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General Remarks 

  The nuclear force has proved elusive. 
  Scattering experiments gave many clues, but, at the time, 

no fundamental theory of the nuclear force existed. 
  Even when the fundamental theory was developed (QCD), 

due to the strong coupling nature of the force, first principle 
calculations were impossible. 

  Lately, various techniques have been developed, such as 
lattice QCD, but, currently, they too are limited in what they 
are able to predict. 

  Nuclear models were developed as a result. 
  Phenomenological basis. 
  Limited range of validity. 



Liquid Drop Model 

  Nuclear densities are almost independent of nucleon 
number: 

  This suggests the nucleus as an incompressible 
fluid:  liquid drop. 

  Adding more nucleons, increases the size, but not 
the density. 
  Only nearest neighbor interactions are important. 
  Nuclear force saturates. 
  Consistent with B/A ≈ constant. 
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Surface Tension 
  Nucleons at the surface feel forces only from interior 

nucleons. 
  The force is unbalanced at the surface. 
  Since the force is attractive, there is a net inward attraction of the 

surface:  surface tension. 
  Surface nucleons are less tightly bound. 



Binding Energy, Including Surface Effect 

  Less tightly bound surface nucleons imply a 
positive correction to the binding energy: 

  Surface effect is more important for lighter 
nuclei. 
  Higher surface-to-volume ratio 
  Therefore, light nuclei are less tightly bound 
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Coulomb Forces 

  The coulomb repulsion among protons 
decreases the binding energy per nucleon: 
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Bethe-Weizsäcker Semi-Empirical Mass Formula 

  We still need to account for other observations: 
  Light nuclei with N = Z are more abundant (stable) 
  Even-even nuclei are more abundant (stable). 

     where the last term is       and, from an empirical fit 
+  For odd-odd nuclei 
-  For even-even nuclei 
0  For odd A nuclei 
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a1 ≈15.6 MeV  a2 ≈16.8 MeV  a3 ≈ 0.72 MeV  
a4 ≈ 23.3 MeV  a5 ≈ 34 MeV    



Fermi-Gas Model 

  Quantum-mechanical description where nucleons 
are considered a gas of fermions confined to a 
spherically symmetric potential well. 

  Boundary conditions imply energy levels are 
discrete. 

  Depth and range of well are fit to data. 
  Only two identical fermions (of opposite spin 

projection) can occupy the same energy level. 
  Protons and neutrons may be considered distinguishable 

and so each level can contain four nucleons. 
  Protons experience the Coulomb force and so the 

potentials are slightly different for protons vs. neutrons.   



Fermi Levels and Fermi Energy 
  Protons occupy shallower well since heavy nuclei 

are neutron rich.  Otherwise, neutrons in upper 
levels could undergo β- decay to become lower 
energy protons. 
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Fermi Energy 

  Nonrelativistically, EF = pF
2

 /2m 
  Phase space volume = ∫d3r d3p : 

  Heisenberg: 
  Number of fermions up to EF:   
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Fermi Energy, cont’d. 

  Assuming N = Z = A /2: 

  Taking B.E. of last nucleon as ~8 MeV: 
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Shell Model 

  Nucleons within nuclei, like electrons within atoms, 
can be well described by a shell model. 

  Four nucleons (two protons and two neutrons) can 
occupy each orbital. 

  For atoms, this is natural, since the nucleus provides 
a central force.  For nuclei there is no central force! 

  The Pauli principle still forbids nucleons from 
occupying the same states and this gives rise to an 
effective mean field potential in which the nucleons 
move. 



Review of Atomic Shell Model 

  Electrons occupy states defined by four quantum 
numbers:  n, l, ml, ms  
  n = 1, 2, 3, …  = principal quantum # 
   l = 0, 1, 2, …, n-1 = orbital quantum # 
  ml = -l, -l +1, …, 0, 1, l-1, l = magnetic quantum # 
  ms = ± 1/2 

  Considering only the nuclear Coulomb potential, 
which is rotationally symmetric, all states of a given 
n are degenerate:  # of states = 2n2. 



Spin-Orbit Interaction 

  In atoms, the spin of an electron couples to 
the nuclear orbital motion (as seen in the 
electron rest frame), giving rise to small 
splittings:  fine structure. 

  In nuclei, there is also a spin-orbit interaction 
and this affects nuclear structure significantly. 



Closed-Shell Atoms 

  In atoms there is a strong pairing effect which 
effectively minimizes the angular momentum 
of the ground state. 
  ∑ms = 0   and ∑ ml = 0  
  L = 0 = S   and J = L + S = 0 

  Closed shell elements are very stable. 
  Chemically inert 
  Large ionization energies 



Magic Numbers 

  Atomic shell closures occur at certain magic 
numbers:  Z = 2, 10, 18, 36, 54 

  Nuclear shell closures also occur at well-
defined magic numbers: 
  N = 2, 8, 20, 28, 50, 82, 126 
  Z = 2, 8, 20, 28, 50, 82 

  Nuclei where both protons and neutrons have 
closed shell are called doubly magic and 
have even greater stability. 



Other Evidence for Nuclear Shells 

  Closed neutron shell nuclei have more isotones and 
closed proton shell nuclei have more isotopes than 
neighboring nuclei. 

  Neutron capture cross sections are relatively small 
for closed-shell nuclei. 

  Proton and neutron knockout experiments can probe 
nucleons in individual orbits. 
  Can measure binding energies this way. 
  Can deduce the momentum distribution (in the context of a 

reaction model).  The Fourier Transform of this gives the 
shape of the orbital. 



Schrödinger Equation and Solutions 

  For a central potential: 

  Since the potential is spherically symmetric: 

  Solutions can be written as: 
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Radial and Angular Equations 

  Angular equations: 

  Radial equation: 
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Parity 

  The parity operation is defined by: 

  This is equivalent to: 

  For spherically symmetric potentials, states have 
definite parity, related to the value of l: 
   parity = (-1)l 

   ⇒ parity =   + for l even 
     - for l odd 
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Infinite Square Well 

  We can gain some intuition by solving this 
equation for simple potentials, even though 
they might not be entirely reasonable. 

  For the ∞ square well: 

  We require that the solutions be regular at 
the origin, so we get the spherical Bessel 
functions: € 
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Energies are Quantized 

  Since the potential is infinite at r = R, we must have: 

  The energies are quantized and depend on n and l.  
Each energy level can contain 2(2l +1) protons or 
neutrons. 

  For n = 1, we get shell closures at: 
  2, 2+6=8, 8+10=18, 18+14=32, 32+18=50, … 
  (observed: 2, 8, 20, 28, 50, 82, …) 

  Some, but not all, magic numbers are reproduced. 
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Harmonic Oscillator 
  The three dimensional harmonic oscillator: 

  Solutions are related to the associated Laguerre 
polynomials with additional Gaussian factor 
(dominant dependence for large r). 

  We also get bound states with discrete energies: € 

V (r) =
1
2
mω 2r2

  

€ 

En = ω 2n+ −
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

and   = 0,  1,  2,  …,
for any n =1,  2,  …   

€ 

En = ω Λ +
3
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Λ = 0,  1,  2,  …

  

€ 

Λ ≡ 2n+ − 2



Shell Closures 

  Levels with different (n,l), leading to the same 
Λ, will be degenerate.  The degeneracy is: 
  nΛ= (Λ+1)(Λ+2) 

  Therefore, shell closures occur for proton or 
neutron numbers of 2, 8, 20, 40, 70, … 
  (observed: 2, 8, 20, 28, 50, 82, …) 

  Again, some, but not all, magic numbers are 
reproduced. 

  So introduce …   



Spin-Orbit Potential 

  Maria Goeppert Mayer and Hans Jensen 
(1949) suggested adding a spin-orbit 
interaction, in analogy with atoms: 

  Similar to atoms, except 
  Presence of f(r) function 
  j = l + 1/2 state has lower energy than j = l - 1/2 
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Splitting due to Spin-Orbit Interaction 

  We can write 

  Splitting is larger for higher l values, allowing level 
crossing. 

  For appropriate f(r), we can reproduce all the magic 
numbers. 
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Spectroscopic Notation 

  As for atoms, we use the spectroscopic 
notation to label states: 

  The L value is labeled by S, P, D, F, G, …, 
for l = 0, 1, 2, 3, 4, … 

  The multiplicity is 2j+1 
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Level Scheme with Spin-Orbit Term 

From:  http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html 



Predictions of the Shell Model 

  Spin-parity assignments of ground states of 
many odd-A nuclei predicted. 
  Neutrons and protons pair up with opposite spins, 

so that the spin of the last nucleon determines the 
spin of the nucleus. 

  Even-even nuclei, consequently, have zero spin, 
in agreement with observations. 

  Allowing pairing between all valence 
nucleons can fix up agreement with 
remaining odd-A nuclei. 



Example of Spin-Parity Prediction 

  Consider 13C6.   
  Six protons and six neutrons are completely 

paired off.   
  The last neutron will be in the shell:  1P1/2. 
  So we expect (1/2)-   (i.e. j = 1/2 and negative 

parity, since l is odd). 
  This is in agreement with observation. 



Magnetic Moments of Nuclei 
  We expect the nuclear magnetic moment to be determined by 

the moment of the unpaired nucleon(s). 
  Each unpaired nucleon contributes: 

  Intrinsic (spin):  µp = 2.79 µN  and µn = -1.91 µN  
  Orbital:  protons only; neutrons are uncharged. 

  Example:  deuteron, assuming proton and neutron are in (1S)
1/2 states: 
  Prediction:  µd = 2.79 µN -1.91 µN = 0.88 µN 

  Observation:    0.86 µN 

  Example:  3He2.  Here, the magnetic moment is expected to 
be due to the unpaired neutron and this is roughly correct.  
This fact, has been exploited to use 3He2 targets to deduce 
neutron properties.  



Collective Model 

  The single-particle shell model does not describe 
certain features of heavy nuclei, namely magnetic 
dipole moments and electric quadrupole moments. 
  Electric quadrupole moments arise from non-spherical 

charge distributions, which cannot be explained by a purely 
central potential. 

  Including many-body physics where nucleons 
interact with one another can remedy the problem. 

  Historically, various collective models were 
introduced which provided simpler, intuitive 
descriptions of heavy nuclei. 



Deformed Rotators and Vibrators 

  Aage Bohr, Ben Mottelson and James 
Rainwater proposed a collective model to 
explain observed moments. 

  Tried to reconcile liquid drop and shell  
model. 
  Hard core of nucleons in filled shell-model states. 
  Surface motion (rotation) of valence nucleons. 
  Latter gives rise to nonspherical shape and 

rotational and vibrational energy spectra. 



Ellipsoidal Nucleus 

  Define surface of nucleus as: 

  Mean potential given by: 

  Deformations into an ellipsoidal shape can also be 
induced through particle bombardment of heavy 
nuclei.  This will be useful for discussing nuclear 
fission later. 
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Rotational and Vibrational Levels 

  For rotations, define the Hamiltonian: 

  For rotations perpendicular to symmetry axis, 
only expect even l. 

  Photon quadrupole transitions (Δl = 2) have 
been observed, corresponding to transitions 
between rotational levels. 
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Superdeformed Nuclei 

  Heavy ion collision experiments have produced 
superdeformed nuclei with very large angular momentum 
quantum numbers. 

  These deformed nuclei reach more spherical shapes by 
emitting a series of quadrupole γ-rays, each of order 50 keV. 

  The photon energies remain essentially fixed.  This is in 
conflict with the collective model, since the decreasing 
moment of inertia during “spin-down” should give rise to 
nonuniformly spaced photon energies. 

  Emissions from different nuclei are also nearly identical.  This 
too is in conflict with current models since effects of nucleon 
pairing should produce varying level spacings. 


