
Classes in C++!



A class is an expanded concept of  a data structure: instead of  holding only 
data, it can hold both data and functions. 

An object is an instantiation of  a class. In terms of  variables, a class would 
be the type, and an object would be the variable. 

Classes are generally declared using the keyword class, with the following 
format: 

             class class_name { 
                     access_specifier_1: 
                                 member1; 
                     access_specifier_2: 
                                  member2; 
                      ... 
           } object_names; 

Where class_name is a valid identifier for the class, object_names is an 
optional list of  names for objects of  this class.  

The body of  the declaration can contain members, that can be either data or 
function declarations, and optionally access specifiers 



Access specifiers 
An access specifier is one of  the following three 

keywords: private, public or protected. These specifiers 
modify the access rights that the the members 
following them acquire: 

• private members of  a class are accessible only from 
within other members of  the same class or from their 
friends. 

• protected members are accessible from members of  
their same class and from their friends, but also 

    from members of  their derived classes. 
• public members are accessible from anywhere where 

the object is visible. 



By default, all members of  a class declared with the class keyword have 
private access for all its members. 

Therefore, any member that is declared before one other class specifier 
automatically has private access. For example: 

                       class CRectangle { 
                       int x, y; 
                       public: 
                       void set_values (int,int); 
                       int area (void); 
                       } rect; 

declares a class (i.e., a type) called CRectangle and an object (i.e., a 
variable) of  this class called rect. This class contains four members: two 
data members of  type int (member x and member y) with private access 
(because private is the default access level) and two member functions 
with public access: set_values() and area(), of  which for now we have 
only included their declaration, not their definition.            



Notice the difference between the class name 
and the object name: In the previous 
example, CRectangle was the class name 
(i.e., the type), whereas rect was an object of  
type CRectangle. It is the same relationship 
``int’’ and ``a’’ have in the following 
declaration: 

                 int a 
where int is the type name (the class) and a is 

the variable name (the object). 



After the previous declarations of  CRectangle and rect, we 
can refer within the body of  the program to any of  the 
public members of  the object rect as if  they were normal 
functions or normal variables, just by putting the object’s 
name followed by a dot (.) and then the name of  the 
member. For example: 

               rect.set_values (3,4); 
               myarea = rect.area(); 

The only members of  rect that we cannot access from the 
body of  our program outside the class are x and y, since 
they have private access and they can only be referred 
from within other members of  that same class. 





Example 1!

•  The most important new thing in this code is 
the operator of  scope (::, two colons) 
included in the definition of  set_values(). It 
is used to define a member of  a class from 
outside the class definition itself. 



You may notice that the definition of  the member function area() 
has been included directly within the definition of  the CRectangle 
class given its extreme simplicity, whereas set_values() has only 
its prototype declared within the class, but its definition is outside 
it. In this outside declaration, we must use the operator of  scope 
(::) to specify that we are defining a function that is a member of  
the class CRectangle and not a regular global function. 

The scope operator (::) specifies the class to which the member 
being declared belongs, granting exactly the same scope 
properties as if  this function definition was directly included 
within the class definition. For example, in the function 
set_values() of  the previous code, we have been able to use the 
variables x and y, which are private members of  class CRectangle, 
which means they are only accessible from other members of  
their class. 



•  Members x and y have private access 
(remember that if  nothing else is said, all 
members of  a class defined with keyword class 
have private access). By declaring them private 
we deny access to them from anywhere outside 
the class.  

This makes sense, since we have already defined a 
member function to set values for those 
members within the object: the member 
function set_values(). Therefore, the rest of  the 
program does not need to have direct access to 
them. 



•  One of  the greater advantages of  a class is 
that, as any other type, we can declare 
several objects of  it.  

•  For example, following with the previous 
example of  class CRectangle, we could have 
declared the object rectb in addition to the 
object rect – see Example 2. 





In Example 2 the class is CRectangle with two 
objects: rect and rectb. Each one of  them has its 
own member variables and member functions. 

Notice that the call to rect.area() does not give the 
same result as the call to rectb.area().  

This is because each object of  class CRectangle 
has its own variables x and y, as they, in some 
way, have also their own function members 
set_value() and area() that each uses its object's 
own variables to operate. 



Object-oriented programming!
•  That is the basic concept of  object-oriented 

programming: Data and functions are both members 
of  the object.  

•  We no longer use sets of  global variables that we 
pass from one function to another as parameters, but 
instead we handle objects that have their own data 
and functions embedded as members.  

•  Notice that we have not had to give any parameters 
in any of  the calls to rect.area or rectb.area. Those 
member functions directly used the data members of  
their respective objects rect and rectb. 



Constructors and destructors 

•  Objects generally need to initialize variables or 
assign dynamic memory during their process of  
creation to become operative and to avoid 
returning unexpected values during their 
execution.  

        For example, what would happen if  in the 
previous example we called the member 
function area() before having called function 
set_values()?  

       Probably we would have gotten an 
undetermined result since the members x and y 
would have never been assigned a value. 



Constructors!
•  In order to avoid that, a class can include a 

special function called constructor, which is 
automatically called whenever a new object 
of  this class is created. This constructor 
function must have the same name as the 
class, and cannot have any return type; not 
even void. 

•  We are going to implement CRectangle 
including a constructor: see Example 3 





We have removed the member function set_values() and have 
included instead a constructor that performs a similar 
action: initializes the values of  x and y with the parameters 
that are passed to it. 

Notice how these arguments are passed to the constructor at 
the moment at which the objects of  this class are created: 

CRectangle rect (3,4); 

CRectangle rectb (5,6); 

Constructors cannot be called explicitly as if  they were regular 
member functions. They are only executed when a new 
object of  that class is created. You can also see how neither 
the constructor prototype declaration (within the class) nor 
the latter constructor definition include a return value; not 
even void. 



Destructors 
The destructor fulfills the opposite functionality. It is 

automatically called when an object is destroyed, either 
because its scope of  existence has finished (for example, 
if  it was defined as a local object within a function and 
the function ends) or because it is an object dynamically 
assigned and it is released using the operator delete. 

The destructor must have the same name as the class, but 
preceded with a tilde sign (~) and it must also return no 
value. 

The use of  destructors is especially suitable when an object 
assigns dynamic memory during its lifetime and at the 

 moment of  being destroyed we want to release the memory 
that the object was allocated.  (See Example 4) 





Overloading Constructors!

Like any other function, a constructor can also be 
overloaded with more than one function that have 
the same name but different types or number of  
parameters. Remember that for overloaded functions 
the compiler will call the one whose parameters 
match the arguments used in the function call. 

 In the case of  constructors, which are automatically 
called when an object is created, the one executed is 
the one that matches the arguments passed on the 
object declaration: see Example 5 





 In this case, rectb was declared without any 
arguments, so it has been initialized with the 
constructor that has no parameters,  

   which initializes both width and height with a 
value of  5. 

•  Important: Notice how if  we declare a new 
object and we want to use its default 
constructor (the one without parameters), we 
do not include parentheses (): 

    CRectangle rectb; // right 
    CRectangle rectb(); // wrong! 



Default constructor!
If  you do not declare any constructors in a class definition, the 

compiler assumes the class to have a default constructor with no 
arguments. Therefore, after declaring a class like this one: 

class CExample { 
public: 
int a,b,c; 
void multiply (int n, int m) { a=n; b=m;c=a*b; }; 
}; 

the compiler assumes that CExample has a default constructor, so you 
can declare objects of  this class by simply declaring them without 
any arguments: 

           CExample ex; 



As soon as you declare your own constructor for a class, the compiler 
no longer provides an implicit default constructor. So you have to 
declare all objects of  that class according to the constructor 
prototypes you defined for the class: 

    class CExample { 
    public: 
    int a,b,c; 
    CExample (int n, int m) { a=n; b=m; }; 
    void multiply () { c=a*b; }; 
    }; 

Here we have declared a constructor that takes two parameters of  type 
int. Therefore the following object 

      declaration would be correct:              CExample ex (2,3); 

But    CExample ex; 

would not be correct, since we have declared the class to have an 
explicit constructor, thus replacing the default constructor 



Overloading operators!
Thanks to the C++ feature to overload operators, we 

can design classes able to 
perform operations using standard operators.  

Here is a list of  all the operators that can be overloaded: 

+   -   *   /   =   <   >   +=   -=   *=   /=   <<   >> 

<<=   >>=   ==   !=  <=   >=  ++   --  %   &   ^   !   | 

~   &=   ^=   |=   &&   ||   %=   []   ()  ,   ->*  ->  new 

delete   new[]   delete[] 



Class of 2-dim vectors!
To overload an operator in order to use it with 

classes we declare operator functions, which are 
regular functions whose names are the operator 
keyword followed by the operator sign that we 
want to overload.  

The format is: 
type operator sign (parameters) { /*...*/ } 

We are going to create a class to store two-
dimensional vectors and then we are going to 
add two of  them: a(3,1) and b(1,2) – see 
Example 6  





It may be a little confusing to see so many times the CVector identifier.  

But, consider that some of  them refer to the class name (type) CVector and some 
others are functions with that name (constructors must have the same 

name as the class). Do not confuse them: 

CVector (int, int); // function name CVector (constructor) 

CVector operator+ (CVector); // function returns a Cvector 

The function operator+ of  class CVector is the one that is in charge of  
overloading  the addition operator (+). This function can be called 
either implicitly using the operator, or explicitly using the function 
name: 

                    c = a + b; 
              c = a.operator+ (b); 

Both expressions are equivalent.     



Notice also that we have included the empty constructor 
(without parameters) and we have defined it with a block: 

              CVector () { x=0; y=0; }; 

This is necessary, since we have explicitly declared another 
constructor: 

                                CVector (int, int); 
and when we explicitly declare any constructor, with any 

number of  parameters, the default constructor with no 
parameters that the compiler can declare automatically is 
not declared, so we need to declare it ourselves in order to 
be able to construct objects of  this type without parameters. 
Otherwise, the declaration: 

                                                         CVector c; 
included in main() would not have been valid. 



As well as a class includes a default constructor and a copy 
constructor even if  they are not declared, it also 

includes a default definition for the assignment operator (=) with 
the class itself  as parameter. The behavior which 

is defined by default is to copy the whole content of  the data 
members of  the object passed as argument (the one at the right 
side of  the sign) to the one at the left side: 

     CVector d (2,3); 

     CVector e; 
     e = d; // copy assignment operator 

The copy assignment operator function is the only operator member 
function implemented by default. Of  course, you can redefine it 
to any other functionality that you want, like for example, copy 
only certain class members or perform additional initialization 
procedures.   





where a is an object of  class A, b is an object of  class B and c is 
an object of  class C. 

You can see in this panel that there are two ways to overload some class operators: as 
a member function and as a global function. 

Expression Operator Member function Global f-n 

@ a +  -  *  &  !  ~  ++  -- A::operator @ () operator@(A) 

a @ ++  -- A::operator @ (int) operator@(A,int) 

a @ b +  - *  /  %  ^  &  |  < > 
==  !=  <=  >=  <<  >> 
&&  ||  

A::operator @ (B) operator@(A,B) 

a @ b =  +=  -=  *=  /=  %=  
^= &= |= <<= >>= [] 

A::operator @ (B) 

a(b,c,…) () A::operator () (B, C...) 

a -> x -> A::operator -> () 

Table with a summary on how the different operator functions 
have to be declared (replace @ by the operator in each case): 



Friends!
In principle, private and protected members of  a class 

cannot be accessed from outside the same class in which 

they are declared. However, this rule does not affect friends. 

•  Friends are functions or classes declared as such. 

If  we want to declare an external function as friend of  a 
class, thus allowing this function to have access to the 

private and protected members of  this class, we do it by 
declaring a prototype of  this external function within the 

class, and preceding it with the keyword friend - see 
Example 8  





Friend functions!
•  The duplicate function is a friend of  CRectangle. From 

within that function we have been able to access the 
members width and height of  different objects of  type 
CRectangle, which are private members. Notice that 
neither in the declaration of  duplicate() nor in its later use 
in main() have we considered duplicate a member of  class 
CRectangle. It isn't! It simply has access to its private and 
protected members without being a member. 

•  The friend functions can serve, for example, to conduct 
operations between two different classes. Generally, the use 
of  friend functions is out of  an object-oriented 
programming methodology, so whenever possible it is 
better to use members of  the same class to perform 
operations with them. Such as in the previous example, it 
would have been shorter to integrate duplicate() within the 
class CRectangle. 


