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CHAPTER 11 
Discrete Transformations 



Overview 
n  We will consider three discrete transformations 

q  Parity:  reflection through the origin 
q  Time reversal:  t → -t 
q  Charge conjugation:  particles ⇔ antiparticles 

n  Both P and C are known to be violated in certain 
weak processes. 

n  The combined transformation CP is also violated in 
some systems. 

n  CPT Theorem: 
q  No known interaction violates the combination CPT. 
q  CPT invariance can be proven to be a consequence of 

certain fundamental assumptions (CPT Theorem). 
q  CP violation + CPT invariance ⇒ T violation.  However, no 

direct T violation has yet been observed. 



Parity Transformation 
n  Parity corresponds to spatial inversion: 

n  This converts a right-handed system into a left-handed 
system or vice versa. 

n  No rotation or set of rotations can produce this 
transformation:  the quantum numbers for parity and rotations 
are distinct. 

n  Note that parity is a discrete transformation whereas 
rotations, whether in real space, spin space or isospin space, 
are continuous transformations. 
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Vectors and Scalars Under Parity 

n  Under parity vectors transform as: 

n  The magnitudes are unchanged: 
  

€ 

! r →−
! r ,   

! p = m! ˙ r →−m! ˙ r = − ! p 

  

€ 

 r =
! r ⋅ ! r → r

p =
! p ⋅ ! p → p



Axial Vectors and Pseudoscalars 

n  The orbital angular momentum does not transform like an 
ordinary vector: 

n  Vectors which transform this way (i.e. positive parity) are 
called pseudovectors or axial vectors. 

n  Certain scalars transform oppositely to normal scalars, such 
as the volume of a parallelopiped: 

n  Such scalars, with negative parity, are called pseudoscalars. 
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! 
L = ! r × ! p P# → # (−! r )× (− ! p ) =

! r × ! p =
! 
L 

  

€ 

! a ⋅
! 
b × ! c ( ) P$ → $ −

! a ( ) ⋅ −
! 
b ×−! c ( ) = −

! a ⋅
! 
b × ! c ( )



Parity Quantum Numbers 

n  Applying the parity operator twice leaves the 
coordinate system unchanged: 

 
n  Therefore, the possible quantum numbers of 

the parity operator, P, are ±1: 

 

  

€ 

! r P" → " −
! r P" → " 

! r 

€ 

P2 ψ = +1ψ = λ2 ψ ⇒ λ = ±1



Eigenstates of Parity 

n  If the Hamiltonian is invariant under spatial inversion  [P,H ] = 0. 
n  In this case we can find common eigenstates of H and P, where 

the parity eigenvalues are ± 1. 
n  Under parity the wave function becomes: 

n  Therefore the eigenstates of any Hamiltonian which is invariant 
under spatial inversion can be classified as either even or odd 
functions. 

n  Examples:    
q  Square well potential. 
q  Simple harmonic oscillator. 
q  Central potential … 

  

€ 

ψ(! r ) P# → # ψ(−! r )



Parity and Central Potentials 

n  Using spherical coordinates, the parity 
transformation is: 

n  The spherical harmonics transform as: 

n  Therefore the wave function transforms as: 

€ 

r P" → " r
θ P" → " π −θ

φ P" → " π +φ

  

€ 

Yℓm (θ,φ)
P$ → $ Yℓm (π −θ,π +φ) = −1( )ℓYℓm (θ,φ)

  

€ 

ψnℓm
" r ( ) P# → # −1( )ℓψnℓm

" r ( )



Intrinsic Parity 

n  A quantum state can also have an intrinsic parity 
independent of its spatial transformation properties.  
Including this, the wave function transforms as: 

n  The total parity is then: 

n  Bosons:  ηψ same for particle and antiparticle. 
n  Fermions: ηψ opposite for particle and antiparticle. 
n  Both Newton’s laws and Maxwell’s equations are 

invariant under parity. 

  

€ 

ψnℓm
" r ( ) P# → # ηψ −1( )ℓψnℓm

" r ( )  with  ηψ
2 =1

  

€ 

ηTOT =ηψ −1( )ℓ



Intrinsic Parity Assignments 

n  Absolute intrinsic parity for particles cannot 
be defined, since changing parity of all 
particles amounts to introducing an overall 
phase in every wave function. 

n  By convention:  parity of proton, neutron and 
Λ hyperon are +1. 

n  Intrinsic parities of other particles can be 
established by considering parity conserving 
processes involving such particles.  



Parity Conservation 

n  Consider the decay in the rest frame of a particle into two 
spinless particles: 

n  Angular momentum is conserved: 

n  If parity is conserved in the decay: 

n  If A is spinless also: 

n  So, for example                               whereas  

€ 

A→ B+C

  

€ 

J initial = J final ≡ J⇒ J = ℓ
where ℓ = relative orbital angular momentum of B and C.

  

€ 

ηA =ηBηC −1( )ℓ =ηBηC −1( )J

€ 

ηA =ηBηC

€ 

J P = 0+ → 0− + 0−

€ 

0+ / → 0+ + 0−



Parity of π- Meson 

n  Consider the capture of a low-energy π- meson on a 
deuteron:   π- + d → n + n. 

n  Conservation of parity implies: 

n  Since it is known that li = 0: 

n  We can determine lf from symmetry requirements … 

  

€ 

ηπηd −1( )ℓ i =ηnηn −1( )ℓ f ⇒ηπ = −1( )ℓ f +ℓ i

=1 =1 

  

€ 

ηπ = −1( )ℓ f



Parity of π- Meson, cont’d. 

n  The spin of the deuteron is 1 ⇒ the final total angular 
momentum is 1: 

n  The two-neutron state must be antisymmetric under 
interchange, since it consists of two identical fermions. 

n  This implies we have either a symmetric spin wave function 
coupled with an antisymmetric spatial wave function or vice 
versa. 

n  Only the second possibility is allowed ⇒ ηπ = -1. 

  

€ 

ψnn
(1) = J =1, s =1,ℓ f = 0 or 2

ψnn
(2) = J =1, s =1,ℓ f =1

ψnn
(3) = J =1, s = 0,ℓ f =1

3 possibilities  



Violation of Parity 

n  In the early 1950’s the decays of two particles 
(called the τ and θ ) which had essentially identical 
masses and lifetimes, presented a dilemma          
(the “τ - θ ” puzzle): 

n  If parity is conserved in these decays, the τ and θ 
can be shown to have opposite parity (see next 
slide).  This suggests that either 
q  The τ and θ are different particles and the extreme 

similarity is just a coincidence, or 
q  Parity is violated in these decays. 

€ 

θ + →π + +π 0

τ + →π + +π + +π−



As Aside:  Parity Arguments 

n  The τ and θ  were found to have J = 0. 
n  For the two particle final state this implies lf = 0. 
n  For the three particle final state there are two orbital 

angular momenta to consider, but both were found 
to be zero. 

n  This implies that the intrinsic parities are: 
q  ηθ = ηπ × ηπ  = (-1)2 = +1 
q  ητ = ηπ × ηπ × ηπ = (-1)3 = -1 

n  The intrinsic parities of the τ and θ  are opposite. 



Parity is Violated in Weak Interactions 

n  Lee and Yang postulated parity is violated in weak 
interactions.  The τ and θ are now indeed known to 
be the same particle:  K+. 

n  The conclusive proof of parity violation was 
provided in an experiment by Wu et al. 

q  The cobalt nuclei were polarized in a strong magnetic 
field. 

q  The electrons were emitted preferentially in a direction 
opposite the field (opposite the spin of the nucleus). € 

60Co→60Ni+ e− +ν e



Analysis of Wu Experiment 

n  Consider the spin s of 60Co and the electron 
momentum p: 

n  If parity is conserved in the decay, the right and left 
handed coordinate systems are equivalent and we 
must have: 

n  The preferential direction of electron emission 
implies a negative value, instead of zero.  Parity is 
violated in this weak decay. 

  

€ 

cosθe =
! s ⋅ ! p 
! s ! p 

P$ → $ 
! s ⋅ − ! p ( )
! s ! p 

= − cosθe

  

€ 

cosθe ∝
! s ⋅ ! p = 0



Physics distinguishes Left from Right 

n  The observed nonzero (negative) value confirms that 
the two coordinate systems are distinguishable.  

n  For amusement, consider how you might use this fact to 
communicate to an alien, without pictures, that you are 
right-handed. 

From  http://www.lbl.gov/abc/wallchart/chapters/05/graphics/Image2.gif 



Time Reversal 
n  Time reversal corresponds to changing t to -t : 

n  Newton’s 2nd Law is second order in the time derivative and 
so is invariant under T. 

n  Maxwell’s equations are also invariant under T. 
n  Statistical mechanics implies entropy increases.  This defines 

a unique direction for the flow of time for macroscopic 
systems.  However, microscopic systems appear to respect T 
invariance in almost all cases. 

  

€ 

t T" → " −t
! r T" → " 

! r 
! p = m! ˙ r T" → " −m! ˙ r = − ! p 
! 
L = ! r × ! p T" → " 

! r × −
! p ( ) = −

! 
L 



Time Reversal in Quantum Mechanics 

n  Consider the time dependent S.E.: 

n  The equation is first order in time and so would appear not to 
be invariant under T. 

n  However consider the complex conjugate equation (for H 
Hermitian): 

n  If the wave function transforms as 
 then both ψ and its time reversed solution obey the same 
equation.  

  

€ 

i!∂ψ(
" r ,t)
∂t

= Hψ(" r ,t)

  

€ 

−i!∂ψ
*(" r ,t)
∂t

= Hψ*(" r ,t) T% → % i!∂ψ
*(" r ,−t)
∂t

= Hψ*(" r ,−t)

  

€ 

ψ(! r ,t) T# → # ψ*(! r ,−t)



Detailed Balance 

n  Since time dependent wave functions are complex, 
they are not eigenfunctions of T. 

n  Consequently, there is no quantum number which 
can be associated with T invariance. 

n  In QM, T invariance implies transition amplitudes 
are the same for the forward and reversed 
processes: 

n  This principle of detailed balance has been verified 
for many processes.  Note:  the transition rates can 
be different however, since the density of final 
states can be quite different for the forward and 
reverse processes. 

€ 

Mi→ f = M f→i



Neutron Electric Dipole Moment? 

n  The best evidence for T invariance comes from searches for 
a nonzero neutron EDM. 

n  The neutron, though neutral, has an extended charge 
distribution which gives rise to a magnetic moment. 

n  If the centers of the positive and negative charge distributions 
do not coincide, the neutron would also have an EDM. 

n  A naïve estimate of the size of the EDM: 

n  The only possible axis is the neutron spin; a non-vanishing 
EDM would therefore have to point along the spin direction.  
The most sensitive search for this effect gives an upper limit: 
€ 

µel ≤ ed ≈ e×10−13  cm ≈ 10−13  e - cm

€ 

µel ≤10−25  e - cm !



Neutron EDM would Violate T Invariance 

n  Consider the component of EDM along the spin: 

n  This expectation value must vanish if electromagnetic 
interactions are T invariant. 

n  However, note that under parity: 

n  So a nonzero expectation value can arise from parity 
violation.  Other experiments indicate that electromagnetic 
interactions are P invariant.  So a non-zero neutron EDM 
could arise from an interplay of EM and weak interactions.  

  

€ 

! 
µ el ⋅
! s T# → # 

! 
µ el ⋅ −

! s ( ) = −
! 
µ el ⋅
! s ⇒ ! 

µ el ⋅
! s T# → # −

! 
µ el ⋅
! s 

  

€ 

! 
µ el ⋅
! s P# → # −

! 
µ el( ) ⋅

! s = −
! 
µ el ⋅
! s 



Charge Conjugation 

n  Unlike P and T which are discrete space-time 
symmetry transformations, charge conjugation, C, 
operates on the internal state of a system: 

n  Maxwell’s equations are invariant under C. 
n  Charge conjugation inverts all internal quantum 

numbers of states, changing particles into 
antiparticles and vice versa. 

  

€ 

Q C" → " −Q
  

€ 

! 
E C" → " −

! 
E 

! 
B C" → " −

! 
B 



Eigenstates of C 

n  Denoting the internal quantum numbers collectively 
as Q: 

n  Therefore, neutral particles can be eigenstates of C:  
γ (photon), π0 , … 

n  However, as particles carry quantum numbers other 
than charge, not all neutral particles are eigenstates 
of C: 

  

€ 

ψ Q, ! r ,t( ) C# → # ψ −Q, ! r ,t( )

€ 

n C" → " n 

π−p C" → " π + p 

K 0 C" → " K 0



Charge Parity 

n  As for parity, two successive C operations leaves 
the system unchanged ⇒ charge parity = ± 1. 

n  Since the photon is the carrier of the EM field:         
ηC(γ) = -1. 

n  If C is a symmetry of the theory then [C,H ] = 0 and 
the charge parity for any process is conserved. 

n  Charge parity is conserved in EM processes since 
Maxwell’s equations are C invariant. 



Decay of π0 

n  Consider the two photon decay of the π0 : 

n  If charge parity is conserved: 

n  Therefore C invariance implies the π0 cannot 
decay to an odd number of photons: 

€ 

π 0 →γ +γ

€ 

ηC π 0( ) =ηC γ( )ηC γ( ) = −1( )2 = +1

€ 

π 0 → 3γ
π 0 → 2γ

<10−8



Weak Interactions Violate Charge Conjugation 
n  Charge conjugation does not affect space-time properties and 

therefore, handedness: 

n  Since there is no evidence for right handed neutrinos or left handed 
antineutrinos, the charge conjugate process of β-decay cannot 
occur ⇒ weak interactions violate C invariance. 

n  However, under the combined operation of CP : 

n  CP takes a physical state to another physical state and is a 
symmetry of almost all processes.  CP violation, though small, has 
interesting possible implications for the matter-antimatter 
asymmetry of the universe. 

€ 

ν L
C# → # ν L   and  νR

C# → # νR

€ 

ν L
P# → # νR

C# → # νR

νR
P# → # ν L

C# → # ν L



CPT Theorem 

n  Though P, T and C appear to be violated in 
some processes, Lüders, Pauli and 
Schwinger showed that the combined 
operation of CPT is a symmetry of 
essentially any theory which respects 
Lorentz invariance. 

n  This is known as the CPT theorem and it is 
consistent with all observations to date. 



Consequences of CPT Theorem 

n  The CPT theorem leads to various 
conclusions: 
q  Particles with integer spin obey Bose-Einstein 

statistics and particles with half-integer spin obey 
Fermi-Dirac statistics. 

q  Particles and their antiparticles have the same 
masses and same total lifetimes. 

q  All the internal quantum numbers are opposite 
those of their partner particles. 


