CHAPTER 11 Discrete Transformations

Lecture Notes For PHYS 415 Introduction to Nuclear and Particle Physics

To Accompany the Text Introduction to Nuclear and Particle Physics, 2nd Ed. A. Das and T. Ferbel World Scientific

Overview

- We will consider three discrete transformations
 - <u>Parity</u>: reflection through the origin
 - <u>Time reversal</u>: $t \rightarrow -t$
 - <u>Charge conjugation</u>: particles \Leftrightarrow antiparticles
- Both P and C are known to be violated in certain weak processes.
- The combined transformation CP is also violated in some systems.
- CPT Theorem:
 - No known interaction violates the combination *CPT*.
 - CPT invariance can be proven to be a consequence of certain fundamental assumptions (CPT Theorem).
 - *CP* violation + *CPT* invariance \Rightarrow *T* violation. However, no direct *T* violation has yet been observed.

Parity Transformation

Parity corresponds to spatial inversion:

$$\begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \xrightarrow{P} \begin{pmatrix} ct \\ -x \\ -y \\ -z \end{pmatrix}$$

- This converts a right-handed system into a left-handed system or vice versa.
- No rotation or set of rotations can produce this transformation: the quantum numbers for parity and rotations are distinct.
- Note that parity is a discrete transformation whereas rotations, whether in real space, spin space or isospin space, are continuous transformations.

Vectors and Scalars Under Parity

Under parity vectors transform as:

$$\vec{r} \rightarrow -\vec{r},$$

 $\vec{p} = m\dot{\vec{r}} \rightarrow -m\dot{\vec{r}} = -\vec{p}$

The magnitudes are unchanged:

$$r = \sqrt{\vec{r} \cdot \vec{r}} \rightarrow r$$
$$p = \sqrt{\vec{p} \cdot \vec{p}} \rightarrow p$$

Axial Vectors and Pseudoscalars

The orbital angular momentum does not transform like an ordinary vector:

$$\vec{L} = \vec{r} \times \vec{p} \xrightarrow{P} (-\vec{r}) \times (-\vec{p}) = \vec{r} \times \vec{p} = \vec{L}$$

- Vectors which transform this way (i.e. positive parity) are called pseudovectors or axial vectors.
- Certain scalars transform oppositely to normal scalars, such as the volume of a parallelopiped:

$$\vec{a} \cdot \left(\vec{b} \times \vec{c}\right) \xrightarrow{P} \left(-\vec{a}\right) \cdot \left(-\vec{b} \times -\vec{c}\right) = -\vec{a} \cdot \left(\vec{b} \times \vec{c}\right)$$

Such scalars, with negative parity, are called pseudoscalars.

Parity Quantum Numbers

Applying the parity operator twice leaves the coordinate system unchanged:

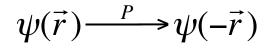
$$\vec{r} \xrightarrow{P} \vec{r} \xrightarrow{P} \vec{r}$$

Therefore, the possible quantum numbers of the parity operator, P, are ±1:

$$P^{2}|\psi\rangle = \pm 1|\psi\rangle = \lambda^{2}|\psi\rangle \Longrightarrow \lambda = \pm 1$$

Eigenstates of Parity

- If the Hamiltonian is invariant under spatial inversion [*P*,*H*] = 0.
- In this case we can find common eigenstates of H and P, where the parity eigenvalues are ± 1.
- Under parity the wave function becomes:



- Therefore the eigenstates of any Hamiltonian which is invariant under spatial inversion can be classified as either even or odd functions.
- Examples:
 - Square well potential.
 - Simple harmonic oscillator.
 - Central potential ...

Parity and Central Potentials

■ Using spherical coordinates, the parity transformation is: $r \xrightarrow{p}{\longrightarrow} r$

$$\begin{array}{c} \theta \xrightarrow{P} \pi - \theta \\ \phi \xrightarrow{P} \pi + \phi \end{array}$$

- The spherical harmonics transform as: $Y_{\ell m}(\theta,\phi) \xrightarrow{P} Y_{\ell m}(\pi-\theta,\pi+\phi) = (-1)^{\ell} Y_{\ell m}(\theta,\phi)$
- Therefore the wave function transforms as:

$$\psi_{n\ell m}(\vec{r}) \xrightarrow{P} (-1)^{\ell} \psi_{n\ell m}(\vec{r})$$

Intrinsic Parity

A quantum state can also have an *intrinsic parity* independent of its spatial transformation properties. Including this, the wave function transforms as:

 $\psi_{n\ell m}(\vec{r}) \xrightarrow{P} \eta_{\psi}(-1)^{\ell} \psi_{n\ell m}(\vec{r}) \text{ with } \eta_{\psi}^2 = 1$

The total parity is then:

$$\eta_{\rm TOT} = \eta_{\psi} (-1)^{\ell}$$

- Bosons: η_{ψ} same for particle and antiparticle.
- Fermions: η_{ψ} opposite for particle and antiparticle.
- Both Newton's laws and Maxwell's equations are invariant under parity.

Intrinsic Parity Assignments

- Absolute intrinsic parity for particles cannot be defined, since changing parity of all particles amounts to introducing an overall phase in every wave function.
- By convention: parity of proton, neutron and Λ hyperon are +1.
- Intrinsic parities of other particles can be established by considering parity conserving processes involving such particles.

Parity Conservation

- Consider the decay in the rest frame of a particle into two spinless particles: $A \rightarrow B + C$
- Angular momentum is conserved:

 $J_{\text{initial}} = J_{\text{final}} \equiv J \Longrightarrow J = \ell$

where ℓ = relative orbital angular momentum of *B* and *C*.

If parity is conserved in the decay:

$$\eta_A = \eta_B \eta_C (-1)^\ell = \eta_B \eta_C (-1)^J$$

- If A is spinless also: $\eta_A = \eta_B \eta_C$
- So, for example $J^P = 0^+ \rightarrow 0^- + 0^-$ whereas $0^+ \not\rightarrow 0^+ + 0^-$

Parity of π^- Meson

- Consider the capture of a low-energy π^- meson on a deuteron: $\pi^- + d \rightarrow n + n$.
- Conservation of parity implies:

$$\eta_{\pi}\eta_{d}(-1)^{\ell_{i}} = \eta_{n}\eta_{n}(-1)^{\ell_{f}} \Longrightarrow \eta_{\pi} = (-1)^{\ell_{f}+\ell_{i}}$$

$$\uparrow_{=1}$$

Since it is known that $\ell_i = 0$: $\eta_{\pi} = (-1)^{\ell_f}$

• We can determine ℓ_f from symmetry requirements ...

Parity of π -Meson, cont'd.

■ The spin of the deuteron is 1 ⇒ the final total angular momentum is 1:

3 possibilities
$$\begin{cases} |\psi_{nn}^{(1)}\rangle = |J = 1, s = 1, \ell_{f} = 0 \text{ or } 2 \\ |\psi_{nn}^{(2)}\rangle = |J = 1, s = 1, \ell_{f} = 1 \\ |\psi_{nn}^{(3)}\rangle = |J = 1, s = 0, \ell_{f} = 1 \end{cases}$$

- The two-neutron state must be antisymmetric under interchange, since it consists of two identical fermions.
- This implies we have either a symmetric spin wave function coupled with an antisymmetric spatial wave function or vice versa.
- Only the second possibility is allowed $\Rightarrow \eta_{\pi} = -1$.

Violation of Parity

In the early 1950's the decays of two particles (called the τ and θ) which had essentially identical masses and lifetimes, presented a dilemma (the " τ - θ " puzzle): $\theta^+ \rightarrow \pi^+ + \pi^0$

$$\theta^{+} \rightarrow \pi^{+} + \pi^{0}$$
$$\tau^{+} \rightarrow \pi^{+} + \pi^{+} + \pi^{-}$$

- If parity is conserved in these decays, the τ and θ can be shown to have opposite parity (see next slide). This suggests that either
 - The τ and θ are different particles and the extreme similarity is just a coincidence, or
 - Parity is violated in these decays.

As Aside: Parity Arguments

- The τ and θ were found to have J = 0.
- For the two particle final state this implies $l_f = 0$.
- For the three particle final state there are two orbital angular momenta to consider, but both were found to be zero.
- This implies that the intrinsic parities are:

$$\square \eta_{\theta} = \eta_{\pi} \times \eta_{\pi} = (-1)^2 = +1$$

$$\square \eta_{\tau} = \eta_{\pi} \times \eta_{\pi} \times \eta_{\pi} = (-1)^3 = -1$$

• The intrinsic parities of the τ and θ are opposite.

Parity is Violated in Weak Interactions

- Lee and Yang postulated parity is violated in weak interactions. The *τ* and *θ* are now indeed known to be the same particle: *K*⁺.
- The conclusive proof of parity violation was provided in an experiment by Wu *et al*.

60
Co \rightarrow^{60} Ni + e^- + \overline{v}_e

- The cobalt nuclei were polarized in a strong magnetic field.
- The electrons were emitted preferentially in a direction opposite the field (opposite the spin of the nucleus).

Analysis of Wu Experiment

Consider the spin s of ⁶⁰Co and the electron momentum **p**:

$$\left\langle \cos \theta_e \right\rangle = \left\langle \frac{\vec{s} \cdot \vec{p}}{\left| \vec{s} \right\| \vec{p} \right|} \right\rangle \xrightarrow{P} \left\langle \frac{\vec{s} \cdot (-\vec{p})}{\left| \vec{s} \right\| \vec{p} \right|} \right\rangle = -\left\langle \cos \theta_e \right\rangle$$

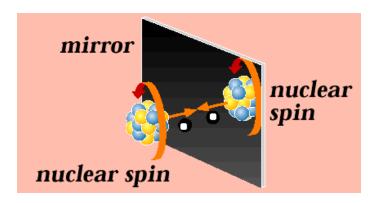
If parity is conserved in the decay, the right and left handed coordinate systems are equivalent and we must have:

$$\langle \cos \theta_e \rangle \propto \langle \vec{s} \cdot \vec{p} \rangle = 0$$

The preferential direction of electron emission implies a negative value, instead of zero. Parity is violated in this weak decay.

Physics distinguishes Left from Right

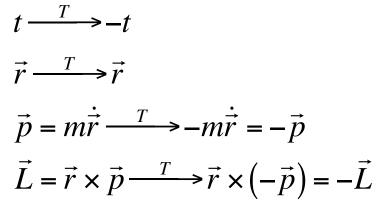
- The observed nonzero (negative) value confirms that the two coordinate systems are distinguishable.
- For amusement, consider how you might use this fact to communicate to an alien, without pictures, that you are right-handed.



From http://www.lbl.gov/abc/wallchart/chapters/05/graphics/Image2.gif

Time Reversal

■ Time reversal corresponds to changing *t* to -*t* :



- Newton's 2nd Law is second order in the time derivative and so is invariant under *T*.
- Maxwell's equations are also invariant under T.
- Statistical mechanics implies entropy increases. This defines a unique direction for the flow of time for macroscopic systems. However, microscopic systems appear to respect *T* invariance in almost all cases.

Time Reversal in Quantum Mechanics

• Consider the time dependent S.E.:

$$i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = H\psi(\vec{r},t)$$

- The equation is first order in time and so would appear not to be invariant under *T*.
- However consider the complex conjugate equation (for H Hermitian):

$$-i\hbar\frac{\partial\psi^{*}(\vec{r},t)}{\partial t} = H\psi^{*}(\vec{r},t) \xrightarrow{T} i\hbar\frac{\partial\psi^{*}(\vec{r},-t)}{\partial t} = H\psi^{*}(\vec{r},-t)$$

If the wave function transforms as $\psi(\vec{r},t) \xrightarrow{T} \psi^*(\vec{r},-t)$ then both ψ and its time reversed solution obey the same equation.

Detailed Balance

- Since time dependent wave functions are complex, they are not eigenfunctions of *T*.
- Consequently, there is no quantum number which can be associated with *T* invariance.
- In QM, T invariance implies transition amplitudes are the same for the forward and reversed processes:

 $\left|\boldsymbol{M}_{i \to f}\right| = \left|\boldsymbol{M}_{f \to i}\right|$

This principle of detailed balance has been verified for many processes. Note: the transition rates can be different however, since the density of final states can be quite different for the forward and reverse processes.

Neutron Electric Dipole Moment?

- The best evidence for T invariance comes from searches for a nonzero neutron EDM.
- The neutron, though neutral, has an extended charge distribution which gives rise to a magnetic moment.
- If the centers of the positive and negative charge distributions do not coincide, the neutron would also have an EDM.
- A naïve estimate of the size of the EDM:

 $\mu_{el} \le ed \approx e \times 10^{-13} \text{ cm} \approx 10^{-13} e \text{ - cm}$

The only possible axis is the neutron spin; a non-vanishing EDM would therefore have to point along the spin direction. The most sensitive search for this effect gives an upper limit:

$$\mu_{el} \le 10^{-25} \ e - \text{cm} !$$

Neutron EDM would Violate T Invariance

• Consider the component of EDM along the spin:

$$\vec{\mu}_{el} \cdot \vec{s} \xrightarrow{T} \vec{\mu}_{el} \cdot (-\vec{s}) = -\vec{\mu}_{el} \cdot \vec{s} \Longrightarrow \left\langle \vec{\mu}_{el} \cdot \vec{s} \right\rangle \xrightarrow{T} -\left\langle \vec{\mu}_{el} \cdot \vec{s} \right\rangle$$

- This expectation value must vanish if electromagnetic interactions are *T* invariant.
- However, note that under parity:

$$\left\langle \vec{\mu}_{el} \cdot \vec{s} \right\rangle \xrightarrow{P} \left\langle \left(-\vec{\mu}_{el} \right) \cdot \vec{s} \right\rangle = -\left\langle \vec{\mu}_{el} \cdot \vec{s} \right\rangle$$

So a nonzero expectation value can arise from parity violation. Other experiments indicate that electromagnetic interactions are *P* invariant. So a non-zero neutron EDM could arise from an interplay of EM and weak interactions.

Charge Conjugation

Unlike P and T which are discrete space-time symmetry transformations, charge conjugation, C, operates on the internal state of a system:

$$Q \xrightarrow{c} -Q \implies \begin{cases} \vec{E} \xrightarrow{c} -\vec{E} \\ \vec{B} \xrightarrow{c} -\vec{B} \end{cases}$$

- Maxwell's equations are invariant under C.
- Charge conjugation inverts all internal quantum numbers of states, changing particles into antiparticles and vice versa.

Eigenstates of C

- Denoting the internal quantum numbers collectively as Q: $|\psi(Q,\vec{r},t)\rangle \xrightarrow{C} |\psi(-Q,\vec{r},t)\rangle$
- Therefore, neutral particles can be eigenstates of C:
 γ (photon), π⁰, ...
- However, as particles carry quantum numbers other than charge, not all neutral particles are eigenstates of C: $|n\rangle \xrightarrow{C} |\overline{n}\rangle$

$$\begin{aligned} |n\rangle &\xrightarrow{c} |\overline{n}\rangle \\ |\pi^{-}p\rangle &\xrightarrow{c} |\pi^{+}\overline{p}\rangle \\ |K^{0}\rangle &\xrightarrow{c} |\overline{K^{0}}\rangle \end{aligned}$$

Charge Parity

- As for parity, two successive C operations leaves the system unchanged ⇒ charge parity = ± 1.
- Since the photon is the carrier of the EM field: $\eta_C(\gamma) = -1$.
- If C is a symmetry of the theory then [C,H] = 0 and the charge parity for any process is conserved.
- Charge parity is conserved in EM processes since Maxwell's equations are C invariant.

Decay of π^0

• Consider the two photon decay of the π^0 :

$$\pi^0 \to \gamma + \gamma$$

If charge parity is conserved: $\eta_C(\pi^0) = \eta_C(\gamma)\eta_C(\gamma) = (-1)^2 = +1$

Therefore C invariance implies the π⁰ cannot decay to an odd number of photons:

$$\frac{\pi^0 \to 3\gamma}{\pi^0 \to 2\gamma} < 10^{-8}$$

Weak Interactions Violate Charge Conjugation

 Charge conjugation does not affect space-time properties and therefore, handedness:

$$|v_L\rangle \xrightarrow{C} |\overline{v_L}\rangle$$
 and $|\overline{v_R}\rangle \xrightarrow{C} |v_R\rangle$

- Since there is no evidence for right handed neutrinos or left handed antineutrinos, the charge conjugate process of β -decay cannot occur \Rightarrow weak interactions violate *C* invariance.
- However, under the combined operation of *CP* :

$$|v_L\rangle \xrightarrow{P} |v_R\rangle \xrightarrow{C} |\overline{v_R}\rangle$$
$$|\overline{v_R}\rangle \xrightarrow{P} |\overline{v_L}\rangle \xrightarrow{C} |v_L\rangle$$

 CP takes a physical state to another physical state and is a symmetry of almost all processes. CP violation, though small, has interesting possible implications for the matter-antimatter asymmetry of the universe.

CPT Theorem

- Though P, T and C appear to be violated in some processes, Lüders, Pauli and Schwinger showed that the combined operation of CPT is a symmetry of essentially any theory which respects Lorentz invariance.
- This is known as the CPT theorem and it is consistent with all observations to date.

Consequences of CPT Theorem

- The CPT theorem leads to various conclusions:
 - Particles with integer spin obey Bose-Einstein statistics and particles with half-integer spin obey Fermi-Dirac statistics.
 - Particles and their antiparticles have the same masses and same total lifetimes.
 - All the internal quantum numbers are opposite those of their partner particles.