CHAPTER 10 Symmetries

Lecture Notes For PHYS 415 Introduction to Nuclear and Particle Physics

To Accompany the Text Introduction to Nuclear and Particle Physics, 2nd Ed. A. Das and T. Ferbel World Scientific

Noether's Theorem

- Emmy Noether proved that for every underlying symmetry, or invariance, of a system, there is a conserved quantity:
 - Space translations: momentum conservation
 - Rotations: angular momentum conservation
 - Time translations: energy conservation
 - Rotations in isospin space: isospin conservation
 - EM gauge invariance: charge conservation

Symmetries in Lagrangian Formalism

• Define the Lagrangian: L = T - V

$$L = L(q_i, \dot{q}_i) \text{ and } p_i = \frac{\partial L}{\partial \dot{q}_i} \text{ with } i = 1, 2, ..., n$$
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \Rightarrow \frac{dp_i}{dt} = \frac{\partial L}{\partial q_i}$$

If the Lagrangian is independent of some coordinate, then the corresponding *conjugate momentum* is conserved:

$$\frac{\partial L}{\partial q_m} = 0 \Longrightarrow \frac{dp_m}{dt} = 0$$

Symmetries in Hamiltonian Formalism

• Define the Hamiltonian: H = T + V

$$H(q, p, t) = \sum_{i} \dot{q}_{i} p_{i} - L(q, \dot{q}, t)$$
$$\frac{dq_{i}}{dt} = \dot{q}_{i} = \frac{\partial H}{\partial p_{i}} \text{ and } \frac{dp_{i}}{dt} = \dot{p}_{i} = -\frac{\partial H}{\partial q_{i}} \text{ with } i = 1, 2, ..., n$$

Define the Poisson bracket:

$$\left\{F(q_i, p_i), G(q_i, p_i)\right\} = \sum_{i} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i}\right) = -\left\{G(q_i, p_i), F(q_i, p_i)\right\}$$

Canonical Poisson Brackets

- For the coordinates and momenta: $\{q_i, q_j\} = 0$
 - $\left\{ p_i, p_j \right\} = 0$ $\left\{ q_i, p_j \right\} = -\left\{ p_j, q_i \right\} = \delta_{ij}$

• So we can rewrite Hamilton's equations: $\{q_i, H\} = \frac{\partial H}{\partial p_i} = \dot{q}_i$

$$\left\{p_i, H\right\} = -\frac{\partial H}{\partial q_i} = \dot{p}_i$$

For an observable which does not depend explicitly on time:

$$\frac{d\omega(q_i, p_i)}{dt} = \left\{ \omega(q_i, p_i), H \right\}$$

Infinitesimal Translations

Define an infinitesimal coordinate translation:

$$q_{i} \rightarrow q_{i}' = q_{i} + \varepsilon_{i} \Longrightarrow \delta_{\varepsilon} q_{i} = q_{i}' - q_{i} = \varepsilon_{i}$$
$$p_{i} \rightarrow p_{i}' = p_{i} \implies \delta_{\varepsilon} p_{i} = p_{i}' - p_{i} = 0$$

Define the function $g = \sum_{j} \varepsilon_{j} p_{j}$ where p_{j} are generators of translation
Then $\frac{\partial g}{\partial q_{i}} = 0$ and $\frac{\partial g}{\partial p_{i}} = \varepsilon_{i}$ $\{q_{i},g\} = \varepsilon_{i} = \delta_{\varepsilon}q_{i}$ And $\{p_{i},g\} = 0 = \delta_{\varepsilon}p_{i}$

Infinitesimal Translations, cont'd.

- The translated variables obey the same canonical Poisson-bracket equations as the original ones: $\{q'_i, q'_j\} = 0 = \{p'_i, p'_j\}$ and $\{q'_i, p'_j\} = \delta_{ij}$
- Thus, these translations are termed canonical transformations.
- The Hamiltonian transforms as

$$\delta_{\varepsilon}H = \sum_{i} \left(\frac{\partial H}{\partial q_{i}} \delta_{\varepsilon}q_{i} + \frac{\partial H}{\partial p_{i}} \delta_{\varepsilon}p_{i} \right) = \sum_{i} \frac{\partial H}{\partial q_{i}} \varepsilon_{i} = \sum_{i} \left(\frac{\partial H}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial H}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right) = \{H, g\}$$

Symmetry under Translations

If the Hamiltonian is invariant under the translation:

$$\delta_{\varepsilon} H = \{H, g\} = 0 \Longrightarrow H(q'_i, p'_i) = H(q_i, p_i)$$

the the transformed variables obey the same equations of motion as before:

$$\dot{q}'_{i} = \left\{ q'_{i}, H(q'_{j}, p'_{j}) \right\} = \left\{ q_{i}, H(q_{j}, p_{j}) \right\}$$
$$\dot{p}'_{i} = \left\{ p'_{i}, H(q'_{j}, p'_{j}) \right\} = \left\{ p_{i}, H(q_{j}, p_{j}) \right\}$$

If the translations represent a symmetry of the system:

$$\frac{dg}{dt} = \{g, H\} = 0 \Longrightarrow \frac{dp_i}{dt} = \{p_i, H\} = 0$$

Infinitesimal Rotations

 The change in coordinates for infinitesimal rotations (by angle ε) about the z-axis can be expressed via a matrix:

$$\delta_{\varepsilon} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -\varepsilon \\ \varepsilon & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } \delta_{\varepsilon} \begin{pmatrix} p_x \\ p_y \end{pmatrix} = \begin{pmatrix} 0 & -\varepsilon \\ \varepsilon & 0 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \end{pmatrix}$$

• Define the corresponding function $g(\varepsilon)$:

$$g = \varepsilon (xp_y - yp_x) = \varepsilon (\vec{r} \times \vec{p})_z = \varepsilon \ell_z \Longrightarrow \begin{cases} \{x, g\} = \frac{\partial g}{\partial p_x} = -\varepsilon y = \delta_{\varepsilon} x \\ \{y, g\} = \frac{\partial g}{\partial p_y} = \varepsilon x = \delta_{\varepsilon} y \\ \{p_x, g\} = -\frac{\partial g}{\partial x} = -\varepsilon p_y = \delta_{\varepsilon} p_x \\ \{p_y, g\} = -\frac{\partial g}{\partial y} = \varepsilon p_x = \delta_{\varepsilon} p_y \end{cases}$$

Symmetry under Rotations

The change in the Hamiltonian is

$$\delta_{\varepsilon} H = \sum_{i=1}^{2} \left(\frac{\partial H}{\partial q_{i}} \delta_{\varepsilon} q_{i} + \frac{\partial H}{\partial p_{i}} \delta_{\varepsilon} p_{i} \right) = \sum_{i=1}^{2} \left(\frac{\partial H}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial H}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right) = \{H, g\}$$

where $q_{1} = x, q_{2} = y, p_{1} = p_{x}, p_{2} = p_{y}$

If the Hamiltonian is invariant under the rotation:

$$\delta_{\varepsilon} H = \{H, g\} = 0 \Longrightarrow \{g, H\} = \frac{dg}{dt} = \varepsilon \frac{d\ell_z}{dt} = 0$$

Symmetries in Quantum Mechanics

- Classical \rightarrow Quantum:
 - Observable \rightarrow Hermitian operator
 - Poisson bracket \rightarrow Commutator
- Time evolution of an operator which does not depend explicitly on time is governed by Ehrenfest's theorem:

$$\frac{d}{dt}\langle Q\rangle = \frac{1}{i\hbar}\langle [Q,H]\rangle \text{ where } \langle Q\rangle \equiv \langle \psi|Q|\psi\rangle$$

The symmetry and corresponding conserved quantity are expressed as:

$$[Q,H] = 0 \Rightarrow \frac{d}{dt} \langle Q \rangle = 0$$
, if Q has no explicit t dependence

Conserved Quantum Numbers

- If the operators Q and H commute, then we can define states which are simultaneous eigenfunctions of both.
- The energy eigenstates can then be labeled by quantum numbers corresponding to Q.
- For any process where the interaction Hamiltonian is invariant under a symmetry transformation, the corresponding quantum numbers are conserved.
- This explains why certain quantum numbers are conserved in some interactions but not others and provides clues to constructing the correct interaction Hamiltonian for various processes.

Infinitesimal Translations

- We perform a transformation on the state vectors: $x \rightarrow x' = x + \varepsilon \Rightarrow \psi(x) \rightarrow \psi(x - \varepsilon) = \psi(x) - \varepsilon \frac{d\psi(x)}{dx} + O(\varepsilon^2)$
- Expectation values of the Hamiltonian can be shown to transform as (to first order in ε):

$$\langle H \rangle' = \langle H \rangle - \frac{i\varepsilon}{\hbar} \langle [H, p_x] \rangle$$
 where $p_x = -i\hbar \frac{d}{dx}$

Comparing this to the classical case, we define the generating function g(ε) as:

$$g = \varepsilon G = -\frac{i\varepsilon}{\hbar} p_x$$

Symmetry under Translations

The Hamiltonian will be invariant under translations of the x-coordinate if

$$[p_x,H]=0$$

In this case, Ehrenfest's theorem implies that the momentum is also conserved:

$$\frac{d}{dt}\langle p_x\rangle = 0$$

Continuous Symmetries

Symmetries are either

Continuous: translations, rotations, …

- Discrete: parity, time-reversal, ... (i.e. "reflections")
- We can produce a finite translation by an infinite number of infinitesimal translations. Define the infinitesimal translation operator:

$$U_x(\varepsilon) = 1 - \frac{i\varepsilon}{\hbar} p_x$$

For N successive translations:

$$U_x(N\varepsilon) = \left(1 - \frac{i\varepsilon}{\hbar} p_x\right)^N$$

Finite Translations

• Define a finite translation by amount $\alpha = N\varepsilon$ where $N \rightarrow \infty$ and $\varepsilon \rightarrow 0$, with $N\varepsilon$ finite:

$$U_{x}(\alpha) = \lim_{\substack{N \to \infty \\ \varepsilon \to 0 \\ N\varepsilon = \alpha}} \left(1 - \frac{i\varepsilon}{\hbar} p_{x} \right)^{N} = \lim_{\substack{N \to \infty \\ \varepsilon \to 0 \\ N\varepsilon = \alpha}} \left(1 - \frac{i\alpha}{N\hbar} p_{x} \right)^{N} = e^{-\frac{i}{\hbar}\alpha p_{x}}$$

Therefore finite translations are obtained by exponentiating the generator for infinitesimal translations.

Abelian Groups

Generators of translations correspond to a commutative (Abelian) group:

$$\begin{bmatrix} p_i, p_j \end{bmatrix} = 0, \quad i, j = x, y, \text{ or } z \Rightarrow$$

$$U_j(\alpha)U_k(\beta) = e^{-\frac{i}{\hbar}\alpha p_j} e^{-\frac{i}{\hbar}\beta p_k} = e^{-\frac{i}{\hbar}\beta p_k} e^{-\frac{i}{\hbar}\alpha p_j} = U_k(\beta)U_j(\alpha)$$
and
$$U_x(\alpha)U_x(\beta) = e^{-\frac{i}{\hbar}\alpha p_x} e^{-\frac{i}{\hbar}\beta p_x} = U_x(\alpha + \beta) = U_x(\beta)U_x(\alpha)$$

Translations are additive and the order is not relevant.

Rotations Do NOT Commute

The generators of rotations are the angular momentum operators, obeying commutation relations:

$$\begin{bmatrix} L_j, L_k \end{bmatrix} = \sum_{\ell} i\hbar\varepsilon_{jk\ell} L_{\ell}, \quad j, k, \ell = 1, 2, 3 = x, y, z$$

- Rotations therefore form a non-Abelian group: the order is important.
- Rotations in three dimensions correspond to the group SO(3) (real 3×3 matrices: <u>Special Orthogonal</u>, where "special" means determinant = +1).
- This group has a similar structure to SU(2) (complex, 2×2 matrices: Special Unitary) describing spin 1/2 states.

Spin 1/2

Consider a two-level system represented by:

$$\begin{pmatrix} \psi_1(x) \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 \\ \psi_2(x) \end{pmatrix}$

A general rotation in the "internal" space (i.e. does not affect space-time coordinates) is given by:

$$\delta \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix} = -\sum_{j=1}^3 i\varepsilon_j \frac{\sigma_j}{2} \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix}, \text{ where } \sigma_j \text{ are the Pauli matrices :}$$

where $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \text{ and } I_j = \frac{\sigma_j}{2}$

SU(2) Symmetries

- If such a rotation corresponds to a symmetry of the system, then the two eigenstates of I₃ will be degenerate in energy.
 - Spin 1/2: in the absence of a magnetic field the spin-up and spin-down states are degenerate.
 - Isospin 1/2: the proton and neutron are degenerate if the Hamiltonian is invariant under isospin rotations. This is the case for the strong interaction.
 - In this case isospin is a conserved quantum number.

Isospin

The proton and neutron states will transform under rotations in isospin space as:

$$|p'\rangle = \cos\frac{\theta}{2}|p\rangle - \sin\frac{\theta}{2}|n\rangle$$
$$|n'\rangle = \sin\frac{\theta}{2}|p\rangle + \cos\frac{\theta}{2}|n\rangle$$

If we consider a two-nucleon system, then there are four possible states:

$$|\psi_1\rangle = |pp\rangle, |\psi_2\rangle = \frac{1}{\sqrt{2}}(|pn\rangle + |np\rangle), |\psi_3\rangle = |nn\rangle$$

and $|\psi_4\rangle = \frac{1}{\sqrt{2}}(|pn\rangle - |np\rangle)$

The Two-Nucleon System

- Transforming these states, it can be shown that the first three transform into one another like the components of a vector, whereas the fourth is invariant.
 - □ $|\psi_1\rangle$, $|\psi_2\rangle$ and $|\psi_3\rangle$ correspond to an isovector (*I*=1) triplet with $I_3 = +1$, 0 and -1 respectively.
 - $|\psi_4\rangle$ corresponds to an isoscalar (*I*=0) singlet with $I_3 = 0$.
- If the nucleon-nucleon strong interaction is isospin invariant, then the three *I* = 1 states are indistinguishable.
 - The two-nucleon system can be classified as either isovector or isoscalar.

Transition Rates for Δ decay

- The $\Delta(1232)$ is an $I = 3/2 \pi$ -N resonance.
- The strong decay rates of the various ∆ states should be equal:

- Assuming that rates for *p* or *n* final states are the same and rates for π⁺, π⁰, π⁻ final states are the same, we can determine the rates of each decay relative to the rate for a given decay.
- The expected rates agree with data suggesting isospin is a symmetry of the strong interaction.

Local Symmetries

Continuous symmetries can be:

- Global: Same transformation at all space-time points. Results in conserved quantum numbers.
- Local: Transformation depends on space-time coordinates. Requires explicit forces to maintain the symmetry.
- Global symmetry example:

For TISE:
$$H\psi(\vec{r}) = \left(-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r})\right)\psi(\vec{r}) = E\psi(\vec{r})$$

If $\psi(\vec{r})$ is a solution, so is : $e^{i\alpha}\psi(\vec{r})$

- This symmetry preserves probability density.
- Such a global phase transformation is associated with conservation of electric charge.

Gauge Fields

Now consider a local phase transformation:

$$\psi(\vec{r}) \rightarrow e^{i\alpha(\vec{r})}\psi(\vec{r})$$

U(1) Abelian group

The gradient introduces an inhomogeneous term: $\vec{\nabla} \left[e^{i\alpha(\vec{r})} \psi(\vec{r}) \right] = e^{i\alpha(\vec{r})} \left[i \left(\vec{\nabla} \alpha(\vec{r}) \right) \psi(\vec{r}) + \vec{\nabla} \psi(\vec{r}) \right] \neq e^{i\alpha(\vec{r})} \vec{\nabla} \psi(\vec{r})$

- The Schrödinger equation is not invariant under this transformation.
- We can retain the symmetry if we modify the gradient by introducing a vector potential with certain transformation properties:

$$\vec{\nabla} \rightarrow \vec{\nabla} - i\vec{A}(\vec{r})$$
$$\vec{A}(\vec{r}) \rightarrow \vec{A}(\vec{r}) + \vec{\nabla}\alpha(\vec{r})$$

Gauge Fields, cont'd.

• Then the combined transformation is: $(\vec{\nabla} - i\vec{A}(\vec{r}))\psi(\vec{r}) \rightarrow (\vec{\nabla} - i\vec{A}(\vec{r}) - i(\vec{\nabla}\alpha(\vec{r})))(e^{i\alpha(\vec{r})}\psi(\vec{r}))$ $= e^{i\alpha(\vec{r})}(\vec{\nabla} - i\vec{A}(\vec{r}))\psi(\vec{r})$

The local phase transformation is then a symmetry of the modified Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m}\left(\vec{\nabla}-i\vec{A}(\vec{r})\right)^2+V(\vec{r})\right)\psi(\vec{r})=E\psi(\vec{r})$$

- Invariance under a local phase transformation requires introduction of gauge fields.
- Fundamental forces arise from local invariances of physical theories, and the associated gauge fields generate the forces ⇒ gauge theories.