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Differential Equations 

Most fundamental and basic equations in physics 
as well as frequently occurring problems appear as 
differential equations. 
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classification 
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Differential Equations 
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is initial value problem for the second order ordinary 
linear homogeneous differential equation 
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ODE or PDE 

! The ordinary differential equations (ODE) – have 
functions of one only independent variable 
Example: stationary Schrödinger equation 

! The partial differential equations (PDE) – have 
functions of several independent variables 

Example: time dependent Schrödinger equation for  

),( trΨ
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ODE: Linear or Nonlinear 

! A linear differential equation – all of the derivatives 
appear in linear form and none of the coefficient 
depends on the dependent variable  
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ODE: Linear or Nonlinear 

! A nonlinear differential equation – if the coefficients 
depend on the dependent variable, OR the derivatives 
appear in a nonlinear form  
Examples:  
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Order of ODE 

The order n of an ordinary differential equation is the 
order of the highest derivative appearing in the 
differential equation  
Examples:  
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                                            third order 0)()(

0)()(

3

3

2

2
2

=−

=−

dt
tdx

dt
txdt

tx
dt
txdt



10 

General or partial solution 

Example:  
 

! General solution: 
  
 

! Partial solutions: 
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Homogeneous and nonhomogeneous ODE 

! A homogeneous equation: the each term contains either 
the function or its derivative, but no other functions of 
independent variables 
 
 

! A nonhomogeneous equation: contains additional term 
(source terms, forcing functions) which do not involve the 
dependent variable 
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Three major categories of ODE 
! Initial-value problems – involve time-dependent 

equations with given initial conditions: 
 
                                                 

! Boundary-value problems – involve differential 
equations with specified boundary conditions:  
 
 

! Eigenvalue problems – involve solutions for selected 
parameters in the equations 

In reality, a problem may have more then just one of the categories above 
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Three general classifications in physics 
ü  Propagation problems - are initial value problems in open 

domains where the initial values are marched forward in 
time (or space) . The order may be one or greater. The 
number of initial values must be equal to the order of the 
differential equation. 

ü  Equilibrium problems – are boundary-value problems in 
closed domains where boundary values are specified at 
boundaries of the solution domain. The order of ODE 
must be at least two. 

ü  Eigenproblems – are a special type of problems where 
the solution exists only for special values of a parameter. 
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n-th order or a set on n linear equations 
Any nth order linear differential equation can be reduced to 
n coupled first order differential equations 

 

Example: 
 
 

is the same as 
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Part 2 

Initial value problem 
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Initial values problems are solved by marching 
methods using finite difference methods. 

ü  Discretizing the continuous physical domain into a 
discrete finite difference grid 

ü  Approximating the exact derivatives in the ODE by 
algebraic finite difference approximations (FDAs) 

ü  Substituting the FDA into ODE to obtain an algebraic 
finite difference equation (FDE) 

ü  Solving the resulting algebraic FDE 

The objective of a finite difference method for solving an 
ODE is to transform a calculus problem into an algebra 
problem by 
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Three groups of finite difference methods 
for solving initial-value ODEs 

ü  Single point methods advance the solution from one grid 
point to the next grid point using only the data at a single 
grid point. (most significant method – 4th order Runge-
Kutta 

ü  Extrapolation methods evaluate the solution at a grid 
point for several values of grid size and extrapolate those 
results to get  for a more accurate solution. 

ü  Multipoint methods advance the solution form one grid 
point to the next using the data at several known points 
(see 4th order Adams-Bashforth-Moulton method) 
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Finite difference approximations. 

Using the Taylor series for xn+1 using grid point n 
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Finite difference approximations. 
Using the Taylor series for xn+1 using grid point n 
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Finite difference equations. 
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Smoothness 
Smoothness – the continuity of a function and its 
derivatives. 

If a problem has discontinuous derivatives at some 
point, then the solution may misbehave at this point. 

At a discontinuity – use either single point methods 
or extrapolation methods (not multi-point) because 
the step size can be chosen to have the 
discontinuity  at a grid point. 
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Errors – five types. 
ü  Errors in the initial data 
ü  Algebraic errors  
ü  Truncation errors – cased by truncating the Taylor 

series approximation (decreases with decreasing 
of the step size) 

ü  Round off errors – caused the finite word length 
(increases as the step size decreases: more steps 
and small difference between large numbers) 

ü  Inherited errors – the sum of all accumulated 
errors from all previous steps (means that the 
initial condition for the next is incorrect)  
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Four important issues 

ü  Accuracy 

ü  Efficiency 

ü  Stability 

ü  Consistency  



Part 2a 

The first-order Euler method 
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The explicit Euler method for ODE 
The explicit Euler method – first-order finite difference 
method for solving initial-value problem for ODE 
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The explicit Euler method for ODE 
The method  

ü  explicit (since f(tn,xn) does not depend on xn+1 ) 

ü  requires only one known point (singe point method) 

ü  the local truncation error is 

ü  the global error accumulated after n steps 

ü  problem: the method is conditionally stable for 
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The implicit Euler method for ODE 
The implicit Euler method – first-order finite difference 
method for solving initial-value problem for ODE 
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The implicit Euler method (more) 

ü  The implicit Euler is unconditionally stable 

ü  however, if             is nonlinear, the we need to use one 
of methods for solving nonlinear equations  
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double f1(double, double);  
double euler1d(double(*)(double, double), double, double, 
double); 
int main() 
{   double xi, ti, xf, tf, dt, tmax; 
    ti = 0.0;            // initial value for variable 
    xi = 1.0;            // initial value for function 
    dt = 0.01;           // step size for integration 
    tmax = 2.0 ;         // integrate from ti till tmax 
    while (ti <= tmax) 
    {   tf = ti + dt; 
        xf = euler1d(f1,ti,xi,tf); 
        cout<< setw(12) << tf << setw(12) << xf  << endl; 
        ti = tf; 
        xi = xf;  } 
return 0; 
} 
double euler1d(double(*f)(double, double), double ti, 
double xi, double tf) 
{  double xf; 
     xf = xi + f(ti,xi)*(tf-ti); 
   return xf;} 
 double f1(double t, double x) 
{   double dx; 
    dx = (-1.0)*x; 
    return dx; 
} 

example: C++ 
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2nd order ODE: example harmonic oscillator 
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double euler2d(double(*d1x)(double, double, double), 
       double(*d2x)(double, double, double),  
       double ti, double xi, double vi, double tf, 
       double& xf, double& vf) 
{ 
    xf = xi + d1x(ti,xi,vi)*(tf-ti); 
    vf = vi + d2x(ti,xi,vi)*(tf-ti); 
   return 0.0; 
} 
 
    double f1(double t, double x, double v) 
{ 
    double d1x; 
    d1x = v; 
    return d1x; 
} 
 
    double f2(double t, double x, double v) 
{ 
    double d2x; 
    d2x = (-1.0)*x;  //simple harmonic oscillator 
    return d2x; 
} 

example: C++ – simple harmonic oscillator 
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problems with the simple Euler method 
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Problems with the Euler method 

! Euler method corresponds to keeping the first two 
terms in the Taylor series 

! Accuracy is low 

! Error propagation is a problem! 
After N steps, the error is on the order  

! Step size is important 

! Do not use the Euler methods unless for learning! 
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Practice 

Write a program that implements Euler method to solve 
the simple harmonic oscillator for t=0-100 (try step sizes 
0.1 and 0.01) with k=1 and m=1, x(0)=0.0 and v(0)=1.0  
Compare you solutions with exact ones and check 
conservation of energy as a function of time. 



Part 2b 

Second-order single point 
methods 
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The second-order central difference  
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Way 1 to evaluate fn+1/2 (modified midpoint) 
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Way 2 to evaluate fn+1/2 (modified Euler) 
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Way 2 to evaluate fn+1/2 (modified Euler) 
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Summary: A modified Euler method 
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Example 

x(I+1)=x(I)+v(I)*h 

v(I+1)=v(I)-(k/m)*x(I)*h 

correction 

x(I+1)=x(I)+(v(I)+v(I+1))*h/2.0 

v(I+1)=v(I)-(k/m)* (x(I)+x(I+1))*h/2.0 
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double euler2d(double(*d1x)(double, double, double), 
       double(*d2x)(double, double, double),  
       double ti, double xi, double vi, double tf, 
       double& xf, double& vf) 
{ 
    xf = xi + d1x(ti,xi,vi)*(tf-ti); 
    vf = vi + d2x(ti,xi,vi)*(tf-ti); 
    xf = xi + (d1x(ti,xi,vi)+d1x(ti,xf,vf))*0.5*(tf-ti); 
    vf = vi + (d2x(ti,xi,vi)+d2x(ti,xf,vf))*0.5*(tf-ti); 
   return 0.0; 
} 
 double f1(double t, double x, double v) 
{ 
    double d1x; 
    d1x = v; 
    return d1x; 
} 
    double f2(double t, double x, double v) 
{ 
    double d2x; 
    d2x = (-1.0)*x;  //simple harmonic oscillator 
    return d2x; 
} 

example: C++ – modified Euler 
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simple harmonic oscillator (more) 
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Simple methods for a particle dynamics 
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Simple methods for a particle dynamics 
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Simple methods for a particle dynamics 
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Simple methods for a particle dynamics 
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Simple methods for a particle dynamics 

Verlet and leap-frog methods are not “self-starting” 
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Simple methods for a particle dynamics 

Comments for Verlet and leap-frog methods  

Leap-frog: energy conservation for some problems 

Verlet: the method is very popular for computing trajectories 
in many-particle classical systems, e.g. molecular dynamics 



Part 2c 

Runge-Kutta methods 
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Runge-Kutta methods 

Runge-Kutta methods are a family of single point 
methods. 

Runge-Kutta methods propagate a solution over an 
interval by combining information from several Euler-
style steps, and then using the information obtained to 
match a Taylor series expansion up to some order. 

For many scientific users, fourth-order Runge-Kutta 
is not just the first word on solving ODE, but the last 
word as well 
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Second-order Runge-Kutta 
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Forth-order Runge-Kutta method 
2-nd order RK  O(h2) 
3-rd order RK  O(h3) 
4-th order RK  O(h4) 
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/*--------------------------------------------------- 
 4th-order Runge-Kutta method for ODE x'(t) = f(t,x) 
 input ... 
 f(t,x)- function supplied by a user 
 ti  - initial value for an independent variable (t) 
 xi  - initial value for a function x(t) 
 tf  - find solution for this point t 
 output ... 
 xf  - solution at point tf, i.e. x(tf) 
-----------------------------------------------------*/ 
double rk4_1st(double(*f)(double, double), double ti, 
double xi, double tf) 
{ 
   double xf; 
   double h,k1,k2,k3,k4; 
   h  = tf-ti; 
   k1 = h*f(ti,xi); 
   k2 = h*f(ti+h/2.0,xi+k1/2.0); 
   k3 = h*f(ti+h/2.0,xi+k2/2.0); 
   k4 = h*f(ti+h,xi+k3); 
   xf = xi + (k1 + 2.0*(k2+k3) + k4)/6.0;  
   return xf;          
} 

example: C++ – RK method for 1st order ODE 
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/* input ... 
   output ...  */ 
 
double rk4_2nd(double(*d1x)(double, double, double), 
       double(*d2x)(double, double, double),  
       double ti, double xi, double vi, double tf, 
       double& xf, double& vf) 
{ 
      double h,t,k1x,k2x,k3x,k4x,k1v,k2v,k3v,k4v; 
      h = tf-ti; 
      t = ti; 
      k1x = h*d1x(t,xi,vi); 
      k1v = h*d2x(t,xi,vi); 
      k2x = h*d1x(t+h/2.0,xi+k1x/2.0,vi+k1v/2.0); 
      k2v = h*d2x(t+h/2.0,xi+k1x/2.0,vi+k1v/2.0); 
      k3x = h*d1x(t+h/2.0,xi+k2x/2.0,vi+k2v/2.0); 
      k3v = h*d2x(t+h/2.0,xi+k2x/2.0,vi+k2v/2.0); 
      k4x = h*d1x(t+h,xi+k3x,vi+k3v); 
      k4v = h*d2x(t+h,xi+k3x,vi+k3v); 
 
      xf = xi + (k1x + 2.0*(k2x+k3x) + k4x)/6.0; 
      vf = vi + (k1v + 2.0*(k2v+k3v) + k4v)/6.0;  
      return 0.0;               
} 

example: C++ – RK method for 2nd order ODE 
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Runge-Kutta method is what you use when 

! you don’t know any better 

! you have a computational problem where computational 
efficiency is of no concern 
 
Runge-Kutta methods succeed virtually always 
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Practice: Apply Runge-Kutta method 
to the simple harmonic oscillator 

! Equations 

! Program 

! Calculations 
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Error estimate and adaptive step-size 
Any good program for solving ODEs should have  
ü  an error control (accuracy)  
ü  and adaptive step-size (efficiency) 

The most intuitive way to vary the step size adaptively is the 
step doubling technique 

do calculations for x1 with a step size h 

do calculations for x2 with a step size h/2 

compare the difference d= x1 – x2  

if d < predefined acceptable error - use h 

if d > predefined acceptable error - use h/2 … 
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Approach 1 (doubling technique) 
do calculations for x1 with a step size h 
do calculations for x2 twice with a step size h/2 
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Approach 2 (more efficient) 
Use two methods for the same interval h+t (accuracy m and 
m+1).  Looks like still a lot work 

However, Fehlberg found a fifth-order RK with six function 
evaluations, where forth-order RK is a combination of the 
first six functions (a very high efficiency for low price) 
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RK-Fehlberg 
method with 
error estimation 
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Part 2d 

Extrapolation methods 



69 

Extrapolation methods 
Extrapolated methods are able to increase good accuracy 
with rather simple second-order algorithms. 

Can be used when the calculations time is the issue. 

The Bulirsch-Stoer method (1980) is a very good variation 
of the extrapolated mid-point method.    



Part 2e 

Multipoint methods 
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Multipoint methods 
Multipoint methods use more than one point to advance 
the solution (i.e. points n, n-1, n-2, …)  

The fourth-order Adams-Bashforth-Moulton method is a 
popular one 

Global error -  O(h4) 

 

There is a family of Adams methods for ODE. 



Part 2f 

Higher-order ODEs 
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Higher-order ODEs 
In general, a higher-order ODE can be replaced by a 
system of first-order ODEs 
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Part 2g 

Stiff ODEs 
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Stiff ODEs 

ü  the step size required for stability is much smaller than 
the step size required for accuracy.  

ü  if it contains some components of the solution that decay 
rapidly compared to other components of the solution.  

ü  if the step size based on computational time is too large 
to obtain an accurate solution.  

Definitions of stiffness 
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Stiff ODEs 

There is a set of methods developed by Gear (1971) for solving 
stiff ODEs 

 

good package: LSODE (Fortran) developed in Lawrence 
Livermore National Laboratory (LLNL) 

 

see  

ODEPACK - A Systematized Collection of ODE Solvers 

https://computation.llnl.gov/casc/odepack/odepack_home.html  



Part 2s 

Summary 



78 

( )

( ) )(22
6

),(

)
2

,
2

(

)
2

,
2

(

),(

2/),(),(,),(

),(,2/),(

),(
),(

5
43211

34

2
3

1
2

1

1111

2/12/112/1

111

1

hOkkkkhxx

hkxhtfk

hkxhtfk

hkxhtfk

xtfk

txtfxtfxxtxtfxx

txtfxxtxtfxx

txtfxx
txtfxx

nn

nn

nn

nn

nn

P
nnnnn

C
nnnn

P
n

P
nnn

C
nnnn

P
n

nnnn

nnnn

+++++=

++=

++=

++=

=

Δ++=Δ+=

Δ+=Δ+=

Δ+=

Δ+=

+

++++

++++

+++

+

method  Kutta-Runge order-forth  The
      
method  Euler  modified  The

      
method  midpoint  modified The

   method Euler  implicit The
     method Euler  explicit The



79 

Example for errors: 
1D ODE for a 
radiation problem  
(Hoffman 2001) 
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Packages for initial value ODEs 

ü  ODEPACK - A Systematized Collection of ODE Solvers 
computation.llnl.gov/casc/odepack/odepack_home.html  

ü  IMSL 

ü  NAG 

ü  Mathematica 

ü  Maple 

ü  see also http://gams.nist.gov/  (Guide to available 
mathematical software  



Part 2x 

Applications in physics 
(a couple examples) 
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1st order ODE: examples in physics 

),( txf
dt
dx

=

•  Steady state flow of heat 
•  Decomposition and growth problems 
•  Flow of water through an orifice 
•  Atmospheric and oceanic pressure 
•  … 
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2nd order ODE: examples in physics 

0),(2

2

=++ txf
dt
dxb

dt
xda

•  Motion of a particle along a straight line 
vertical projectile motion 
rocket motion 
oscillatory motion (harmonic, damped, forced) 

•  Electric circuits 
•  Rolling bodies 
•  … 
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A system of two 2nd order ODEs: examples 

0),',',,(

0),',',,(

2

2

2

2
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=+

tyxyxf
dt
yd

tyxyxf
dt
xd

y

x

•  Projectile motion in 2D plane 
•  Planetary motion in 2D plane 



Part 3 

Boundary-value problem 
(one-dimension 2nd order ODE) 
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Boundary-value problem 
Boundary-value problems – involve differential equations 
with specified boundary conditions:  

example: one-dimension second order ODE (where P and 
Q some constants) 

 

  

 

The boundary-value problem is more difficult to solve than 
the similar initial-value problem with the same differential 
equation  
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Three types of boundary conditions 

ü  for the function y(x)  - Dirichlet boundary conditions 

ü  for the derivatives y’(x) - Neumann boundary conditions 

ü  for a combination of y(x) and y’(x) – mixed boundary  
conditions 

conditions boundary two satisfy must   solution the
  closed is domain solution the

)(
21

xy
xxx ≤≤
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Principal methods for B-V problem 

ODE
Boundary-Value 

Problem

Finite Difference 
Methods

the shooting 
method

the equilibrium 
method

Linear 
Combination of 
Trial Functions

Rayleigh-Ritz 
method

Collocation 
method

Galerkin 
method

Finite Element 
Methods
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The shooting method 

The key idea of the shooting method is to 
transform the boundary value ODE into a system 
of first-order ODEs and solve as an initial value 
problem. 

Only boundary condition on one side is used as 
one of the initial conditions. The additional initial 
condition is assumed. 

Then an iterative approach is used to vary the 
assumed initial condition till the boundary condition 
on the other side is satisfied. 
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The shooting method (cont) 
Assume 

Let us consider an initial-value problem with  

 

where c is a parameter to be adjusted 

 

2211 )()( yxyyxy == and

cxyyxy == )(')( 111 and

We use a root search 
algorithm to find c that 
insures 
Quite often the fourth-order Runge-
Kutta is combined with the secant 
method 
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The equilibrium B-V method 

ü  Discretizing the continuous solution domain into a 
discrete finite difference grid  

ü  Approximating the exact derivatives in the boundary-
value ODE by algebraic finite difference approximations 

ü  Substituting the FDAs into the ODE to obtain an 
algebraic finite difference equation  

ü  Solving the resulting system of algebraic FDEs  
(for linear ODEs – a system of linear equations) 

Idea: construct a finite difference approximation of the 
exact ODE at every point on a discrete finite difference 
grid. Then a system of equations must be solved 
simultaneously. Here are the steps: 
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Boundary Condition at Infinity  

ü  Replace ∞ with a large value of x (x = X) 

ü  Match an asymptotic solution at large 
values of x 

Two procedures for implementing boundary 
conditions at infinity  
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Part 4 

Eigenvalue problem 
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Eigenvalue problem 
Eigenvalue problems - equilibrium problems where the 
solution exists only for special values (eigenvalues) of a 
parameter of the problem 

example: 

 

 

solutions exists for 

Shooting methods are not well suited for solving 
eigenvalue problems 

Eigenvalue problems are generally solved by the 
equilibrium method  
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1D stationary Schrödinger equation 
Bound states 
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The radial Schrödinger equation for a spherically symmetric 
potential 
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Numerov’s method 
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Solving 1D Schrödinger equation 
Key points: consider a boundary value problem 
 
1.  define boundary conditions for two left-end and two right-

end points 
2.  assume two values for the energy Emin, Emax 

3.  for canceling numerical errors it is better to solve the 
equation moving to some matching point from the left and 
from the right (using Numerov’s method) 

4.  at the matching point the logarithmic derivatives are 
continuous 
where index l mean the left marching solution and r – 
right (scaling ‘right’ solution on the ‘left’ is 
recommended 

5.  use bisectional method to find E that satisfies the cond. 
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Summary 
The shooting method: 

Good:  

§  any initial value ODE method can be used 

§  it is easy to achieve higher-order accuracy 

Not good: 

§  shooting for more than one boundary condition is time 
consuming 

§  a nonlinear problem is to be solved 
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Summary 
The equilibrium method: 

Good:  

§  automatically satisfied to the boundary conditions 

Not good: 

§  it can difficult to achieve higher than 2nd order accuracy 

§  a system of Finite Difference Equations must be solved 

§  nonlinear ODEs yield a system of nonlinear FDEs. 


