
1

Computational Projects

2

3

Art and Science

Computational Physics is an art
(requires imagination and creativity)
and science
(uses specific methods and techniques)

4

Milestones
1.  Problem definition
2.  Problem analysis
3.  Equations and data
4.  Computational project (detailed design)
5.  Numerical model(s) & libraries
6.  Program coding (writing a computer code)
7.  Get the code running (data flows, bugs)
8.  Testing
9.  Calculations and analysis of results
10.  Program maintenance

5

Steps 1-2: Problem Solving Skill

" The most valuable quality of physics majors on
job market

" Experience
" Learning

Interesting books:
How to Solve It : A New Aspect of Mathematical Method (Princeton
Science Library) by G. Polya
The Art and Craft of Problem Solving by Paul Zeitz
The Thinker's Toolkit: 14 Powerful Techniques for Problem Solving
by Morgan D. Jones

6

Techniques from The Thinker's Toolkit:
by Morgan D. Jones
1. Problem restatement
2. PROs-CONs-FIXes
3. Divergent Thinking
4. Sorting, Chronologies and Timelines
5. Causal Flow Diagramming
6. Matrices
7. Decision/Event Trees
8. Weighted Ranking
9. Hypothesis Testing
10. Devil's Advocacy
11. Probability Tree
12. Utility Tree
13. Utility Matrix
14. Advanced Utility Analysis.

7

Techniques from http://www.mindtools.com/pages/
main/newMN_TMC.htm

1.  Appreciation - Extracting All Most Information From Facts
2.  Drill-Down - Breaking Problems Down into Manageable Parts
3.  Cause & Effect Diagrams - Identifying Likely Causes of Problems
4.  Systems Diagrams - Understanding How Factors Affect Each

Other
5.  SWOT - Analyzing Your Strengths, Weaknesses, Opportunities &

Threats
6.  Cash Flow Forecasting With Spreadsheets - Analyzing Whether

an Idea is Financially Viable
7.  Risk Analysis
8.  Porter's Five Forces - Understanding the Balance of Power in a

Situation
9.  PEST Analysis - Understanding "Big Picture" Forces of Change
10.  Value Chain Analysis - Achieving Excellence in the Things That

Matter
11.  USP Analysis

8

The Expert Mind
Scientific American,
August 2006

The 10-year rule states that it
takes approximately a decade
of heavy labor to MASTER
ANY FIELD

The preponderance of psychological evidence indicates
that experts are made, not born.

9

Step 3: Equations.

10

Step 4: Design.

" Top-down design
(or hierarchical approach)
Break a problem into a set of subtasks
(called modules) until you are at the
subroutine level

" Object-oriented design
A problem-solving methodology that
produces a solution to a problem in terms
of self-contained entities called objects

What is better for Physics?

11

Step 4: Design (more)

" Take into account available hardware and software
and time.

" Arrange major tasks in order in which they need to be
accomplished

" Draw diagrams
" For each module (subroutine)

well-defined input and output
reasonably independent from other modules

" Clear logic and data structure
" Easy to use and modify
" Protect your program from invalid inputs

12

Step 5: Models and libraries

" You should never reinvent the wheel.
" Computational Physics Libraries
" Numerical Libraries and Depositories

www.odu.edu/~agodunov/computing/lib_net.html

However, do not use routines as black boxes without
understanding them.

13

14

Step 6. Writing a computer code

" Stick to the design
" Use pseudocode first
" Select programming language
" Style: DOs and DON‘Ts

15

Step 6. Style (Good habits vs. bad habits)

" DO
" keep it clear and simple
" separating logic groups (structured programming)
" internal comments and external documentation
" linear programming

" DON’T
" complex logic
" tricky technique
" computer dependent
" avoid implementations for specific computers, i.e. steer

clear of interactive or graphics-related routines.

16

Step 6. more about style

Each program unit should be well documented
§  Opening documentation (what program does, when

the program was written and modified, list of
changes, …)

§  Comments to explain key program sections
§  Meaningful identifiers
§  Labels for all output data

17

Step 6. And … more

A program should be readable
§  Use spaces
§  Use blank lines between sections
§  Use alignment and indentation to stress relations

between various sections of the program unit
§  Labels for all output data
§  Do not use “magic numbers” that appear without

explanation

18

Programming hints

" Always keep an updated working version of
your program; make modifications on a copy

" Use the standard version of the program
language (easy to move to a different
computer)

" Use descriptive names for variables and
subroutines

" Declare ALL variables
" Do not optimize the program until you have

right results

19

Step 7. Bugs, bugs, bugs, …

A computer bug is an error, flaw,
mistake, failure, or fault in a
computer program that prevents it
from working correctly or produces
an incorrect result.

20

Software horror stories

L  NASA Mariner 1 went off-course during launch, due to a
missing 'bar' in its FORTRAN software (July 22, 1962)

L  NASA Mars Rover freezes due to too many open files in
flash memory (January 21, 2004).

L  The Mars Orbiter crashed in September 1999 because of
a “silly mistake”: wrong units in a program

L  The year 2000 problem, popularly known as the "Y2K
bug"

L  The MIM-104 Patriot bug - rounding error, which resulted
in the deaths of 28 solders (February 25, 1991).

L  August 1991 – Sleipner A oil rig collapse (large elements
in the Finite Element method for solving PDE)

21

Ariane 5 Flight 501 the most expensive
computer bugs in history (June 4, 1996)

The Ariane 5 software reused the specifications from the
Ariane 4, but the Ariane 5's flight path was considerably
different and beyond the range for which the reused code
had been designed.
Because of the different flight path, a data conversion from
a 64-bit floating point to 16-bit signed integer value caused
a hardware exception (an arithmetic overflow).
This led to a cascade of problems, culminating in
destruction of the entire flight.
self-destruction - 40 seconds after takeoff

22

Common types of computer bugs

M  Divide by zero
M  Infinite loops
M  Arithmetic overflow or underflow
M  Exceeding array bounds
M  Using an uninitialized variable!
M  Accessing memory not owned (Access violation)
M  Deadlock
M  Off by one error - a loop iterates one too many or one

too few times
M  Loss of precision in type conversion

23

How to find it?

" Working like a detective: who did what?
" Check global logic
" Check modules

Local logic
Data
Operators
Arrays

" Debugging

24

Step 8. Verification & validation

" Plan ahead
" Analytical solutions
" Other calculations
" Experiment
" Trends (does it make sense?)
" Special cases

Programs MUST NOT be used for research or
applications until they have been validated!

25

The few existing studies of error levels in scientific computer
codes indicate that the defect rate is about seven faults per
1000 lines of Fortran.2 That’s consistent with fault rates for
other complex codes in areas as diverse as computer
operating systems and real-time switching.

Even if a code has few faults, its models and equations could
be inadequate or wrong. As theorist Robert Laughlin puts it,
“One generally can’t get the right answer with the wrong
equations.”

It’s also possible that the physical data used in the code are
inaccurate or have inadequate resolution.
(garbage in – garbage out)

Or perhaps someone who uses the code doesn’t know how
to set up and run the problem properly or how to interpret the
results.

26

In 1996 Department OE launched Accelerated Strategic Computing Initiative
(ASCI) in 1996 at the Livermore, Los Alamos, and Sandia national labs.

Aim - to develop computer infrastructure and codes that would serve to certify
the reliability of the US stockpile (nuclear weapons) in the absence of testing.

it takes about eight
years for a staff of
15–30 to develop a
massively parallel
three-dimensional
weapons
simulation.

27

Five common verification techniques

Ø  Comparing code results to a related problem with an
exact answer

Ø  Establishing that the convergence rate of the truncation
error with changing grid spacing is consistent with
expectations

Ø  Comparing calculated with expected results for a
problem specially manufactured to test the code

Ø  Monitoring conserved quantities and parameters,
preservation of symmetry properties, and other easily
predictable outcomes

Ø  Benchmarking—that is, comparing results with those
from existing codes that can calculate similar problems.

One must first verify and validate each component, and then do
the same for progressively larger ensembles of interacting
components until the entire code has been verified and validated.

28

Steps 9: Calculations and analysis

" Plan ahead what to calculate
" Keep records

Date
Version
Changes to the code

" Graphics
" Analyze results
" … and be ready to revise you project from

any step

29

Step 10: Program maintenance

Real programs are often used for years.
§  Large projects may have obscure bugs that

were not detected during testing
§  Program may require to improve

performance
§  Program may need new features
§  …

30

Average distribution of efforts

n  Computational project (design) 20%
n  Numerical model(s) & libraries 5%
n  Pseudo code 15%
n  Coding (using some language) 10%
n  Get the code running (data flows, bugs) 15%
n  Testing 30%
n  Documentation 5%

31

Books

§  The art of scientific programming by Donald Knuth
§  Code Complete, (Second Edition)

by Steve McConnell
§  The Pragmatic Programmer: From Journeyman to Master

by Andrew Hunt, David Thomas

32

A poor project v.s. a good project

