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Noether’s Theorem 

  Emmy Noether proved that for every 
underlying symmetry, or invariance, of a 
system, there is a conserved quantity: 
  Space translations:  momentum conservation 
  Rotations:  angular momentum conservation 
  Time translations:  energy conservation 
  Rotations in isospin space:  isospin conservation 
  EM gauge invariance:  charge conservation 



Symmetries in Lagrangian Formalism 

  Define the Lagrangian:  L = T - V 

  If the Lagrangian is independent of some 
coordinate, then the corresponding conjugate 
momentum is conserved: € 

L = L(qi , ˙ q i )   and   pi =
∂L
∂ ˙ q i

  with i =1,2,...,n

d
dt
∂L
∂ ˙ q i

−
∂L
∂qi

= 0⇒ dpi

dt
=
∂L
∂qi

€ 

∂L
∂qm

= 0⇒ dpm
dt

= 0



Symmetries in Hamiltonian Formalism 

  Define the Hamiltonian:   H = T + V 

  Define the Poisson bracket: 
€ 

H (q, p,t) = ˙ q i pi − L(q, ˙ q ,t)
i
∑

dqi

dt
= ˙ q i =

∂H
∂pi

  and  dpi

dt
= ˙ p i = −

∂H
∂qi

  with  i =1,2,...,n

€ 

F(qi , pi ),G(qi , pi ){ } =
∂F
∂qi

∂G
∂pi

−
∂F
∂pi

∂G
∂qi

 

 
 

 

 
 

i
∑ = − G(qi , pi ),F(qi , pi ){ }



Canonical Poisson Brackets 

  For the coordinates and momenta: 

  So we can rewrite Hamilton’s equations: 

  For an observable which does not depend explicitly on time: 

€ 

qi ,qj{ } = 0

pi , pj{ } = 0

qi , pj{ } = − pj ,qi{ } =δij

€ 

qi , H{ } =
∂H
∂pi

= ˙ q i

pi , H{ } = −
∂H
∂qi

= ˙ p i

€ 

dω(qi , pi )
dt

= ω(qi , pi ),H{ }



Infinitesimal Translations 

  Define an infinitesimal coordinate translation: 

  Define the function 
    where         are  generators of translation 

  Then 

  And 

€ 

qi → ′ q i = qi +εi ⇒δεqi = ′ q i − qi = εi

pi → ′ p i = pi     ⇒δε pi = ′ p i − pi = 0

€ 

g = ε j p j
j
∑

€ 

∂g
∂qi

= 0   and  ∂g
∂pi

= εi

€ 

qi ,g{ } = εi =δεqi
pi ,g{ } = 0 =δε pi

€ 

p j



Infinitesimal Translations, cont’d. 

  The translated variables obey the same canonical 
Poisson-bracket equations as the original ones: 

  Thus, these translations are termed canonical 
transformations. 

  The Hamiltonian transforms as € 

′ q i , ′ q j{ } = 0 = ′ p i , ′ p j{ }  and  ′ q i , ′ p j{ } =δij

€ 

δεH =
∂H
∂qi

δεqi +
∂H
∂pi

δε pi
 

 
 

 

 
 

i
∑ =

∂H
∂qii

∑ εi =
∂H
∂qi

∂g
∂pi

−
∂H
∂pi

∂g
∂qi

 

 
 

 

 
 

i
∑ = H,g{ }



Symmetry under Translations 

  If the Hamiltonian is invariant under the translation: 

    the the transformed variables obey the same equations of 
motion as before: 

  If the translations represent a symmetry of the system: 

€ 

δεH = H ,g{ } = 0⇒ H ′ q i , ′ p i( ) = H qi , pi( )

€ 

˙ ′ q i = ′ q i , H ′ q j , ′ p j( ){ } = qi , H qj , pj( ){ }
˙ ′ p i = ′ p i , H ′ q j , ′ p j( ){ } = pi , H qj , pj( ){ }

€ 

dg
dt

= g,H{ } = 0⇒ dpi
dt

= pi ,H{ } = 0



Infinitesimal Rotations 
  The change in coordinates for infinitesimal rotations (by angle 

ε) about the z-axis can be expressed via a matrix: 

  Define the corresponding function g(ε): 

  

€ 

g = ε xpy − ypx( ) = ε
 
r ×
 
p ( )z = ε z ⇒

x,g{ } =
∂g
∂px

= −εy = δε x

y,g{ } =
∂g
∂py

= εx = δε y

px,g{ } = −
∂g
∂x

= −εpy = δε px

py,g{ } = −
∂g
∂y

= εpx = δε py

 

 

 
 
 
 

 

 
 
 
 

€ 

δε
x
y
 

 
 
 

 
 =

0 −ε

ε 0
 

 
 

 

 
 
x
y
 

 
 
 

 
   and  δε

px
py

 

 
 

 

 
 =

0 −ε

ε 0
 

 
 

 

 
 
px
py

 

 
 

 

 
 



Symmetry under Rotations 

  The change in the Hamiltonian is 

  If the Hamiltonian is invariant under the 
rotation: € 

δεH =
∂H
∂qi

δεqi +
∂H
∂pi

δε pi
 

 
 

 

 
 

i=1

2

∑ =
∂H
∂qi

∂g
∂pi

−
∂H
∂pi

∂g
∂qi

 

 
 

 

 
 

i=1

2

∑ = H,g{ }

                 where  q1 = x,   q2 = y,   p1 = px,   p2 = py

  

€ 

δεH = H ,g{ } = 0⇒ g,H{ } =
dg
dt

= ε
d z
dt

= 0



Symmetries in Quantum Mechanics 
  Classical → Quantum: 

  Observable → Hermitian operator 
  Poisson bracket      → Commutator 

  Time evolution of an operator which does not 
depend explicitly on time is governed by Ehrenfest’s 
theorem: 

  The symmetry and corresponding conserved 
quantity are expressed as: 

  

€ 

d
dt

Q =
1
i

Q,H[ ]   where  Q ≡ ψQψ

€ 

Q,H[ ] = 0⇒ d
dt

Q = 0,  if Q has no explicit t dependence



Conserved Quantum Numbers 

  If the operators Q and H commute, then we can 
define states which are simultaneous 
eigenfunctions of both. 

  The energy eigenstates can then be labeled by 
quantum numbers corresponding to Q. 

  For any process where the interaction Hamiltonian 
is invariant under a symmetry transformation, the 
corresponding quantum numbers are conserved. 

  This explains why certain quantum numbers are 
conserved in some interactions but not others and 
provides clues to constructing the correct interaction 
Hamiltonian for various processes. 



Infinitesimal Translations 
  We perform a transformation on the state vectors: 

  Expectation values of the Hamiltonian can be 
shown to transform as (to first order in ε): 

  Comparing this to the classical case, we define the 
generating function g(ε) as: 

€ 

x → ′ x = x + ε ⇒ψ(x)→ψ(x −ε) =ψ(x) −ε dψ(x)
dx

+ O ε2( )

  

€ 

H ′ = H −
iε


H , px[ ]   where  px = −i d
dx

  

€ 

g = εG = −
iε

px



Symmetry under Translations 

  The Hamiltonian will be invariant under 
translations of the x-coordinate if 

  In this case, Ehrenfest’s theorem implies that 
the momentum is also conserved: 
€ 

px ,H[ ] = 0

€ 

d
dt

px = 0



Continuous Symmetries 

  Symmetries are either 
  Continuous:  translations, rotations, … 
  Discrete:  parity, time-reversal, …  (i.e. “reflections”) 

  We can produce a finite translation by an infinite 
number of infinitesimal translations.  Define the 
infinitesimal translation operator: 

  For N successive translations: 
  

€ 

Ux (ε) =1− iε

px

  

€ 

Ux (Nε) = 1− iε

px

 

 
 

 

 
 
N



Finite Translations 

  Define a finite translation by amount α = Nε 
where N → ∞ and ε → 0, with Nε finite: 

  Therefore finite translations are obtained by 
exponentiating the generator for infinitesimal 
translations. 

  

€ 

Ux (α) = lim
N→∞
ε→0
Nε=α

1− iε

px

 

 
 

 

 
 
N

= lim
N→∞
ε→0
Nε=α

1− iα
N

px
 

 
 

 

 
 
N

= e
−
i

αpx



Abelian Groups 

  Generators of translations correspond to a 
commutative (Abelian) group: 

  Translations are additive and the order is not 
relevant. 

  

€ 

                pi , pj[ ] = 0,   i, j = x, y,  or z⇒

Uj (α)Uk (β) = e
−
i

αp j e

−
i

βpk

= e
−
i

βpk e

−
i

αp j

=Uk (β)Uj (α)

and  Ux (α)Ux (β) = e
−
i

αpx e

−
i

βpx

=Ux (α +β) =Ux (β)Ux (α)



Rotations Do NOT Commute 

  The generators of rotations are the angular momentum 
operators, obeying commutation relations: 

  Rotations therefore form a non-Abelian group:  the order is 
important. 

  Rotations in three dimensions correspond to the group SO(3)  
(real 3×3 matrices:  Special Orthogonal, where “special” means 
determinant = +1). 

  This group has a similar structure to SU(2)  (complex, 2×2 
matrices:  Special Unitary) describing spin 1/2 states. 

  

€ 

Lj ,Lk[ ] = iε jk


∑ L

,    j,k, =1,2,3 = x, y, z



Spin 1/2 

  Consider a two-level system represented by: 

  A general rotation in the “internal” space (i.e. does 
not affect space-time coordinates) is given by: 

€ 

ψ1(x)
0

 

 
 

 

 
   and  

0
ψ2 (x)
 

 
 

 

 
 

€ 

δ
ψ1(x)
ψ2 (x)
 

 
 

 

 
 = − iε j

j=1

3

∑
σ j

2
ψ1(x)
ψ2 (x)
 

 
 

 

 
 ,   where σ j  are the Pauli matrices :

where  σ1 =
0 1
1 0
 

 
 

 

 
 ,   σ 2 =

0 −i
i 0
 

 
 

 

 
 ,   σ 3 =

1 0
0 −1
 

 
 

 

 
 ,   and I j =

σ j

2



SU(2) Symmetries 

  If such a rotation corresponds to a symmetry 
of the system, then the two eigenstates of I3 
will be degenerate in energy. 
  Spin 1/2:  in the absence of a magnetic field the 

spin-up and spin-down states are degenerate. 
  Isospin 1/2:  the proton and neutron are 

degenerate if the Hamiltonian is invariant under 
isospin rotations.  This is the case for the strong 
interaction. 
  In this case isospin is a conserved quantum number. 



Isospin 

  The proton and neutron states will transform under 
rotations in isospin space as: 

  If we consider a two-nucleon system, then there are 
four possible states: 

€ 

′ p = cosθ
2

p − sinθ
2

n

′ n = sinθ
2

p + cosθ
2

n

€ 

ψ1 = pp ,  ψ2 =
1
2

pn + np( ),  ψ3 = nn

           and  ψ4 =
1
2

pn − np( )



The Two-Nucleon System 

  Transforming these states, it can be shown that the 
first three transform into one another like the 
components of a vector, whereas the fourth is 
invariant. 
  ψ1〉, ψ2〉 and ψ3〉  correspond to an isovector (I=1) triplet 

with I3 = +1, 0 and -1 respectively. 
  ψ4〉 corresponds to an isoscalar (I=0) singlet with I3 = 0. 

  If the nucleon-nucleon strong interaction is isospin 
invariant, then the three I = 1 states are 
indistinguishable. 
  The two-nucleon system can be classified as either 

isovector or isoscalar. 



Transition Rates for Δ decay 
  The Δ(1232) is an I = 3/2 π-N resonance. 
  The strong decay rates of the various Δ states should be 

equal: 
  Δ++ → pπ+   (I3 = 3/2)    Rate:  1   (arbitrary normalization) 
  Δ+   → pπ0   (I3 = 1/2)    Rate:  x 
    Δ+   → nπ+                      Rate:  1-x  
  Δ0   → pπ-   (I3 = -1/2)   Rate: y 
      Δ0   → nπ0                       Rate:  1-y  
  Δ-   → nπ-   (I3 = -3/2)   Rate:  1 

  Assuming that rates for p or n final states are the same and 
rates for π+, π0, π- final states are the same, we can determine 
the rates of each decay relative to the rate for a given decay. 

  The expected rates agree with data suggesting isospin is a 
symmetry of the strong interaction. 



Local Symmetries 
  Continuous symmetries can be: 

  Global:  Same transformation at all space-time 
points.  Results in conserved quantum numbers. 

  Local:  Transformation depends on space-time 
coordinates.  Requires explicit forces to maintain the 
symmetry. 

  Global symmetry example: 

  This symmetry preserves probability density. 
  Such a global phase transformation is associated 

with conservation of electric charge. 

  

€ 

For  TISE :   Hψ  r ( ) = −


2

2m
 
∇ 2 +V  r ( )

 

 
 

 

 
 ψ
 r ( ) = Eψ  r ( )

    If ψ  r ( ) is a solution,  so is :   eiαψ
 r ( )



Gauge Fields 
  Now consider a local phase transformation: 

  The gradient introduces an inhomogeneous term: 

  The Schrödinger equation is not invariant under this 
transformation. 

  We can retain the symmetry if we modify the gradient by 
introducing a vector potential with certain transformation 
properties: 

  

€ 

ψ
 r ( )→ eiα

 
r ( )ψ
 r ( )

  

€ 

 
∇ eiα

 
r ( )ψ
 r ( )[ ] = eiα

 
r ( ) i
 
∇ α
 r ( )( )ψ  r ( ) +

 
∇ ψ
 r ( )[ ] ≠ eiα

 
r ( )  ∇ ψ

 r ( )

  

€ 

 
∇ →

 
∇ − i
 
A  r ( )

 
A  r ( )→

 
A  r ( ) +

 
∇ α
 r ( )

U(1) Abelian group 



Gauge Fields, cont’d. 
  Then the combined transformation is: 

  The local phase transformation is then a symmetry 
of the modified Schrödinger equation: 

  Invariance under a local phase transformation 
requires introduction of gauge fields. 

  Fundamental forces arise from local invariances of 
physical theories, and the associated gauge fields 
generate the forces ⇒ gauge theories. 

  

€ 

 
∇ − i
 
A  r ( )( )ψ  r ( )→

 
∇ − i
 
A  r ( )− i

 
∇ α
 r ( )( )( ) eiα

 
r ( )ψ
 r ( )( )

             = eiα
 
r ( )  ∇ − i

 
A  r ( )( )ψ  r ( )

  

€ 

−

2

2m
 
∇ − i
 
A  r ( )( )2 +V  r ( )

 

 
 

 

 
 ψ
 r ( ) = Eψ  r ( )


