### CHAPTER 2 Nuclear Phenomenology

Lecture Notes For PHYS 415 Introduction to Nuclear and Particle Physics

To Accompany the Text Introduction to Nuclear and Particle Physics, 2<sup>nd</sup> Ed. A. Das and T. Ferbel World Scientific

### The Nucleus is not Point-like



R. Hofstadter, *et al.*, Phys. Rev. **92**, 978 (1953). Figure adapted from http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/elescat.html

## **Deviations from Rutherford**

- For incident particles of higher energy and/or low Z nuclei, deviations from Rutherford prediction were observed.
- High energy ⇒ distance of closest approach is small. Low Z ⇒ same, since Coulomb force is weaker.
- The nucleus itself was being probed.
- Nucleus is not point-like and force is not Coulomb force.

## **Properties of Nuclei**

- Nuclei consist of protons and neutrons. (Heisenberg uncertainty principle: suggests electrons cannot exist inside nucleus.)
- Notation: N = # neutrons

Z = # protonsA = N + ZNucleus X: <sup>A</sup>X<sup>Z</sup>

- Isotopes:  $^{A}X^{Z}$  and  $^{A'}X^{Z}$
- Isobars:  ${}^{A}X^{Z}$  and  ${}^{A}Y^{Z'}$
- Isotones: same number of neutrons

### **Nuclear Masses**

- To first order:  $M(A,Z) = Zm_p + (A-Z)m_n$ 
  - □  $m_p$  = proton mass ≈ 938.27 MeV/ $c^2$
  - □  $m_n$  = neutron mass ≈ 939.56 MeV/ $c^2$
- If this were true, then the nucleus would be unstable and could simply break apart into its constituents.
- The nucleus is a **bound** system and so its mass is less than this simple estimate:  $\Delta M(A,Z) = M(A,Z) - Zm_p - (A-Z)m_n = B.E./c^2 < 0$

### **Binding Energy per Nucleon**





Figure from http://library.thinkquest.org/3471/mass\_binding\_body.html

## Implications

#### <sup>56</sup>Fe is the most stable nucleus.

- Higher mass nuclei will release energy to make two smaller nuclei: Fission
- Lower mass nuclei will release energy when combined into a higher mass one: Fusion
- Rule of thumb: B.E./nucleon ~ 8 MeV
- If we supply 8 MeV, all to one nucleon, then we can free it from the nucleus.

## Implications, cont'd.

If we give 8 MeV to a single nucleon:

$$\lambda = \frac{\hbar}{p} = \frac{\hbar c}{\sqrt{2mc^2 T}} \approx 1.6 \text{ fm}$$

$$\lambda = \frac{h}{p} = \frac{hc}{T} \approx 25 \text{ fm}$$

- 8 MeV electrons will not fit!
- 120 MeV electrons would fit, but are not consistent with typical binding energies.

## **Nuclear Sizes**

- Cannot calculate without knowing the nuclear force.
- Can use low-energy α backscattering (distance of closest approach is a minimum) to estimate the size: get upper limits of few 10's of fm. Not too precise!
- Can use high energy electron scattering
  - Not sensitive to nuclear force. EM interaction is known and can be used to determine distribution of charge and magnetism in the nucleus.
  - Can penetrate deeply into the nucleus.

⇒ Determine nuclear **form factors** 

## **Form Factor**



### Form Factor and Charge Radius

- The charge form factor is  $F(\vec{q}) = \int d^3 r \rho(\vec{r}) e^{\frac{i}{\hbar}\vec{q}\cdot\vec{r}}$
- If the charge density is spherically symmetric, we can integrate over angles explicitly:

$$F(q) = \frac{4\pi\hbar}{q} \int_0^\infty dr \rho(r) r \sin\frac{qr}{\hbar}$$

$$\xrightarrow{qr <<\hbar} \frac{4\pi\hbar}{q} \int_0^\infty dr \rho(r) r \left(\frac{qr}{\hbar} - \frac{1}{6} \left(\frac{qr}{\hbar}\right)^3 + \cdots\right)$$

$$= \int_0^\infty dr \rho(r) 4\pi r^2 - \frac{1}{6} \left(\frac{q}{\hbar}\right)^2 \int_0^\infty dr r^2 \rho(r) 4\pi r^2 + \cdots$$

$$= 1 - \frac{1}{6} \left(\frac{q}{\hbar}\right)^2 \left\langle r^2 \right\rangle + \cdots$$

## **Charge Radius**

The slope of the form factor at low q<sup>2</sup> gives the rms charge radius:

$$\left\langle r^2 \right\rangle = -6\hbar^2 \frac{dF(q)}{dq^2} \bigg|_{q^2 \to 0}$$

 Further, the charge density can be determined from the form factor via the inverse Fourier transform:

$$\rho(r) = \frac{1}{2\pi^2 \hbar^2 r} \int_0^\infty F(q) \sin \frac{qr}{\hbar} q \, dq$$

### Example: Charge Density of <sup>58</sup>Ni



Elastic electron scattering: I. Sick et al., Phys. Rev. Lett. 35, 910 (1975).

## **Electron Scattering Cross Section**

 Neville Mott considered effect of electron spin in scattering from a nucleus. The Rutherford formula has to be modified:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = 4\cos^2\frac{\theta}{2}\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford}$$

- This gives the scattering of (point-like) spin-1/2 electrons from a spinless, infinitely massive point-like nucleus.
- To include nuclear size, we insert the form factor:

$$\frac{d\sigma}{dq^2} = \left|F(\vec{q})\right|^2 \left(\frac{d\sigma}{dq^2}\right)_{Mott}$$

 We can also include (i.e. determine) the magnetic form factor as well as a factor accounting for the finite nuclear mass (i.e. nuclear recoil).

## **Nuclear Sizes**

The above can be used to determine the nuclear form factor:

$$\frac{\left(\frac{d\sigma}{dq^2}\right)_{measured}}{\left(\frac{d\sigma}{dq^2}\right)_{Mott}} = \left|F(\vec{q})\right|^2$$

We can also scatter strongly interacting particles such as pions. The nuclei effectively absorb pions out of the beam. The resulting diffraction pattern (similar to diffraction of light by a disk) can be used to determine the size of the nucleus.

### Pion Elastic Scattering from Lead



G. Kahrimanis et al., Phys. Rev. C 55, 2533 (1997).

## Nuclear Sizes, an Empirical Formula

A wide body of such experiments indicates nuclear sizes follow a very simple empirical formula:

 $R = r_0 A^{1/3} \approx (1.2 \text{ fm}) A^{1/3}$ 

where *A* is the mass number.

The volume is proportional to A and the density is independent of A. This suggests the nucleus can be approximated for certain purposes as an incompressible liquid droplet.

## **Nuclear Spins and Dipole Moments**

- Like the electron, the proton and neutron are both spin-1/2:  $S_z = \pm \frac{\hbar}{2}$  and  $|\vec{S}| = \sqrt{s(s+1)} \hbar \xrightarrow{s=1/2} \frac{\sqrt{3}}{2} \hbar$
- Nuclear spin is the sum of nucleon spins and orbital angular momenta:  $\vec{J} = \sum_{i=1}^{n} \left[ \vec{L}_{i} + \vec{S}_{i} \right]$

nucleor

For charged particles, the spin gives rise to a magnetic moment:

$$\vec{\mu} = g \frac{e}{2mc} \vec{S} \stackrel{spin \ 1/2}{\longrightarrow} \mu = \frac{e\hbar}{2mc}$$

where g = "gyromagnetic ratio" = 2, for a point-like Dirac particle

## g-factors

#### For the electron

- □  $g_e$ -2 ≈ 2.3×10<sup>-3</sup>:
- $g_e = 2.0023193043718 \pm 0.000000000075$
- The value agrees with the QED prediction which is of comparable accuracy!
- For the proton
  - □  $g_p/2 \approx +2.79$
  - Strong indication of internal structure.
- For the neutron
  - $\Box g_n/2 \approx -1.91$
  - For a neutral object, expect  $g = 0 \Rightarrow$  neutron has an extended charge distribution.

### **Bohr Magneton and Nuclear Magneton**

From before (for spin-1/2): 
$$\mu = \frac{g}{2} \frac{e\hbar}{2mc}$$

Bohr magneton: 
$$\mu_B = \frac{e\hbar}{2m_e c} = 5.79 \times 10^{-11} \text{ MeV/T}$$
 Nuclear magneton:  $\mu_N = \frac{e\hbar}{2m_p c}$ 

 Due to the mass dependence, the Bohr magneton is ~ 2000 times larger than the nuclear magneton.

# **Nuclear Spin and Magnetic Moment**

#### General observations about spin

- For A even: integral spin
- For A odd: half-integral spin
- For N and Z even: spin = 0, always
- Even large nuclei have small ground state spins
- Suggests that spins are strongly paired in nuclei
- Magnetic moments
  - All measured values lie between  $-3\mu_N$  and  $10\mu_N$
  - Additional evidence for strong pairing
  - Difficult to accommodate electrons within the nucleus, given the much larger electron magnetic moment

## **Nuclear Stability**



From http://www.algebralab.org

## Nuclear Stability, cont'd.

- For light nuclei:  $N \approx Z$
- For heavier nuclei:  $N \approx 1.7 Z$ 
  - Neutron excess reflects smaller overall Coulomb repulsion and therefore higher stability
- Even # of protons/neutrons is favored
  - Further evidence of strong pairing, i.e. pairing of nucleons leads to nuclear stability

## Nuclear Instability: Radioactivity

- Discovered in uranium salts by Henri Becquerel (1896).
- Three basic types:  $\alpha$ ,  $\beta$  and  $\gamma$



# Radiation

- Various sheets of materials could be used to study the range of each type of particle and therefore establish the degree to which it ionizes matter.
- A superimposed electric field could be arranged to establish the charge-to-mass ratio of each particle.
- Results:
  - $\alpha$  = *helium nucleus*, small range, heavily ionizing
  - $\beta = electron$ , longer range, less heavily ionizing
  - $\gamma = photon$ , longest range, least ionizing

## Nature of the Nuclear Force

- A new type of force is needed to bind nuclei
  - Gravity is too weak to bind
  - EM cannot bind the deuteron and leads to instability for other nuclei (repulsive force between like charged protons)
- Range of the nuclear (*strong*) force
  - Atomic structure is well described by just the EM force ⇒ range of nuclear force ~ size of nucleus
  - Other evidence for short range: saturation of nuclear force ...

### Saturation of Nuclear Force

- For a long-range force, such as EM, every particle can interact with all others.
- This gives # pairwise interactions = A(A-1)/2
- Binding energy:  $B \propto A(A-1) \Rightarrow B/A \propto A$ , for large A
  - We would get tighter binding for larger systems.
- But for nuclei:  $B/A \approx constant$ 
  - Nucleons only interact with a few nearest neighbors.
  - Adding nucleons does not increase average binding energy, but just increases the nuclear size (i.e. density is nearly constant).
  - This is further evidence of short-ranged nature of nuclear force.

## **Nuclear Force**

- Nuclear force is
  - Short-ranged
  - Attractive at "long" distances
  - Repulsive at very short distance: repulsive core



## **Inclusion of Coulomb force**

- Neutrons experience no Coulomb force and so even relatively low energy neutrons can penetrate the nucleus.
- Protons of comparable energy will experience an effective (Coulomb) barrier of height  $V_B$ .



Repulsive core neglected here

## **Nuclear Bound States**

- The nucleus is a bound system and so exhibits discrete energy levels (bound states).
- These states can be probed in various scattering experiments and the energies can be determined by measuring the particle energy loss and/or various emitted particles from subsequent decay to the ground state.
- In fact, nuclei, just like atoms, are well-described by a shell structure (nuclear shell model).

### Charge Independence of Nuclear Force

- The proton-proton, proton-neutron and neutronneutron forces are the same, once we correct for Coulomb effects.
  - $\Rightarrow$  The nuclear force is *charge independent*.
- This is called isospin symmetry
  - The proton and neutron can be regarded as two different states of a nucleon (analogous to the spin "up" and "down" states of a spin-1/2 particle).
  - In the absence of Coulomb forces, the proton and neutron would be indistinguishable.

### **Yukawa Potential**

EM force is mediated by the exchange of a (massless) photon giving an infinite range potential:

$$V(r) \propto \frac{1}{r}$$

Hideki Yukawa (1934) showed that the corresponding potential for a massive (mass = m) exchange particle is:

$$V(r) \propto \frac{\exp\left(-\frac{mc}{\hbar}r\right)}{r}$$

### Yukawa and Range of the Nuclear Force

- The range of the force varies inversely as the mass of the exchanged particle. This is consistent with the Heisenberg uncertainty principle:
  - The (virtual) particle's energy must be created and therefore is short-lived.
  - A short-lived particle cannot propagate very far.
- The range is related to the (reduced) Compton wavelength:

$$\hat{\lambda} = \frac{\hbar}{mc}$$

 Conversely, the mass of the exchanged particle can be deduced from the range of the force:

$$mc^2 = \frac{\hbar c}{\lambda} \approx \frac{197 \text{ MeV} - \text{fm}}{1.2 \text{ fm}} \approx 164 \text{ MeV}$$

# The Pion as the Exchange Particle

- This estimate was crude, but the mass is close to that of the pion:
  - □  $m_{\pi^+} = m_{\pi^-} = 139.6 \text{ MeV}/c^2$

 $\square m_{\pi^0} = 135.0 \text{ MeV}/c^2$ 

- The one-pion exchange assumption gives a reasonable description of the nuclear force, especially the long-range part.
- However, other, more massive, mesons can also be exchanged. These mainly affect the short-distance character of the nuclear force.