  cm, g, s 
  Electromagnetic formulae take on simpler 

forms, but the units of charge are now: 
     1esu = 1Stat-Coulomb = 3.34×10-10 C 
       ⇒  e = 4.8×10-10 esu 



Coulomb Scattering Analysis 

  Assume nucleus is infinitely massive ⇒ no recoil 
  Use non-relativistic kinematics 
  Target is thin ⇒ only one scattering 
  Projectile and nucleus are point-like objects 
  Consider only the Coulomb force 
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Scattering from a central potential V(r) 







Scattering angle as a function of the 
impact parameter 



Impact parameter 

  Coulomb force: 

This leads to a relation between the impact parameter, b, and 
the incident energy, E=1/2 mv0

2, and scattering angle, θ : 

Small b corresponds to large angle scattering ⇒ large θ is 
possible since nucleus is treated as point object and we get a 
large force close to the nucleus. 
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Distance of closest approach 

  It can also be shown that the distance of closest 
approach, r0, is given by 

  The previous slide shows that for non-zero θ, b→0 
as E→∞.  Therefore r0 →0 as E→∞. 

  Thus, at high enough energy we can approach the 
nucleus as closely as we wish.  The assumption of a 
point-like nucleus can then be tested. 
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Scattering Cross Section 

  In an actual experiment, detectors are 
positioned to cover a range of scattering 
angles and, therefore, impact parameters. 

Scattering
 Center 

Annular ring of area
 = 2πRsinθRdθ =
 R2dΩ 
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Differential Cross Section 
Effective area for scattering into dθ : 

Entire effect of scattering is given in the θ dependence 
of the differential cross section, or of the yield. 

We can get the explicit dependence on observable 
parameters for the case of Rutherford scattering (i.e. 
Coulomb force) … 
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Rutherford Cross Section 
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Total Cross Section 

We can get the total cross section by integrating: 

The infinite result reflects the infinite range of the 
Coulomb potential.  Normally, the detectors exclude 
very small scattering angles. € 
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Cross Section Units 

1 bn = 1 barn = 10-24 cm2 

(Typical nuclear radius ~ 10-12 cm = 10 fm) 

Differential cross section, for example, may be 
expressed in mb/sr units 

(4π sr = full solid angle about a point) 
(1 mb = 1 millibarn = 10-3 bn) 



Measuring Cross Sections 

Consider dn particles per unit time, scattering 
into a solid angle dΩ at a given θ and φ 
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Measuring Cross Sections, cont’d. 

# nuclei (scatterers) per unit area: 

   ρ  = density of foil (g/cm3) 
   t   = thickness of foil (cm) 
 where  A  = mass # (g/mole) 
   A0 = Avogadro’s # = 6.02×1023 mole-1 
   S  = area of foil (cm2) 

# incident particles per unit time = N0 
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Measuring Cross Sections, cont’d. 

  The cross section has a statistical interpretation, 
though it’s measured in units of area: 

  Geiger and Marsden made such measurements and 
verified the Rutherford prediction. 

  This gave convincing evidence of the hypothesis of 
a nuclear center, but provided no information about 
the nature of the nuclear force:  the scattering is 
entirely due to the Coulomb repulsion, as the α 
particles never penetrated the nucleus. 
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Laboratory vs. CoM Frame 

  We have ignored nuclear recoil, supposing that the 
mass of the target was infinite. 

  We can treat this 2-body scattering problem in terms 
of relative and center-of-mass coordinates. 

  The scattering can then be separated for central 
potentials: 
  The CoM moves at constant velocity. 
  The relative motion can be treated exactly as before, 

except that the projectile mass is replaced by the “reduced 
mass”. 

  This is especially useful in treating colliding beam 
experiments. 



Definitions 
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Transforming between Frames 
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(Speeds remain the same for
 elastic scattering.) 



Transformation Equations 
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Relativistic Variables 

  So far we have ignored relativity.  For most modern 
nuclear and particle physics experiments, we must 
treat the kinematics relativistically. 

  First, we need the center-of-mass velocity: 

  Which gives: 
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Relativistic Invariants 

  Certain quantities are frame-independent; 
they can therefore be evaluated in any 
(convenient) frame.  Examples are the 
“Mandelstam” variables, s, t and u. 
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Total CoM Energy 
  For 2-body scattering, the total CoM energy is: 

  Also:  

  The total CoM energy may be regarded as the available 
energy to produce particles, since the motion of the CoM itself 
is unchanged after scattering. 
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Four-Momentum Transfer 

  The Mandelstam variable, t, is just the square of the four-
momentum transferred to the target: 

  In elastic scattering viewed from the CoM, each particle’s 
speed, and therefore energy, does not change.  Therefore:  
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Feynman Diagrams 

  From the definition of t, we can consider the 
scattering to take place by the exchange of a 
particle, of mass m, where t = m2. 

  Since t < 0, the particle has an imaginary rest 
mass and is therefore called virtual. 

  Feynman invented pictorial representations 
of scattering processes, in which each picture 
has a precise mathematical meaning:  a 
Feynman diagram. 



Feynman Diagrams, cont’d. 
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  Such diagrams can be used to calculate scattering 
amplitudes and cross sections. 

  Feynman invented them to calculate processes in QED
 (quantum electrodynamics) via the technique of
 perturbation theory. 



Interpretation of Four-momentum Transfer 

  Define  q2c2 = - t.  We can show that: 

  Therefore q is related to the momentum transferred to the 
target and reflects the “hardness” of the collision.  Long-range 
collisions (soft collisions) are characterized by small q and 
vice versa: 

  Also, for small θCM, q2  ≈ PCM
2 θCM

2  ≈ pT
2 = square of 

transverse momentum due to collision. 
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Back to Rutherford Scattering 

  For a massive target, we can rewrite the 
Rutherford cross section as: 

  The q-4 divergence reflects the 1/r 
dependence of the Coulomb potential. 

  The average momentum transfer for all 
angles is small. 

€ 

dσ
dq2

=
4π Z ′ Z e2( )

2

v 2
1
q4



Quantum Treatment of Rutherford 
Scattering 

  So far the treatment of Rutherford scattering 
has been classical. 

  We can calculate this process in QM using 
Fermi’s Golden Rule.  The transition 
probability is: 
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Quantum Treatment, cont’d. 
  Using plane waves for the incident and scattered 

particle and using the Coulomb potential energy for 
H, and defining wave vectors: 

  This is the Fourier transform of V(r). 
  After performing the integral and calculating the 

density of final states, we obtain the same 
expression as given before. 

  The classical calculation gives the correct quantum 
mechanical result (when spin is ignored). 
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