CHAPTER 6 Energy Deposition in Media

Lecture Notes For PHYS 415 Introduction to Nuclear and Particle Physics

To Accompany the Text Introduction to Nuclear and Particle Physics, 2nd Ed. A. Das and T. Ferbel World Scientific

Particle Detection

- In order to detect particles, they must leave some measurable trace: they must interact with matter.
- Charged particles interact mostly through the EM force.
 - Neutral particles are more difficult to detect.
 - Neutrinos, which interact only via the weak interaction are especially difficult to detect.

Stopping Power

 Charged particles transfer their energy to materials primarily through ionization and atomic excitations. The stopping power or ionization energy loss is:

$$S(T) = -\frac{dT}{dx} = n_{\rm ion}\bar{I}$$

where $n_{ion} = \#$ electron - ion pairs per unit length \overline{I} = average energy needed to ionize an atom

 Nuclear collisions can also occur but with much smaller probability (nuclear cross sections are much smaller than atomic cross sections).

Bethe-Bloch Formula

Hans Bethe and Felix Bloch derived an expression for energy loss of relativistic particles by ionization:

$$S(T) = \frac{4\pi Q^2 e^2 nZ}{m\beta^2 c^2} \left[\ln\left(\frac{2mc^2\gamma^2\beta^2}{\bar{I}}\right) - \beta^2 \right] \xrightarrow{\beta \text{ small}} \frac{4\pi Q^2 e^2 nZ}{m\beta^2 c^2} \ln\left(\frac{2mc^2\beta^2}{\bar{I}}\right) \right]$$

Incident particle $\begin{cases} Q = ze = \text{ charge of incident particle} \\ \beta = \frac{v}{c} = \text{ velocity of incident particle compared to } c \\ \gamma = 1/\sqrt{1 - \beta^2} \\ \end{cases}$ Material $\begin{cases} m = \text{ electron mass} \\ Z = \text{ atomic number of medium} \\ n = \# \text{ atoms per unit volume } = \rho A_0 / A \\ \bar{I} = \text{ mean ionization/excitation energy of medium} \end{cases}$

Energy Loss in Various Materials

From http://pdg.lbl.gov/2005/reviews/passagerpp.pdf

Minimum-Ionizing Particles

- For $\gamma\beta \approx 3$, particles are "minimum-ionizing".
- For very energetic particles, the "relativistic rise", caused by the γ² in the logarithmic term, saturates. Therefore, the stopping power of very energetic particles is not too different than the minimum ionizing value:

$$S \xrightarrow{\gamma\beta=3} S_{\min} \approx 0.33(13.7 - \ln Z)\rho \frac{Z}{A} \text{ MeV/cm} \text{ (where we used } \overline{I} = 10Z \text{ eV}, z = 1)$$

for $Z = 20$: $S_{\min} \approx 3.5\rho \frac{Z}{A} \text{ MeV/cm} = 3.5 \frac{Z}{A} \text{ MeV/(gm/cm^2)} \approx 1.6 \text{ MeV/(gm/cm^2)}$

Except for hydrogen, this is a good approximation.

Particle Identification

- Identifying the type of particle is one of the basic requirements of a detector system.
- Usually we can identify the particle from its mass.
- For low velocity particles, the energy loss depends strongly on mass.
- For fixed momentum, p, we can distinguish different mass particles by their different energy losses.
- This method does not work well at very high energies (i.e. when $v \rightarrow c$).

Bethe-Bloch and Particle ID

Note: Bethe-Bloch formula is not valid at very low and very high momenta. These curves have been truncated accordingly.

Energy Loss Mechanisms

From http://pdg.lbl.gov/2005/reviews/passagerpp.pdf

Particle Range

If we know the stopping power vs. energy, we can determine the particle range:

$$R = \int_0^R dx = \int_0^T \frac{dx}{dT} dT = \int_0^T \frac{dT}{S(T)}$$

For low energies, the range, just as the stopping power, depends strongly on particle mass.

Straggling

- Particles transfer their energy via collisions with atoms in the material. This is a statistical process and there is a range of possible energies for each collision.
- The energy loss after traversing a certain thickness of material will also reflect these statistical variations.
- Therefore, while the Bethe-Bloch and similar formulae give the mean energy loss, a given particle's energy loss will have a distribution about this mean value.
- This variation about the mean energy loss is called straggling.

Multiple Scattering

- Particles are also deflected through small angles via Coulomb (Rutherford) scattering with the atomic nuclei in a material. This, too, is a statistical process.
- The mean deflection is zero, since particles are equally likely to scatter to the left or right.
- A collection of particles, each undergoing many such interactions, will have a spread of angles, approximately Gaussian in form. After traversing a length *L* of material the *rms* width of the distribution is:

$$\theta_{\rm rms} \approx \frac{20 \text{ MeV}}{\beta pc} z \sqrt{\frac{L}{X_0}}$$
 where $X_0 =$ "radiation length" of material

Energy Loss via Bremsstrahlung

- Electrons, due to their small mass, radiate photons readily in the electric fields of atomic electrons and nuclei.
- This becomes particularly important at high energies:
 - Ionization energy loss is nearly constant.
 - Bremsstrahlung rises roughly linearly with energy.

$$\left(-\frac{dT}{dx}\right)_{\text{tot}} = \left(-\frac{dT}{dx}\right)_{\text{ion}} + \left(-\frac{dT}{dx}\right)_{\text{brem}}$$

and
$$\frac{\left(\frac{dT}{dx}\right)_{\text{brem}}}{\left(\frac{dT}{dx}\right)_{\text{ion}}} \xrightarrow{T \text{ large}} \frac{TZ}{1200 mc^2}$$

Bremsstrahlung vs. Ionization

From http://pdg.lbl.gov/2005/reviews/passagerpp.pdf

Radiation Length

At high energies, the radiative energy loss is roughly proportional to energy:

$$\left(\frac{dT}{dx}\right)_{\text{brem}} = -\frac{T}{X_0}, \text{ with } X_0 \approx 170 \frac{A}{Z^2} \text{ (in gm/cm}^2)$$
$$\Rightarrow T = T_0 e^{-x/X_0}$$

Define critical energy:

At
$$T_c$$
: $\left(\frac{dT}{dx}\right)_{\text{brem}} = \left(\frac{dT}{dx}\right)_{\text{ion}} = -\frac{T_c}{X_0}$ and $T_c \approx \frac{600 \text{ MeV}}{Z}$

Critical Energy

From http://pdg.lbl.gov/2005/reviews/passagerpp.pdf

Interactions of Photons with Matter

- Photons interact with matter in essentially three ways:
 - Photoelectric effect
 - Dominant at low energy
 - Compton scattering
 - Important at medium energy
 - Pair production
 - Dominant at high energy
- Can define the effective interaction (absorption) of photons via the *absorption coefficient*.

Absorption Coefficient, μ

Define *I*(*x*) = intensity of photons after traversing thickness *x* of material:

$$dI = I(x + dx) - I(x) = -\mu I(x)dx$$

$$\Rightarrow I(x) = I_0 e^{-\mu x}$$

and "half - thickness" $= x_{1/2} = \frac{\ln 2}{\mu} = \frac{0.693}{\mu}$

The mean free path (= μ⁻¹) is the distance after which the intensity drops to 1/e of the initial value.

Photoelectric Effect

- For ionization energy I_B : $E_{\gamma} = hv = I_B + T_e$
- The cross section is particularly important for high Z atoms but is small above 1 MeV, scaling roughly as:

$$\sigma \propto \frac{Z^5}{(h\nu)^{7/2}} \quad \text{for } E_{\gamma} < m_e c^2$$
$$\sigma \propto \frac{Z^5}{h\nu} \quad \text{for } E_{\gamma} > m_e c^2$$

Compton Scattering

Ignoring the electron binding energy (valid except for low energy photons) and treating the electron relativistically:

$$v' = \frac{v}{1 + \frac{hv}{m_e c^2} (1 - \cos\theta)}$$

where θ is the photon scattering angle.

The cross section scales roughly as:

 $\sigma \propto \frac{Z}{hv}$

Pair Production

- Pair production requires a nucleus to recoil and conserve momentum. It cannot occur for an isolated photon.
- Neglecting small nuclear recoil energy, the threshold photon energy is:

 $E_{\gamma} \ge 2m_e c^2$ (for e^+e^- production)

 The cross section scales as Z² and above ~ 100 MeV, becomes essentially energy independent.

Pair Production at High Energies

Since the cross section for pair production saturates at high energy, it can be characterized by a constant absorption length:

$$X_{\text{pair}} = \left(\mu_{\text{pair}}\right)^{-1} \approx \frac{9}{7} X_0$$

At high energies pair production dominates, so the above formula characterizes the net effect of the medium on high energy photons.

Photon Interaction Cross Sections

Adapted from http://pdg.lbl.gov/2005/reviews/passagerpp.pdf

Electron-Positron Annihilation

- The positrons, produced via pair production, interact with matter primarily through ionization and bremsstrahlung, just as electrons.
- The positrons, after losing most of their energy, form short-lived (~10⁻¹⁰ s) *positronium* "atoms", consisting of an electron and positron bound state.
- The electron and positron annihilate producing two photons, each of energy 0.511 MeV.
- The precise photon energies produced in the annihilation can be used to calibrate detectors. The same principle is used in *Positron Emission Tomography* (PET-scans).

Electromagnetic Showers

- Electrons in materials radiate photons.
- Photons of sufficient energy produce pairs.
- Each member of the pair can radiate additional photons, ...
- The result is an electromagnetic shower.

From: http://en.wikipedia.org/wiki/Image:Shower.jpg

Cross Section and Absorption Coefficient

• The three processes are independent:

$$\mu = \mu_{\rm pe} + \mu_{\rm Comp} + \mu_{\rm pair}$$

We have two ways to express the attenuation of a beam of particles in matter:

fraction of particles scattered out of beam $=\frac{dN}{N} = \left(\frac{A_0\rho}{A}\right)\sigma dx = n\sigma dx$

fraction of beam attenuated $=\frac{dI}{I} = -\mu dx$

Equating these gives:

$$-\frac{dI}{I} = \frac{dN}{N} \Longrightarrow \mu = n\sigma$$

Interaction of Neutrons

- Neutrons are uncharged and so do not experience Coulomb interactions.
- Slow neutrons can
 - Scatter inelastically or be captured by nuclei: subsequent decay photons can be detected.
 - Scatter elastically: nuclear recoil can produce ionization and leave a signal.
- Fast neutrons can be a source of significant background for accelerators and reactors ("albedo"). They require significant shielding structures:
 - Hydrogen-rich material to moderate.
 - Material with high neutron absorption cross section (often boron) to capture the resulting slow neutrons:

$$^{10}B + n \rightarrow ^{7}Li + \alpha$$

Interaction of Hadrons at High Energies

- Hadrons: interact via the strong force.
 - **Mesons**: quark-antiquark pairs (e.g. π and K mesons)
 - **Baryons**: three quark objects (protons, neutrons, ...)
- At low energies, hadronic cross sections vary rapidly with energy as various resonances and production channels "open".
- At high energies (beyond 5 GeV), hadron-hadron cross sections drop slowly with energy reaching minimum values (typically 20-40 mb) at ~70-100 GeV and then increase logarithmically with energy.

Detecting Hadrons

- Hadrons interacting with matter can produce various particles and cause nuclear excitations and breakup.
- Through many such interactions hadrons deposit energy, mostly along their incident direction, in materials.
- The resulting energy can be detected. This is the operating principle behind calorimeters, used to determine the energy of the incident hadron.
- Hadrons and electrons have markedly differing rates of energy loss as they traverse materials.
 Differences in development of the *electromagnetic shower* or *hadronic shower* can be used as a means of particle identification.