Differential Equations

Most fundamental and basic equations in physics
as well as frequently occurring problems appear as
differential equations.

Examples:

Simple harmonic oscillator

m d;’;gt) - k(1)

Schrodinger equation (example for 1D)

L dy(x,t 1 °y(x,t
in ‘/’c(ﬁ)=—2m "g)(cz) eV (x.t)

Part 1

classification

Differential Equations

Ordinary Partial
Differential Differential
Equations Equations
Nonlinear ' Linear
Differential Differential Boutidary value
: : Problems
Equations Equations

Homogeneous

. : General Initial Value
Differential / .
Equations [Solution J { Problems
Non
homogeneous Partial Eigenvalue
Differential Solution Problems
Equations k

Simple Harmonic Oscillator

d’x(t)
dt’

x(t=0)=x,

m = _Jx(¢)

dx
dt() !

is initial value problem for the second order ordinary
linear homogeneous differential equation

ODE or PDE

m The ordinary differential equations (ODE) — have
functions of one only independent variable
Example: stationary Schrddinger equation

m The partial differential equations (PDE) — have
functions of several independent variables

Example: time dependent Schrédinger equation for

W(r,1)

ODE: Linear or Nonlinear

A linear differential equation — all of the derivatives
appear in linear form and none of the coefficient
depends on the dependent variable

ax(t)+a@+a d_2x+ =c
’ Yar tdrt
example
d’x(t
m §)=—kx(t)

dt

ODE: Linear or Nonlinear

A nonlinear differential equation — if the coefficients
depend on the dependent variable, OR the derivatives
appear in a nonlinear form

Examples:
2
d xgt) dx(t) _x(1)=0
dt dt
2
2 d X(f) —x () 0

dt’

Order of ODE

The order n of an ordinary differential equation is the
order of the highest derivative appearing in the
differential equation

Examples:

> dx()
dt’
 dx(1) _ dx()
dr’ dt

-x(¢) =0 second order

=(third order

General or partial solution

dx(t)
dt

Example:

-x(t)=0

m General solution:
x(1) = Ce'

m Partial solutions:
x(t) = 2.0¢e'
x(t) = 4.8¢'

10

Homogeneous and nonhomogeneous ODE

m A homogeneous equation: the each term contains either
the function or its derivative, but no other functions of
Independent variables

d’x(1)
dt’

m A nonhomogeneous equation: contains additional term

(source terms, forcing functions) which do not involve the
dependent variable

d>x(¢)
dt*

~kx() =0

m

m —kx(t) = F,cos(ax)

11

Three major categories of ODE

m Initial-value problems — involve time-dependent
equations with given initial conditions:

d 2x(t)
dt’
m Boundary-value problems — involve differential
equations with specified boundary conditions:

d”y(x)
dX_Z
m Eigenvalue problems — involve solutions for selected
parameters in the equations

m —kx(t)=0, x(¢t=0)=x,, %(t=0)=v0

-oy(x)=0, y(x=a)=y, y(x=b)=y,

In reality, a problem may have more then just one of the categories ab@ve

Three general classifications in physics

v Propagation problems - are initial value problems in open
domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.

v Equilibrium problems — are boundary-value problems in
closed domains where boundary values are specified at
boundaries of the solution domain. The order of ODE
must be at least two.

v Eigenproblems — are a special type of problems where

the solution exists only for special values of a parameter.
13

n-th order or a set on n linear equations

Any nt" order linear differential equation can be reduced to
n coupled first order differential equations

2
Example: m d :l;(t) = —kx(?)

is the same as d);(;) ()

m d‘;(;) _ k(1)

14

Part 2

Initial value problem

Initial values problems are solved by marching
methods using finite difference methods.

The objective of a finite difference method for solving an
ODE is to transform a calculus problem into an algebra
problem by

v" Discretizing the continuous physical domain into a
discrete finite difference grid

v Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAS)

v Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE)

v Solving the resulting algebraic FDE 16

Three groups of finite difference methods
for solving initial-value ODEs

v Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method — 4" order Runge-
Kutta

v Extrapolation methods evaluate the solution at a grid
point for several values of grid size and extrapolate those
results to get for a more accurate solution.

v" Multipoint methods advance the solution form one grid
point to the next using the data at several known points

(see 4" order Adams-Bashforth-Moulton method) ;

Finite difference approximations.

Using the Taylor series for x,, using grid point n

1 1
X . =X +x'| At+5x"|n At +gx"'|n AL + ...

n

1 1
Xnsl = X, +X'|n At+—X”|n Atz +...+—X(m) |n At" +}€mJrl
2 m!

1
R™ = x"V(@OA tsTst+ A
(m+1)!
solving for x'| yields
x . —x 1 1
xv|n= n+l n__xn|n At__xvu|n Atz—...

At 2 6

18

Finite difference approximations.
Using the Taylor series for x,, using grid point n

a first - order finite difference approximation

X . —X
' — n+ n O At.
=T oA

a first - order backward - difference approximation

' xl’l+ _xl’l
X, 0= 1A — 04y

A second - order centereddifference approximation
of x'at point n +1/2

' _ xn+1 B xn 2
X |n+1/2_ A O(Ar”) 19

Finite difference equations.

consider the generalfirst - order initial - value ODE

x'() = f(t,x) x(0)=x,
use finite difference approximations

X - X X - X
n or xv| — n+l n

At A
substitute into the ODE above and solve for x,_, :

n+l

x'| =

X, =x,+ f(t,x,)At explicit finite difference
X, =x+ f(t.,x, .)At implicit finite difference

20

Smoothness

Smoothness — the continuity of a function and its
derivatives.

If a problem has discontinuous derivatives at some
point, then the solution may misbehave at this point.

At a discontinuity — use either single point methods
or extrapolation methods (not multi-point) because
the step size can be chosen to have the
discontinuity at a grid point.

21

Errors - five types.

v Errors in the initial data

v" Algebraic errors

v Truncation errors — cased by truncating the Taylor
series approximation (decreases with decreasing
of the step size)

v Round off errors — caused the finite word length
(increases as the step size decreases: more steps
and small difference between large numbers)

v" Inherited errors — the sum of all accumulated
errors from all previous steps (means that the
initial condition for the next is incorrect)

22

Four important issues

v Accuracy
v’ Efficiency
v’ Stability

v' Consistency

23

Part 2a

The first-order Euler method

The explicit Euler method for ODE

The explicit Euler method — first-order finite difference
method for solving initial-value problem for ODE

Let's consider a generalfirst - order ODE

% = f(t,x) withx(¢)) = x,

() ()
O O >

n n+1 t

Explicit finite difference (first order)
'|,= et = X O(At) andthen
At

X, =x +f(t,x)At

25

The explicit Euler method for ODE

v explicit (since f{t ,x,) does not depend on x .,)

v' requires only one known point (singe point method)
v the local truncation erroris O(Af°)
v' the global error accumulated after n steps O(Af)

v' problem: the method is conditionally stable for Az < A¢,

example
dx

— ==X
dt

xn+1 = xn - ant 26

The implicit Euler method for ODE

The implicit Euler method — first-order finite difference
method for solving initial-value problem for ODE

Let's choose n+1 as the base point for

dx

T f(t,x) with x(z,) = x,

() ()
A o

>
n n+1 t

Implicit finite difference (first order)

X X

x'|,,==_"n O(Af) andthen
At

xn+1 - xn + f(tn+19xn+1)At

27

The implicit Euler method (more)

Let's consider an example

dx
e —x
dt
‘xn+1 = xn + f(ltn+17xn+1)AZL
X =X, —x At
. . . X
the implicit solution x , = —*
1+ Ar

the explicit solution x , =x (1-A¢)

v The implicit Euler is unconditionally stable

v however, if f(¢,x) is nonlinear, the we need to use one

of methods for solving nonlinear equations
28

[rel. error|

abs value of relative error

for equation x'(t) = -x

0.10

0.08

0.06

0.04

0.02

Euler, step 0.1
Euler, step 0.01

0.00

-0.02
0.0

0.5 1.0 1.5

2.0

dx
— = —X
dt
x(t=0)=1

29

double f1 (double, double) ;

double eulerld(double(*) (double, double), double, double,
double) ;

int main ()

{ double xi, ti, xf, tf, dt, tmax;
ti = 0.0; // initial value for variable
xi =1.0; // initial value for function
dt = 0.01; // step size for integration
tmax = 2.0 ; // integrate from ti till tmax

while (ti <= tmax)
{ tf = t1i + dt;
xf = eulerld(fl,ti,xi,tf);
cout<< setw(l2) << tf << setw(l2) << xf << endl;
ti = tf;
xi = xf; }
return O;
}
double eulerld(double(*f) (double, double), double ti,
double xi, double tf)
{ double xf;
xf = xi + £(ti,xi)*(tf-ti);
return xf;}
double f1l (double t, double x)
{ double dx;
dx = (-1.0) *x; .
return dx; example' C++

2"d order ODE: example harmonic oscillator

dx(t)
m 2 = ke (1)
dx(1)

” =w(t)
m d‘;(;) — k(1)

x(t, +h)=x(t,)+ hx'(¢,)

X(I+l)=x(I)+v(I)*h

v (I+1)=v(I)- (k/m)*x(I)*h

31

example: C++ - simple harmonic oscillator

double euler2d(double (*dlx) (double, double, double),
double (*d2x) (double, double, double),
double ti, double xi, double vi, double tf,
double& xf, doubleé& vf)

xf = xi + dlx(ti,xi,vi)*(tf-t1i);
v = vi + d2x(ti,x1i,vi)*(tf-t1i);
return 0.0;

double fl (double t, double x, double v)
double dlx;

dlx = v;

return dlx;

double f2 (double t, double x, double v)
double d2x;

d2x = (-1.0)*x; //simple harmonic oscillator
return d2x;

problems with the simple Euler method

> L simple harmonic oscillator _
m=1, k=1, step = 0.01
| | N
VA

51 \ | \ | ”J,LL—// |

E’ AR e 1
(O]

c% ot |
S

-?;l 1—U U U U U U U U -
4]

2L simple Euler -

Euler (energy)

0 10 20 30 40 50 60 70 80 90 100
time (s)

Problems with the Euler method

Euler method corresponds to keeping the first two
terms in the Taylor series

Accuracy is low x(t, + h) = x(t,) + hx'(t,) + O(h?)

Error propagation is a problem!
After N steps, the error is on the order N - O(h*) = O(h)

Step size is important
Do not use the Euler methods unless for learning!

34

Practice

Write a program that implements Euler method to solve
the simple harmonic oscillator for t=0-100 (try step sizes
0.1 and 0.01) with k=1 and m=1, x(0)=0.0 and v(0)=1.0
Compare you solutions with exact ones and check
conservation of energy as a function of time.

35

Part 2b

Second-order single point
methods

The second-order central difference

() () () }
A4 A4 A4

n n+1/2 n+1 t

choose n+1/2 as abase point

2 3
' At 1 At | At
Xosl = Xm0 X 000 5 + X Lan =X Lan +...

2 2 6 2
| A\ 1 A 1 AtY’
Xy = X2 X 000 _7 "'Ex n+l/2 _7 +gx n+1/2 _7 ...
the difference
' Xy — X 1 1 3
X =" —-—X At
n+l/2 Af 24 n+1/2()

andfor a first -order ODE x,, = x, + f,,,,At + O(At’)

37

Way 1 to evaluate £, ,, (modified midpoint)

n n+1/2 n+1

X, =X, + [0, + O(AL)

step 1:
xil/z =X, +%f(tn,xn)

step 2:

X5, =X +Atf(tn +%,an

n+l

+1/2)

t

>

38

Way 2 to evaluate f, ,, (modified Euler)

() () ()
o o o

n n+1/2 n+1

Xy =X, + [0 + O(Ar)
from the Taylor series

, At
S = Lo ¥ S an (_) +...

2

2

, At
S = Jon +fn+1/2(__)+'--

Fros =5 Uy 4)+ O(AP)

>
t

for linear ODEs it can be
solved directly, but for
non-linear ODEs must
be solved iteratively

Way 2 to evaluate f, ,, (modified Euler)

() () () }
A4 A4 A4

n n+1/2 n+1 t

however for

xn+1 = xn +%[J€n + n+1]

f.., canbe predictedby the explicit first - order Euler
then step 1:

xil =x, +At f(¢,,x,)
step 2:

At
x;il =X, +7(fn +fn]jr1)

the methodis also named as a "predictor - corrector” method

Summary: A modified Euler method

x=x + f(t,x,)At

At
xnc+1 = xn + (f(tnﬂxn) + f(tn+1’x7}l)+1))7

P - predicted value
C - corrected value

v' the local truncation erroris O(A?’)
v the global error after n steps O(A#*)

41

Example

X(I+1)=x(I)+v(I)*h
v(I+1l)=v(I)-(k/m)*x(I)*h

correction
X(I+1)=x(I)+(v(I)+v(I+1l))*h/2.0
v(I+l)=v(I)-(k/m)* (x(I)+x(I+1l))*h/2.0

42

example: C++ - modified Euler

double euler2d(double (*dlx) (double, double, double),
double (*d2x) (double, double, double),
double ti, double xi, double vi, double tf,
doubleé& xf, doubleé& vf)

xf = xi + dlx(ti,xi,vi)*(tf-t1i);
vE = vi + d2x(ti,xi,vi)*(tf-t1i);
xf = xi1 + (dlx(ti,xi,vi)+dlx(ti,xf,vE))*0.5*%(tf-t1i);
v = vi + (d2x(ti,xi,vi)+d2x(ti,xf,vE))*0.5*(tf-t1i);

return 0.0;

}
double fl (double t, double x, double v)

{
double dlx;

dlx = v;
return dlx;

double f2 (double t, double x, double v)

double d2x;
d2x = (-1.0)*x; //simple harmonic oscillator
return d2x;

simple harmonic oscillator (more)

> L simple harmonic oscillator
m=1, k=1, step = 0.01

LA H,LQ/Q‘Q’HW

AR AR

—— simple Euler (energy)
2L modified Euler -

— modified Euler (energy)
L | L | L | L | L | L | L | L | L | L

0 10 20 30 40 50 60 70 80 90 100
time (s)

B —

o
|
|

amplitude and energy

1
N
|

Simple methods for a particle dynamics

d’x(1)
d® Fx)

<
VoY
o~
N —g

explicit Euler method
{x g =X, +v Al

n

v..=v +F(x)At/m

45

Simple methods for a particle dynamics

explicit Euler method
{x g =X, +v Al

v..=v, +F(x)At/m
Modification 1 (Euler - Cromer method)
v =v, +F(x)At/m
X . =X +v At
Modification 2 (the midpoint method)

v.=v, +F(x)At/m

n+l

\% +V
_ n+l n

X

46

Simple methods for a particle dynamics

() () () }
A4 A4 A4

n n+l1 n+2 t
Modification 3 (Leap-Frog method)
v(t+h)—v(t-h) +O(h2)=£

2h m

x(t+2h)-x(¢)
2h
velocity - centered difference, position - forward difference

v.=Vv,_, +2F(x)At/m
n+2 At
the position evaluated at » =1,3,5 and the velocity n=2,4,6

+O(h*) =v(t +h)

X ., =X +2v

n+l

47

Simple methods for a particle dynamics

n-1 n n+1 t

Modification 4 (Verlet method)

X

n+l xn
2At
KXol T xn—21 _2xn + O(hz) _ F(tn’xn)
At m
centered differences for the derivatives

L+ O(AP) =,

V = xn+1 B xn—l
=
2At

+ At° F,,x,)
m

X 1= 2xn _xn—l

n+

48

Simple methods for a particle dynamics

Verlet and leap-frog methods are not “self-starting”

O O O 4
-1 0 +1 t
for leap-frog we need v_,
for Verlet we need X_,
possible solutions: use a backward Euler step
F(t,x,)
m
At* F(t,,x,)

m

v, =V, - At start leap - frog

start Verlet

X, =Xx,—Atv, +

49

Simple methods for a particle dynamics

Comments for Verlet and leap-frog methods
Leap-frog: energy conservation for some problems

Verlet: the method is very popular for computing trajectories
INn many-particle classical systems, e.g. molecular dynamics

50

Part 2c

Runge-Kutta methods

Runge-Kutta methods

Runge-Kutta methods are a family of single point
methods.

Runge-Kutta methods propagate a solution over an
interval by combining information from several Euler-
style steps, and then using the information obtained to
match a Taylor series expansion up to some order.

For many scientific users, fourth-order Runge-Kutta
IS not just the first word on solving ODE, but the last
word as well

52

Second-order Runge-Kutta

()
o

()
o

n

n+1

x . =x,+CAx, +CAx, +...

where Ax, =h

f (&, x,)

n+l
2

kl =f(tn’xn)
k,=f(t +h,x +hk))
X =xn+ﬁ(k1+k2)

(h correposnds to Ar)

and Ax, =h f(¢t, + ah,x, + fAXx,)

(a and) to be determined by matching to the Taylor series
... after some math...

(—

the iterative algorithm is
identical to the modified
Euler method

53

Tni1 = Tp + C1Axy + CoQAxs + ...

Using explicit Euler
Axy = Atf(tn, x,)

and Axs is based on f(t, x) evaluated in the interval t,, <t < t,41
Axzo = Atf(t, + aAt, z, + Ax)

where v and [are to be determined together with C and Cs
Let At = h, and substituting Az; and Azs in the first equation

Tpi1 = Xy + C1(hfn) + Cohf(t, + ah, x, + Ghfy,)
Taylor series
ft,x) = fo+ flo.h + fle, Dz + ...
Evaluation at t = t,, + ah and = = z,, + Shf, gives
f(tn + ah, @, + Bhfa) = fo + ahfle, + (Bhf) flen + O(h?)

Substituting this result into the last equation for x,.; yields

Tpnr1 = xn+ Cihfn, + Cohf, + C2h04hf|tn + C2h(ﬁhfn)f|xn
= 2, + (C1 + Co)hfy + h*(aCsfli, + BCofnflen) + O(h?)

The four free parameters can be determined by matching this equation
to the the Taylor series through second order term
Taylor

1
Tnpl = Tn +T|nh+ f”ynhQ +...

df

Pl = @)l = Gl = fou t el

1
Toyt = Tnt fuh 4 S(flo + flan,)

then C; + Cy =1, aCy = 1/2 and fCy = 1/2.
The solution
Ci=0Cy=1/2, a =1, =1, and then

1
Tpil = Tp + §h(k1 + ko)

kl — f(tnaxn) — fn
ko = f(tn + h, 2 + hy)

Forth-order Runge-Kutta method
2-nd order RK O(h?)

3-rd order RK O(h?3)
4-th order RK O(h%)
kl = f(tn’xn)
h hk
kz = f(tn+59xn+71)
h hk
k3 = f(tn+57xn+72)
k, = f(+hx +hk,)
X, = X, + %(k1 + 2k, + 2k, +k,)+ O(h°)

56

abs value of relative error

for equation x'(t) = -x

0.10 |-

O O
o o
> o3

o
o
=

[rel. error|

0.00

Euler, step 0.1
Euler, step 0.01

- — Runge-Kutta 4th order

2.0

dx

— ==X
dt
x(t=0)=1

57

example: C++ - RK method for 15t order ODE

T e
4th-order Runge-Kutta method for ODE x' (t) = f(t,6 x)
input ...

f(t,x)- function supplied by a user

ti - initial value for an independent variable (t)
X1 - initial wvalue for a function x(t)

tf - find solution for this point t

output ...

xf - solution at point tf, i1i.e. x(tf)

double rk4 1lst(double(*f) (double, double), double ti,
double xi, double tf)

{

double xf;

double h,kl,k2,k3,k4;

h = tf-ti;

kl = h*f(ti, x1i);

k2 = h*f(ti+h/2.0,xi+k1/2.0) ;

k3 = h*f(ti+h/2.0,xi+k2/2.0) ;

k4 = h*f(ti+h,xi+k3);

xf = xi + (k1 + 2.0*%(k2+k3) + k4)/6.0;

return xf;

RK4 for second-order differential equations

The solution of two coupled 1st order ODEs

E = G’(t,x,y),
can be obtained by RK4 method using
K, = G(tnamnayn):
h h h
Ky = G(tn + 5 Tn +K1§,yn +L1§),
h h h
K3 = G(t'n, + Eaxn + K2§)y'n + L2§)7

K4 - G(tn + h, T, + KBh'; Yn + L3h):

with the incremental results being

dy
E F(taxay)
L, = F(tnaxn:yn)a
h h h
Ly = F(tn+§,1‘n+K1§,yn+L1§),
h h h
Ly = F(tn+§axn+K2§’yn+L2§)7
Ly = F(tn + h,x, + K3h,yn +L3h)

h
Tnt1 = $n+6(K1+2K2+2K3+K4),

h
Yntl = Tp+ E(Ll + 2Ly +2L3+ Ly)

To solve second-order differential equation

d*z dz(t)
we take
dx d’z dy
% =Y (& G=y) and 2 E—F(t,%y)

59

example: C++ - RK method for 2" order ODE

/* input .
output ... */

double rk4 2nd(double(*dlx) (double, double, double),
double (*d2x) (double, double, double),
double ti, double xi, double vi, double tf,
doubleé& xf, doubleé& vf)

double h,t,klx,k2x,k3x,kdx,klv,k2v, k3v, kdv;

h = tf-ti;

t = t1i;

klx = h*dlx(t,xi,vi);

klv = h*d2x(t,x1i,vi) ;

k2x = h*dlx(t+h/2.0,xi+klx/2.0,vi+klv/2.0);
k2v = h*d2x(t+h/2.0,xi+k1lx/2.0,vi+klv/2.0);
k3x = h*dlx(t+h/2.0,xi+k2x/2.0,vi+k2v/2.0);
k3v = h*d2x(t+h/2.0,xi+k2x/2.0,vi+k2v/2.0) ;
kdx = h*dlx(t+h,xi+k3x,vi+k3v) ;

kdv = h*d2x (t+h,xi+k3x,vi+k3v) ;

xf = xi + (klx + 2.0* (k2x+k3x) + k4x)/6.0
vE = vi + (klv + 2.0* (k2v+k3v) + k4dv) /6.0
return 0.0;

Ne “No

Runge-Kutta method is what you use when

m you don’t know any better

m you have a computational problem where computational
efficiency is of no concern

Runge-Kutta methods succeed virtually always

61

Practice: Apply Runge-Kutta method
to the simple harmonic oscillator

m Equations
m Program

m Calculations

62

Error estimate and adaptive step-size

Any good program for solving ODEs should have
v an error control (accuracy)
v"and adaptive step-size (efficiency)

The most intuitive way to vary the step size adaptively is the
step doubling technique

do calculations for x1 with a step size h
do calculations for x2 with a step size h/2
compare the difference d= x1 — x2

if d < predefined acceptable error - use h

if d > predefined acceptable error - use h/2 ...

63

Approach 1 (doubling technique)
do calculations for x1 with a step size h

do calculations for x2 twice with a step size h/2
x(t+h)=x, +Ch""

m+1

xt+ﬁ+ﬁ =x2+2Cﬁ error estimate A =x, —x,
2 2 2

subtract the second from the first and find C

A 27

hm+1 2m _1
h h A
X|t+—+—|=x,+
(2 2) 2" —1
A however: needs three

RK 4t order X, =X, +— times more work

15

dc 100
dt 1+10000 £

x(—1) = arctan(-100)

The solution x(¢) = arctan(100 ¢)

2 + O numerical solution (adaptive step)
analytic solution

-1.0 -0.5 0.0 0.5

Approach 2 (more efficient)

Use two methods for the same interval h+t (accuracy m and
m+1). Looks like still a lot work

However, Fehlberg found a fifth-order RK with six function
evaluations, where forth-order RK is a combination of the

first six functions (a very high efficiency for low price)

adaptive step size

A, accuracy on step 5, practical
A, desired (needsh,) N
A, h25 ShlA_z if A, =A,
A, B h15 hy = Al 0.25
Sh, A_2 if A, <A,
1

k =hf(t,x) RK-Fehlberg
k, = hf(t + i hox + i k) method with

3 3 9 error estimation
k,=hf(t, +8hx +3—2k +3—2k)

k= hf (. +2h X, 1932 B3z, 7200k2+ 7296
13 2197 2197 2197

439 3860, 845
ko =hf(t, +h,x, +—Fk -8k, + ——Fk, -
J (&, +hx, 216 > 4104 k)

513

k3)

I g 3544 1859 11
ko = hf(t +—h,x ——k 42k, -2 02 2y
G+ SR, —— 2" 5565 T at0a ™ " 20"

16k 6656k 28561k 9 2)

X ., =X, + |+ , + s —— ks +—k,
135 12825 56430 50 55

Error-Lk %lg 2197 ——k, +— 1 —k, i/’c6+0(h6)
360 475 75240 50 35 67

Part 2d

Extrapolation methods

Extrapolation methods

Extrapolated methods are able to increase good accuracy
with rather simple second-order algorithms.

Can be used when the calculations time is the issue.

The Bulirsch-Stoer method (1980) is a very good variation
of the extrapolated mid-point method.

69

Part 2e

Multipoint methods

Multipoint methods

Multipoint methods use more than one point to advance
the solution (i.e. points n, n-1, n-2, ...)

The fourth-order Adams-Bashforth-Moulton method is a
popular one

Global error - O(h%)

There is a family of Adams methods for ODE.

71

Part 2f

Higher-order ODEs

Higher-order ODEs

In general, a higher-order ODE can be replaced by a
system of first-order ODEs

x(n) _ f(t,x,x',x", Ny .x(n—l))

x(t)=x,, x(t)=x(=12,...n-1)

X, =X X'=x x(0)=2x
X, =Xx=Xx, X=X x(0)=x,

X' 1= xn n 1(0) x(”l)

n
x =x""=x X' =F(t,x.,%,...,x,) x,0)=x""

73

Part 2q

Stiff ODEs

Stiff ODEs

Definitions of stiffness

v

the step size required for stability is much smaller than
the step size required for accuracy.

if it contains some components of the solution that decay
rapidly compared to other components of the solution.

if the step size based on computational time is too large
to obtain an accurate solution.

75

Stiff ODEs

There is a set of methods developed by Gear (1971) for solving
stiff ODEs

good package: LSODE (Fortran) developed in Lawrence
Livermore National Laboratory (LLNL)

see
ODEPACK - A Systematized Collection of ODE Solvers

https://computation.linl.gov/casc/odepack/odepack home.html

76

Part 2s

Summary

The explicit Euler method x , =x + f(¢z ,x,)At

The implicit Euler method x, , =x + f(¢,,,x,.,)At
The modified midpoint method

Xy =%+ L6 X)AL/2, X =X, + [(4125 %00,,) A
The modified Euler method

x5+1 = xn + f(trﬁxn)At’ xlf+1 = xn + (f(tn9‘xn) + f(tn+l9x:+l))At/2
The forth - order Runge - Kutta method

kl = f(tnb'x)
k, = f(t, +§ X, +—)
h hk
= [+—,X +—=
3 f(n 2 xn 2)
k, = f(t +hx +hk)
X, = X + %(k1 + 2k, + 2k, +k,)+ O(h°)

One-Dimensional Initial-Value Ordinary Differential Equations

4 : -
= First-order explicit Euler method E I f .
e o o xample tor errors:
vE 1D ODE for a
- Second-order modified Euler method
100 E_ O/%ﬁh_—_h()_o_o—e d ° T ° b l
; Second-order modified midpoint method, M = 2 r'Cl IC(I O n p r'O em
Hoff
- Fourth-order Adams-Bashford-Mouliton method (O man 2 OO 1
v = W
< 102 —e——
g = Fourth-order extrapolated modified midpoint method, M = 4
i L
% 103 Fourth-order Runge-Kutta method
2 =
m - %
104 E -
= T,
I Sixth-order extrapolated modified midpoint method, M = 8
105 =
106 =
~ Eighth-order extrapolated modified midpoint method, M = 16
1 0-7] I i) !] ! Fy .
0 5 10
Timet,s

Figure 7.22 Errors in the solution of the radiation problem. 79

Packages for initial value ODEs

v" ODEPACK - A Systematized Collection of ODE Solvers
computation.linl.gov/casc/odepack/odepack home.html

v IMSL
v NAG
v" Mathematica
v Maple

v' see also http://gams.nist.gov/ (Guide to available
mathematical software

80

Part 2x

Applications in physics
(a couple examples)

1s* order ODE: examples in physics

dx
E = f(X,f)

Steady state flow of heat
Decomposition and growth problems
Flow of water through an orifice
Atmospheric and oceanic pressure

82

2"d order ODE: examples in physics

2
ad—+bd—+f(x t)=0
dt’ dt
* Motion of a particle along a straight line
vertical projectile motion
rocket motion
oscillatory motion (harmonic, damped, forced)
 Electric circuits
* Rolling bodies

83

A system of two 2" order ODEs: examples

d’x o
—dt2 + f (x,y,x',y,t)=0
dz ! '
a’tg/ +/,(x,p,x,y,t)=0

* Projectile motion in 2D plane
* Planetary motion in 2D plane

84

Part 3

Boundary-value problem
(one-dimension 2" order ODE)

Boundary-value problem

Boundary-value problems — involve differential equations
with specified boundary conditions:

example: one-dimension second order ODE (where P and
Q some constants)

d’y
dx’
y(x) =y and y(x,)=y,

The boundary-value problem is more difficult to solve than

the similar initial-value problem with the same differential
equation

+Pd—y+Qy=F(x)
dx

86

Three types of boundary conditions
the solutiondomainis closed x, = x < x,

the solution y(x) must satisfy two boundary conditions

v" for the function y(x) - Dirichlet boundary conditions
v' for the derivatives y’ (x) - Neumann boundary conditions

v' for a combination of y(x) and y’ (x) — mixed boundary
conditions

87

Principal methods for B-V problem

ODE
Boundary-Value
Problem

Linear Finite Element

Finite Difference Combination of Methods

Methods Trial Functions
the shooting the equilibrium Rayleigh-Ritz Collocation Galerkin
method method method method method

88

The shooting method

The key idea of the shooting method is to
transform the boundary value ODE into a system
of first-order ODEs and solve as an initial value
problem.

Only boundary condition on one side is used as
one of the initial conditions. The additional initial
condition Is assumed.

Then an iterative approach is used to vary the
assumed initial condition till the boundary condition
on the other side is satisfied. 89

The shooting method (cont)

Assume y(x) =y and y(x,) =y,

Let us consider an initial-value problem with

y(x)=y and y'(x)=c
where c Is a parameter to be adjusted

y We use a root search

algorithm to find ¢ that
X e3 insures ¢ -y,<0

Quite often the fourth-order Runge-
Kutta is combined with the secant
method

K cl

90

Let’s consider a general second-order ODE with Dirichlet boundary conditions

y"(z) + Pz, y)y'(z) + Q(z,y)y(r) = F(x), (1.3)

where y(z1) = y1 and y(x2) = yo. Let’s also introduce a new parameter z = /() that
specifies the initial condition for the derivatives. Then equation (1.3) can be solved as
initial value problem by some standard method. For a value of a parameter z; the solution
would give a value y(z2) = ¢; with ¢; # yo (unless a very lucky guess for the initial z;).
Then we assume a second value for the parameter z, and solve equation (1.3) again. For
2z = zo it would give y(x2) = co. Now we may construct an iterative procedure to find
such a z, that ¢, = ys. Practically we deal with finding roots of a non-linear equation.
The method of secant is a very common approach to solve the problem. In this method

the next approximation to a solution for f(z) = 0 is written as

x
Lkt+1 — Tk — f(k) (SEk — xk_l). (14)
Je — fe—1
Then the secan method provides the next value of 2z
C JR—
Rk+1 — Rk — k—m(zk — Zk:—l)- (15)

Ck — Ck—1

For a linear ODE we can apply the superposmon principle:

1. Compute two solutions for z(z;1) = yg and z(z1) = y(). Let these solutions be y((z) and y?(z).
2. Form a linear combination of these two solutions

y(z) = a1y (@) +azy?(2)

and apply at x = z; and z = -

at x =x71 : ylzay§)+ay

ayé)-}—a y(2)

(2)

at x = X9 . Yo
3. Solve the system for ¢; and cs:

mta =1 = y=ay’+(0-a)y =y +aly’ -]
S g — Yo — Up 0y — —y + 5"
=4 =4

We see that no further iteration in Eq. (1.5) is necessary for linear ODE because

(
(1) (2) _ (2)_|_3/2—yz)

2 1
Y (z1) = a1yy’ + a2y, = y W(i ())
Y2

— Y

(2) (1)

which is (1.5) since ¢; = yg), C2=1Ys ,21=1Y; ,and zg = y(z)

92

The equilibrium B-V method

ldea: construct a finite difference approximation of the
exact ODE at every point on a discrete finite difference
grid. Then a system of equations must be solved
simultaneously. Here are the steps:

v" Discretizing the continuous solution domain into a
discrete finite difference grid

v' Approximating the exact derivatives in the boundary-
value ODE by algebraic finite difference approximations

v Substituting the FDAs into the ODE to obtain an
algebraic finite difference equation

v Solving the resulting system of algebraic FDEs
(for linear ODEs — a system of linear equations)

93

Equilibrium method

Let us consider a BV problem for linear 2nd order ODE :

Y’ (x) + P(x)y'(x) + Q(x)y(x) = F(x) (1
with Dirichlet boundary conditions y(a) = y;, y(b) = y».

Introduce a grid in the interval [x;, x,| by dividing the interval into N equal
subintervals of size A. This produces two boundary grid points xo = a and
xy = b, and N — 1 interior grid points x;, i = 1,2..., N — 1. The values

y(x0) = y(a) and y(xn) = y(b) are known but the values y(x;),

i=1,2,...,N — 1 must be determined. The “lattice spacing” is

Ax = h = 252, From the Taylor expansions for y(x;+1) and y(x;) we can
obtain the following centered difference formula:

2
Vil — Vi1 }L "
n _ Yi—1— 2y; + Yit+1 h_z "

for some 7 € [a, b].

If the higher order terms are discarded from the above formulas and the
approximations are used in the original differential equation (1), the second
order accurate finite difference approximation to the BVP becomes a
system of simultaneous linear algebraic equations

[)’i—l — 2yi + Yi+1

») + O(hz)] +Pi[yi+1 L O(hz)] + Qi = F;

2h
Multiplying this by #* we get

h h
(1- EPi)}’i—l +(=2+RmQ)yi+ (1+ EPi)}’iH = h°F;
for points i = 1,2, ...N. In matrix notation the system becomes
Ay =Db

where A is a tridiagonal matrix. This equation can be solved by Thomas
algorithm

Theorem of Uniqueness: If p(x); q(x) and r(x) are continuous and g(x) > 0
on [a; b] the problem Ay = b has a unique solution provided # < 2/L where
L = max,<x<p |p(x)|. Further, if y""" is continuous on [a; b] the truncation
error is O(h?).

Neumann boundary conditions

Neumann boundary conditions

The shooting method: same idea as for the Dirichlet boundary conditions
(1) but shooting for Z'(x2) = ¥4 rather than for z(x2) = y».

The equilibrium method needs some modification:
Consider

Y'(x) + P(x)y'(x) + Q(x)y(x) = F(x)

with boundary conditions y(a) = y;, y'(b) = 5.
Let us write the finite-difference equation for the last point:

h h
(1- EPN))’N—I +(—2+h*Qn)yv + (1 + EPN))’N+1 = h*Fy

The value of yy.; is unknown. We can approximate it from

YN+1 — YN—-1 + 0(h2)

Y = T

and get 2yn—1+ (=2 + K*Qn)yn = R*Fy — h(2 + hPy)yy

For points inside the [a,b] interval we can use the old formula

h h
(1- EPi))’i—l + (=24 K Q)yi+ (1+ EPi))’i-H = W’F;

which gives again the tridiagonal system of equations.

Boundary Condition at Infinity

Two procedures for implementing boundary
conditions at infinity

v" Replace « with a large value of x (x = X)

v" Match an asymptotic solution at large
values of x

97

%Dk\héﬂ-(‘b t&qm«-_l\'l;\tha D.-I\ —E*n ?ﬂ'h{\.\) |

4 “451""-‘31 & 'l\m-.ﬁ Prﬁqqémn‘&

ff.f,e-*" A QLTD“M'Q o wnbn o nga velwe of X

'D/ 2 b\“ﬁ u&aﬂm?-‘hal‘xn E.»::Qu:\-\-ah el 'lﬂ_rge
g (&= A e NS .

Q,’:.M\;ae:-;ni 3*&%&1‘0“1 :"l'\ﬁmm 11

"“-ﬂq...h-.—

;_-_.-{ L{Q,{ alubany C‘.\\mgq Qb qug

bnm\ F0ve ‘L‘QQW:Q

}rur a) éﬂ.ﬂl . ¥ (%) Yo g% €
Uy >

Ukimg e GO = T = Y
1.e. Vie Lawn.@ Eﬂhé\'l\lﬁ"‘n a[aﬂ‘j:bm AN t‘t..:l:[-:u.u.& ay :j('ﬂ‘):\{

(:\.ru::j Comamar e taody A ﬂzunmi\m "ﬂh‘hmutt;}
' , ’

IF—F_ e -

L =

! | - A
i Al }“Q-'-*Lﬁ\
I Taluban |

(S

99

Higher-order equilibrium methods

For the shooting method it is quite easy to go to higher-order approximation
(initial value problem + roots of equations).

For equlibrium method it is more complicated. Popular fourth-order
methods: five-point method and three-point method.

Five-point method: using Taylor series at y;_», y;_1,yit1,yit2 (v; IS @ base
point). One can show that

p —Yiv2 +8yir1 — 8yi1 + i

4

and
—Yit2 + 16yir1 — 30y; + 16y;—1 — yi2

/!
= 1212
We can use these equations for the interior points, but for the initial and
final points we need to modify them. For example, one can use forward or
backward finite-difference formulas (with some loss of accuracy).

+ O(K*)

Quick comment on the non-linear equations

1. For the shooting method the solution is straightforward.

2. For the equilibrium methods the situation is more complicated. One gets
the system of non-linear finite-difference equations which can be solved by

Newton’s iteration method.

101

El The system of 2nd-order boundary-value ODEs can be solved by

= The shooting method by replacing each second-order ODE by two
first-order ODEs and solving the coupled systems of first-order ODEs.

m Each seond-order ODE can be solved by the equilibrium method and the
coupling between the individual ODEs can be accomplished by
relaxation

K1 Higher-order boundary-value ODEs can be solved by

= The shooting method by replacing each higher-order ODE by a system
of first-order ODEs

m Some higher-order ODEs could be reduces to systems of 2nd-order
ODEs which can be solved by the equilibrium method.

Part 4

Eigenvalue problem

Eigenvalue problem

Eigenvalue problems - equilibrium problems where the
solution exists only for special values (eigenvalues) of a
parameter of the problem

example:

d2
dxf +ky=0 y(0)=y(1)=0

solutions exists for k£ = 7

Shooting methods are not well suited for solving
eigenvalue problems

Eigenvalue problems are generally solved by the
equilibrium method 104

Let us solve y” + k*y = 0. We take four interior points and use 2nd-order
centered difference in place of y”(x)

Yit+1 — 2yi + Yit1
h2
= Yie1 — 2= F°K)yi+yiy1 = 0

+O0(h*) + Ky = 0

We get
0 yi1 =0
0.2 y1 — (2 —0.04k%)y; +y3 = 0
0.4 y2 — (2 —0.04k*)y3 +y4 = 0
0.6 y3 — (2 —0.04k%)ys +ys = 0
0.8 ya—(2-0 04k2)y5 +y6 = 0

In the matrix form

[2 — 0.04k>
—1
0
0

where

—1

2 — 0.04k>
—1
0

0
—1
2 — 0.04k?
—1
2 -1
-1 2
0 -1
0 0

0
0
—1

2 —0.04k%

0O O
-1 0
2 -1
-1 2

Y1
Y2
Y3
Y4

y:

=0 (A—0.04)y = 0

Y1
Y2
Y3
Y4

The equation (A — AXI)y = 0 is a classical eigenvalue problem of linear algebra.
Solutions exist if

#-3+1=0 =

det/A — AI] = 0
Denote 2 — 0.04k* = z, then the Eq. (1) reduces to

212 = +1.618,

{34 — +0.618

106

1D stationary Schrodinger equation
Bound states

7" () + 2 (E -V (0)(x) =0

p(x) =0 |x|— oo

Solutions exist for only specific energies E (eigenstates)

The radial Schrodinger equation for a spherically symmetric

potential
R'(p)+(25 (E -V (p)) - +D\p(py =0

r

107

Numerov' s method

Let’s consider a second-order ODE of the form

y"(2) + f(x)y(z) =0 (1.7)

Using Taylor’s expansion

h? h?

/ 17 h4 h?
y(CUn _|_ h) = y(xn) —|— hy (CC?’I,) —|— Ey (xn) _|_ " 7777

BT (azn)%—ﬂy (azn)+§y (Xn) + ...

/ h* " h? 1" ! 1 h° 1
y(xn - h) — y(xn) - hy (xn) + ay (xn> - ay (xn) + Ey (wn) - ay (xn) + ...

the sum of the two equations is
h4
Yn—1 + Ynt+1 = 2yn + hgyg + Ey;:” + O(h6>

the solving for y” and using vy = — f,yn

4
h "

h2fnyn — 2yn — Yn+1 — Yn—1 T Eyn

108

The forth-order derivative can be written as

d2 . d2

Using the centered-difference formula for the second-order derivative gives

m__ fn—i-lyn-H - 2fnyn + fn—lyn—l

and then the original equation can be written as

ht 1
thnyn — 2yn — Yn+1 — Yn—1 — Eﬁ(fn%—lyn—l—l - anyn + fn—lyn—l)

Regrouping terms gives

h? 5 h?
(1 + Efn—l—l) Yn+1 = (2 - 6h2fn> Yn — (1 + Efn—l) Yn—1

The accuracy is O(h?)

109

Solving 1D Schrodinger equation

Key points: consider a boundary value problem
Q" (X)+2(E-V(x)p(x)=0 @(x)—=00r — eXp(—1/2‘E‘ X) ‘x‘ —> 00

1.

. assume two values for the energy E

define boundary conditions for two left-end and two right-

end points p(x_) @(x_.) @(x) @x,_)
E

min® —max

for canceling numerical errors it is better to solve the
equation moving to some matching point from the left and
from the right (using Numerov’ s method)

at the matching point the logarithmic derivatives are
continuous ¢,'(x,)/@,(x,)=¢,'(x,)/¢.(x,)

where index / mean the left marching solution and » —
right (scaling ‘right’ solution on the ‘left’ is
recommended 10

LiIse hisectional method to find F that satisfies the cond.

Summary

The shooting method:

Good:

= any initial value ODE method can be used
= |tis easy to achieve higher-order accuracy
Not good:

= shooting for more than one boundary condition is time
consuming

= anonlinear problem is to be solved

111

Summary

The equilibrium method:
Good:

= automatically satisfied to the boundary conditions
Not good:

= it can difficult to achieve higher than 2" order accuracy
= a system of Finite Difference Equations must be solved

= nonlinear ODEs yield a system of nonlinear FDEs.

112

