
1

Differential Equations

Most fundamental and basic equations in physics
as well as frequently occurring problems appear as
differential equations.

2

Examples:

)()(
2

2

tkx
dt
txdm −=

Simple harmonic oscillator

Schrödinger equation (example for 1D)

),()(),(
2
1),(

2

2

txxV
x
tx

mdt
txdi ψ

ψψ
+

∂
∂

−=!

Part 1

classification

4

Differential Equations

5

is initial value problem for the second order ordinary
linear homogeneous differential equation

0

0

2

2

)0(

)0(

)()(

vt
dt
dx

xtx

tkx
dt
txdm

==

==

−=

Simple Harmonic Oscillator

6

ODE or PDE

! The ordinary differential equations (ODE) – have
functions of one only independent variable
Example: stationary Schrödinger equation

! The partial differential equations (PDE) – have
functions of several independent variables

Example: time dependent Schrödinger equation for

),(trΨ

7

ODE: Linear or Nonlinear

! A linear differential equation – all of the derivatives
appear in linear form and none of the coefficient
depends on the dependent variable

)()(
2

2

tkx
dt
txdm −=

c
dt
xda

dt
dxatxa =+++ …2

2

210)(

example

8

ODE: Linear or Nonlinear

! A nonlinear differential equation – if the coefficients
depend on the dependent variable, OR the derivatives
appear in a nonlinear form
Examples:

0)()(

0)()()(

2
2

2
2

2

2

=−

=−

tx
dt
txdt

tx
dt
tdx

dt
txd

9

Order of ODE

The order n of an ordinary differential equation is the
order of the highest derivative appearing in the
differential equation
Examples:

 second order

 third order 0)()(

0)()(

3

3

2

2
2

=−

=−

dt
tdx

dt
txdt

tx
dt
txdt

10

General or partial solution

Example:

! General solution:

! Partial solutions:

0)()(
=− tx

dt
tdx

tCetx =)(

t

t

etx
etx
8.4)(
0.2)(

=

=

11

Homogeneous and nonhomogeneous ODE

! A homogeneous equation: the each term contains either
the function or its derivative, but no other functions of
independent variables

! A nonhomogeneous equation: contains additional term
(source terms, forcing functions) which do not involve the
dependent variable

0)()(
2

2

=− tkx
dt
txdm

)cos()()(
02

2

tFtkx
dt
txdm ω=−

12

Three major categories of ODE
! Initial-value problems – involve time-dependent

equations with given initial conditions:

! Boundary-value problems – involve differential
equations with specified boundary conditions:

! Eigenvalue problems – involve solutions for selected
parameters in the equations

In reality, a problem may have more then just one of the categories above

002

2

)0(,)0(,0)()(vt
dt
dxxtxtkx

dt
txdm =====−

ba ybxyyaxyxy
dx
xyd

=====−)(,)(,0)()(
2

2

α

13

Three general classifications in physics
ü  Propagation problems - are initial value problems in open

domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.

ü  Equilibrium problems – are boundary-value problems in
closed domains where boundary values are specified at
boundaries of the solution domain. The order of ODE
must be at least two.

ü  Eigenproblems – are a special type of problems where
the solution exists only for special values of a parameter.

14

n-th order or a set on n linear equations
Any nth order linear differential equation can be reduced to
n coupled first order differential equations

Example:

is the same as

)()(2

tkx
dt
txdm −=

)()(

)()(

tkx
dt
tdvm

tv
dt
tdx

−=

=

Part 2

Initial value problem

16

Initial values problems are solved by marching
methods using finite difference methods.

ü  Discretizing the continuous physical domain into a
discrete finite difference grid

ü  Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)

ü  Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE)

ü  Solving the resulting algebraic FDE

The objective of a finite difference method for solving an
ODE is to transform a calculus problem into an algebra
problem by

17

Three groups of finite difference methods
for solving initial-value ODEs

ü  Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method – 4th order Runge-
Kutta

ü  Extrapolation methods evaluate the solution at a grid
point for several values of grid size and extrapolate those
results to get for a more accurate solution.

ü  Multipoint methods advance the solution form one grid
point to the next using the data at several known points
(see 4th order Adams-Bashforth-Moulton method)

18

Finite difference approximations.

Using the Taylor series for xn+1 using grid point n

…

…

…

−Δ−Δ−
Δ
−

=

Δ+≤≤Δ
+

=

+Δ++Δ+Δ+=

+Δ+Δ+Δ+=

+

+++

+
+

+

21

1)1(1

1)(2
1

32
1

|'''
6
1|''

2
1|'

|'

)(
)!1(

1

|
!
1|''

2
1|'

|'''
6
1|''

2
1|'

txtx
t
xxx

x

ttttx
m

R

Rtx
m

txtxxx

txtxtxxx

nn
nn

n

n

mmm

mm
n

m
nnnn

nnnnn

yields for solving

ττ

19

Finite difference approximations.
Using the Taylor series for xn+1 using grid point n

)(|'

21'

)(|'

)(|'

21
21

1
1

1

tO
t
xxx

nx

tO
t
xxx

tO
t
xxx

nn
n

nn
n

nn
n

Δ
Δ
−

=

+

Δ
Δ
−

=

Δ
Δ
−

=

+
+

+
+

+

 point at of
ionapproximat difference centered order-second A

ionapproximat difference-backward order-first a

ionapproximat difference finite order-first a

20

Finite difference equations.

difference finite implicit
difference finite explicit

 for solve and above ODE the into substitute

 or

ionsapproximat difference finite use

ODE value-initial order-first general the consider

txtfxx
txtfxx

x
t
xxx

t
xxx

xxxtftx

nnnn

nnnn

n

nn
n

nn
n

Δ+=

Δ+=

Δ
−

=
Δ
−

=

==

+++

+

+

+
+

+

),(
),(

:

|'|'

)0(),()('

111

1

1

1
1

1

0

21

Smoothness
Smoothness – the continuity of a function and its
derivatives.

If a problem has discontinuous derivatives at some
point, then the solution may misbehave at this point.

At a discontinuity – use either single point methods
or extrapolation methods (not multi-point) because
the step size can be chosen to have the
discontinuity at a grid point.

22

Errors – five types.
ü  Errors in the initial data
ü  Algebraic errors
ü  Truncation errors – cased by truncating the Taylor

series approximation (decreases with decreasing
of the step size)

ü  Round off errors – caused the finite word length
(increases as the step size decreases: more steps
and small difference between large numbers)

ü  Inherited errors – the sum of all accumulated
errors from all previous steps (means that the
initial condition for the next is incorrect)

23

Four important issues

ü  Accuracy

ü  Efficiency

ü  Stability

ü  Consistency

Part 2a

The first-order Euler method

25

The explicit Euler method for ODE
The explicit Euler method – first-order finite difference
method for solving initial-value problem for ODE

00)(),(xtxxtf
dt
dx

== with

ODE order-first general a consider sLet'

 n n+1 t

 then and

order) (first difference finite Explicit

)(|' 1 tO
t
xxx nn

n Δ
Δ
−

= +

 txtfxx nnnn Δ+=+),(1

26

The explicit Euler method for ODE
The method

ü  explicit (since f(tn,xn) does not depend on xn+1)

ü  requires only one known point (singe point method)

ü  the local truncation error is

ü  the global error accumulated after n steps

ü  problem: the method is conditionally stable for

 txtfxx nnnn Δ+=+),(1

)(2tO Δ

)(tO Δ

txxx

x
dt
dx

nnn Δ−=

−=

+1

 example

 crtt Δ<Δ

27

The implicit Euler method for ODE
The implicit Euler method – first-order finite difference
method for solving initial-value problem for ODE

00)(),(xtxxtf
dt
dx

==

+

 with

for point base the as 1n choose sLet'

 n n+1 t

 then and

order) (first difference finite Implicit

)(|' 1
1 tO

t
xxx nn

n Δ
Δ
−

= +
+

 txtfxx nnnn Δ+= +++),(111

28

The implicit Euler method (more)

ü  The implicit Euler is unconditionally stable

ü  however, if is nonlinear, the we need to use one
of methods for solving nonlinear equations

)1(
1

),(

1

1

11

111

txx
t

xx

txxx
txtfxx

x
dt
dx

nn

n
n

nnn

nnnn

Δ−=
Δ+

=

Δ−=

Δ+=

−=

+

+

++

+++

 solution explicit the

 solution implicit the

 example an consider sLet'

),(xtf

29

0.0 0.5 1.0 1.5 2.0
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

abs value of relative error
 for equation x'(t) = -x

 Euler, step 0.1
 Euler, step 0.01

|re
l.

er
ro

r|

t

1)0(==

−=

tx

x
dt
dx

30

double f1(double, double);
double euler1d(double(*)(double, double), double, double,
double);
int main()
{ double xi, ti, xf, tf, dt, tmax;
 ti = 0.0; // initial value for variable
 xi = 1.0; // initial value for function
 dt = 0.01; // step size for integration
 tmax = 2.0 ; // integrate from ti till tmax
 while (ti <= tmax)
 { tf = ti + dt;
 xf = euler1d(f1,ti,xi,tf);
 cout<< setw(12) << tf << setw(12) << xf << endl;
 ti = tf;
 xi = xf; }
return 0;
}
double euler1d(double(*f)(double, double), double ti,
double xi, double tf)
{ double xf;
 xf = xi + f(ti,xi)*(tf-ti);
 return xf;}
 double f1(double t, double x)
{ double dx;
 dx = (-1.0)*x;
 return dx;
}

example: C++

31

2nd order ODE: example harmonic oscillator

)()(

)()(

tkx
dt
tdvm

tv
dt
tdx

−=

=

x(I+1)=x(I)+v(I)*h

v(I+1)=v(I)-(k/m)*x(I)*h

)(')()(000 thxtxhtx +≈+

)()(
2

2

tkx
dt
txdm −=

32

double euler2d(double(*d1x)(double, double, double),
 double(*d2x)(double, double, double),
 double ti, double xi, double vi, double tf,
 double& xf, double& vf)
{
 xf = xi + d1x(ti,xi,vi)*(tf-ti);
 vf = vi + d2x(ti,xi,vi)*(tf-ti);
 return 0.0;
}

 double f1(double t, double x, double v)
{
 double d1x;
 d1x = v;
 return d1x;
}

 double f2(double t, double x, double v)
{
 double d2x;
 d2x = (-1.0)*x; //simple harmonic oscillator
 return d2x;
}

example: C++ – simple harmonic oscillator

33

problems with the simple Euler method

0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2 simple harmonic oscillator
 m=1, k=1, step = 0.01

 simple Euler
 Euler (energy)

am
pl

itu
de

 a
nd

 e
ne

rg
y

time (s)

34

Problems with the Euler method

! Euler method corresponds to keeping the first two
terms in the Taylor series

! Accuracy is low

! Error propagation is a problem!
After N steps, the error is on the order

! Step size is important

! Do not use the Euler methods unless for learning!

)()(')()(2
000 hOthxtxhtx ++≈+

)()(2 hOhON ≈⋅

35

Practice

Write a program that implements Euler method to solve
the simple harmonic oscillator for t=0-100 (try step sizes
0.1 and 0.01) with k=1 and m=1, x(0)=0.0 and v(0)=1.0
Compare you solutions with exact ones and check
conservation of energy as a function of time.

Part 2b

Second-order single point
methods

37

The second-order central difference

()

)(

'''
24
1'

2
'''

6
1

2
''

2
1

2
'

2
'''

6
1

2
''

2
1

2
'

2/1

3
2/11

3
2/1

1
2/1

3

2/1

2

2/12/12/1

3

2/1

2

2/12/12/11

tOtfxx

tx
t
xxx

txtxtxxx

txtxtxxx

n

nnn

n
nn

n

nnnnn

nnnnn

Δ+Δ+=

Δ−
Δ
−

=

+⎟
⎠

⎞
⎜
⎝

⎛ Δ
−+⎟

⎠

⎞
⎜
⎝

⎛ Δ
−+⎟

⎠

⎞
⎜
⎝

⎛ Δ
−+=

+⎟
⎠

⎞
⎜
⎝

⎛ Δ+⎟
⎠

⎞
⎜
⎝

⎛ Δ+
Δ

+=

+

++

+
+

+

++++

+++++

 ODE order-first a for and

difference the

point base a as choose

…

…

 n n+1/2 n+1 t

38

Way 1 to evaluate fn+1/2 (modified midpoint)

⎟
⎠

⎞
⎜
⎝

⎛ Δ
+Δ+=

Δ
+=

Δ+Δ+=

+

+

+

++

P
nn

C
n

nnn
P

nnn

n

n

xttftxx

xtftxx

tOtfxx

2/1

2/1

,
2

),(
2

)(

1

3
2/11

:2 step

 :1 step

 n n+1/2 n+1 t

39

Way 2 to evaluate fn+1/2 (modified Euler)

()

[]11

2
12/1

2/12/1

2/12/11

3
2/11

2

)(
2
1

2
'

2
'

)(

++

++

++

+++

++

+
Δ

+=

Δ++=

+⎟
⎠

⎞
⎜
⎝

⎛ Δ
−+=

+⎟
⎠

⎞
⎜
⎝

⎛ Δ+=

Δ+Δ+=

nnnn

nnn

nnn

nnn

nnn

fftxx

tOfff

tfff

tfff

tOtfxx

 then

series Taylor the from

…

…

 n n+1/2 n+1 t

for linear ODEs it can be
solved directly, but for
non-linear ODEs must
be solved iteratively

40

Way 2 to evaluate fn+1/2 (modified Euler)

[]

()
method corrector"-predictor" a as named also is method the

:2 step

 :1 step then
Euler order-first explicit the by predicted be can

for however

P
nnn

C
n

nnn
P

n

nnnn

fftxx

xtftxx

f

fftxx

n

11

1

11

2

),(

2

1

++

+

++

+
Δ

+=

Δ+=

+
Δ

+=

+

 n n+1/2 n+1 t

41

Summary: A modified Euler method

()

value corrected
value predicted

−

−

Δ
++=

Δ+=

+++

+

C
P

txtfxtfxx

txtfxx

P
nnnnn

C
n

nnn
P
n

2
),(),(

),(

111

1

ü  the local truncation error is
ü  the global error after n steps

)(3tO Δ

)(2tO Δ

42

Example

x(I+1)=x(I)+v(I)*h

v(I+1)=v(I)-(k/m)*x(I)*h

correction

x(I+1)=x(I)+(v(I)+v(I+1))*h/2.0

v(I+1)=v(I)-(k/m)* (x(I)+x(I+1))*h/2.0

43

double euler2d(double(*d1x)(double, double, double),
 double(*d2x)(double, double, double),
 double ti, double xi, double vi, double tf,
 double& xf, double& vf)
{
 xf = xi + d1x(ti,xi,vi)*(tf-ti);
 vf = vi + d2x(ti,xi,vi)*(tf-ti);
 xf = xi + (d1x(ti,xi,vi)+d1x(ti,xf,vf))*0.5*(tf-ti);
 vf = vi + (d2x(ti,xi,vi)+d2x(ti,xf,vf))*0.5*(tf-ti);
 return 0.0;
}
 double f1(double t, double x, double v)
{
 double d1x;
 d1x = v;
 return d1x;
}
 double f2(double t, double x, double v)
{
 double d2x;
 d2x = (-1.0)*x; //simple harmonic oscillator
 return d2x;
}

example: C++ – modified Euler

44

simple harmonic oscillator (more)

0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2 simple harmonic oscillator
 m=1, k=1, step = 0.01

 simple Euler
 simple Euler (energy)
 modified Euler
 modified Euler (energy)

am
pl

itu
de

 a
nd

 e
ne

rg
y

time (s)

45

Simple methods for a particle dynamics

⎩
⎨
⎧

Δ+=

Δ+=

⎪
⎩

⎪
⎨

⎧

=

=

=

+

+

mtxFvv
tvxx

xF
dt
tdvm

tv
dt
tdx

xF
dt
txdm

nnn

nnn

/)(

)()(

)()(

)()(

1

1

2

2

method Euler explicit

46

Simple methods for a particle dynamics

tvvxx

mtxFvv

tvxx
mtxFvv

mtxFvv
tvxx

nn
nn

nnn

nnn

nnn

nnn

nnn

Δ
+

+=

Δ+=

Δ+=

Δ+=

⎩
⎨
⎧

Δ+=

Δ+=

+
+

+

++

+

+

+

2

/)(

/)(

/)(

1
1

1

11

1

1

1

method) midpoint (the 2 onModificati

method) Cromer-(Euler 1 onModificati

method Euler explicit

47

Simple methods for a particle dynamics

6,4,25,3,1
2

/)(2

)()(
2

)()2(

)(
2

)(

12

11

2

2

==

Δ+=

Δ+=

+=+
−+

=+
−−+

++

−+

nn
tvxx

mtxFvv

htvhO
h

txhtx
m
FhO

h
htvh)v(t

nnn

nnn

 velocity the and at evaluated position the

 difference forward - position ,difference centered - velocity

method) Frog-(Leap 3 onModificati
 n n+1 n+2 t

48

Simple methods for a particle dynamics

m
xtFtxxx

t
xxv

m
xtFhO

t
xxx

vtO
t
xx

nn
nnn

nn
n

nnnnn

n
nn

),(2

2

),()(2

)(
2

2
11

11

2
2
11

211

Δ+−=

Δ
−

=

=+
Δ

−+

=Δ+
Δ
−

−+

−+

−+

−+

 sderivative the for sdifference centered

method) (Verlet 4 onModificati

n-1 n n+1 t

49

Simple methods for a particle dynamics

Verlet and leap-frog methods are not “self-starting”

for leap-frog we need

for Verlet we need

possible solutions: use a backward Euler step

-1 0 +1 t

1

1

−

−

x
v

Verlet start

frog-leap start

m
xtFtvtxx

m
xtFtvv

),(
2

),(

00
2

001

00
01

Δ
+Δ−=

Δ−=

−

−

50

Simple methods for a particle dynamics

Comments for Verlet and leap-frog methods

Leap-frog: energy conservation for some problems

Verlet: the method is very popular for computing trajectories
in many-particle classical systems, e.g. molecular dynamics

Part 2c

Runge-Kutta methods

52

Runge-Kutta methods

Runge-Kutta methods are a family of single point
methods.

Runge-Kutta methods propagate a solution over an
interval by combining information from several Euler-
style steps, and then using the information obtained to
match a Taylor series expansion up to some order.

For many scientific users, fourth-order Runge-Kutta
is not just the first word on solving ODE, but the last
word as well

53

Second-order Runge-Kutta

 n n+1 t

 math some after

series Taylor the to matching by determined be to and
 and

) to scorreposnd (where

……

…

)(
),(

),(

12

1

22111

βα

βα xxhtfhx
thxtfhx

xCxCxx

nn

nn

nn

Δ++=Δ

Δ=Δ

+Δ+Δ+=+

()211

12

1

2

),(
),(

kkhxx

hkxhtfk
xtfk

nn

nn

nn

++=

++=

=

+

the iterative algorithm is
identical to the modified
Euler method

54

55

56

Forth-order Runge-Kutta method
2-nd order RK O(h2)
3-rd order RK O(h3)
4-th order RK O(h4)

())(22
6

),(

)
2

,
2

(

)
2

,
2

(

),(

5
43211

34

2
3

1
2

1

hOkkkkhxx

hkxhtfk

hkxhtfk

hkxhtfk

xtfk

nn

nn

nn

nn

nn

+++++=

++=

++=

++=

=

+

57

1)0(==

−=

tx

x
dt
dx

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

abs value of relative error
 for equation x'(t) = -x

 Euler, step 0.1
 Euler, step 0.01
 Runge-Kutta 4th order

|re
l.

er
ro

r|

t

58

/*---
 4th-order Runge-Kutta method for ODE x'(t) = f(t,x)
 input ...
 f(t,x)- function supplied by a user
 ti - initial value for an independent variable (t)
 xi - initial value for a function x(t)
 tf - find solution for this point t
 output ...
 xf - solution at point tf, i.e. x(tf)
---*/
double rk4_1st(double(*f)(double, double), double ti,
double xi, double tf)
{
 double xf;
 double h,k1,k2,k3,k4;
 h = tf-ti;
 k1 = h*f(ti,xi);
 k2 = h*f(ti+h/2.0,xi+k1/2.0);
 k3 = h*f(ti+h/2.0,xi+k2/2.0);
 k4 = h*f(ti+h,xi+k3);
 xf = xi + (k1 + 2.0*(k2+k3) + k4)/6.0;
 return xf;
}

example: C++ – RK method for 1st order ODE

59

60

/* input ...
 output ... */

double rk4_2nd(double(*d1x)(double, double, double),
 double(*d2x)(double, double, double),
 double ti, double xi, double vi, double tf,
 double& xf, double& vf)
{
 double h,t,k1x,k2x,k3x,k4x,k1v,k2v,k3v,k4v;
 h = tf-ti;
 t = ti;
 k1x = h*d1x(t,xi,vi);
 k1v = h*d2x(t,xi,vi);
 k2x = h*d1x(t+h/2.0,xi+k1x/2.0,vi+k1v/2.0);
 k2v = h*d2x(t+h/2.0,xi+k1x/2.0,vi+k1v/2.0);
 k3x = h*d1x(t+h/2.0,xi+k2x/2.0,vi+k2v/2.0);
 k3v = h*d2x(t+h/2.0,xi+k2x/2.0,vi+k2v/2.0);
 k4x = h*d1x(t+h,xi+k3x,vi+k3v);
 k4v = h*d2x(t+h,xi+k3x,vi+k3v);

 xf = xi + (k1x + 2.0*(k2x+k3x) + k4x)/6.0;
 vf = vi + (k1v + 2.0*(k2v+k3v) + k4v)/6.0;
 return 0.0;
}

example: C++ – RK method for 2nd order ODE

61

Runge-Kutta method is what you use when

! you don’t know any better

! you have a computational problem where computational
efficiency is of no concern

Runge-Kutta methods succeed virtually always

62

Practice: Apply Runge-Kutta method
to the simple harmonic oscillator

! Equations

! Program

! Calculations

63

Error estimate and adaptive step-size
Any good program for solving ODEs should have
ü  an error control (accuracy)
ü  and adaptive step-size (efficiency)

The most intuitive way to vary the step size adaptively is the
step doubling technique

do calculations for x1 with a step size h

do calculations for x2 with a step size h/2

compare the difference d= x1 – x2

if d < predefined acceptable error - use h

if d > predefined acceptable error - use h/2 …

64

Approach 1 (doubling technique)
do calculations for x1 with a step size h
do calculations for x2 twice with a step size h/2

12

1

2

1
1

2
2

22

)(

xxhCxhhtx

Chxhtx
m

m

−=Δ⎟
⎠

⎞
⎜
⎝

⎛+=⎟
⎠

⎞
⎜
⎝

⎛ ++

+=+
+

+

 estimate error

subtract the second from the first and find C

1222

12
2

2

1

−
Δ

+=⎟
⎠

⎞
⎜
⎝

⎛ ++

−
Δ

= +

m

m

m

m

xhhtx

h
C

RK 4th order
1522
Δ

+= xx c

however: needs three
times more work

65 -1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

 numerical solution (adaptive step)
 analytic solution

x(
t)

t

)100arctan()1(
100001
100

2

−=−

+
=

x
tdt

dx)100arctan()(ttx =The solution

66

Approach 2 (more efficient)
Use two methods for the same interval h+t (accuracy m and
m+1). Looks like still a lot work

However, Fehlberg found a fifth-order RK with six function
evaluations, where forth-order RK is a combination of the
first six functions (a very high efficiency for low price)

5
1

5

1

2

22

11

2

)

h
h

h
h

=
Δ
Δ

Δ

Δ

 (needs desired
 step on accuracy

adaptive step size

⎪
⎪

⎩

⎪
⎪

⎨

⎧

Δ<Δ
Δ
Δ

Δ≥Δ
Δ
Δ

=

 if

 if

practical

12

25.0

1

2
1

12

2.0

1

2
1

2

Sh

Sh
h

67

RK-Fehlberg
method with
error estimation

)(
55
2

50
1

75240
2197

475
128

360
1

55
2

50
9

56430
28561

12825
6656

135
16

)
40
11

4104
1859

2565
35442

27
8,

2
1(

)
4104
845

513
38608

216
439,(

)
2197
7296

2197
7200

2197
1932,

13
12(

)
32
9

32
3,

8
3(

)
4
1,

4
1(

),(

6
65431

654311

543216

43215

3214

213

12

1

hOkkkkk

kkkkkxx

kkkkkxhthfk

kkkkxhthfk

kkkxhthfk

kkxhthfk

kxhthfk

xthfk

nn

nn

nn

nn

nn

nn

nn

+++−−=

⎟
⎠

⎞
⎜
⎝

⎛ +−+++=

−+−+−+=

−+−++=

+−++=

+++=

++=

=

+

 Error

Part 2d

Extrapolation methods

69

Extrapolation methods
Extrapolated methods are able to increase good accuracy
with rather simple second-order algorithms.

Can be used when the calculations time is the issue.

The Bulirsch-Stoer method (1980) is a very good variation
of the extrapolated mid-point method.

Part 2e

Multipoint methods

71

Multipoint methods
Multipoint methods use more than one point to advance
the solution (i.e. points n, n-1, n-2, …)

The fourth-order Adams-Bashforth-Moulton method is a
popular one

Global error - O(h4)

There is a family of Adams methods for ODE.

Part 2f

Higher-order ODEs

73

Higher-order ODEs
In general, a higher-order ODE can be replaced by a
system of first-order ODEs

)1,2,1()(,)(
),'',',,(

00
)(

00

)1()(

−===

= −

nixtxxtx
xxxxtfx
ii

nn

…

…

1
)1(

23

12

1

'

'''
''

−
− ==

==

==

=

n
n

n xxx

xxx
xxx

xx

…
)1(

021

)2(
011

0232

0121

)0(),,,,('

)0('

')0('
)0('

−

−
−−

==

==

==

==

n
nnn

n
nnn

xxxxxtFx
xxxx

xxxx
xxxx

…

…

Part 2g

Stiff ODEs

75

Stiff ODEs

ü  the step size required for stability is much smaller than
the step size required for accuracy.

ü  if it contains some components of the solution that decay
rapidly compared to other components of the solution.

ü  if the step size based on computational time is too large
to obtain an accurate solution.

Definitions of stiffness

76

Stiff ODEs

There is a set of methods developed by Gear (1971) for solving
stiff ODEs

good package: LSODE (Fortran) developed in Lawrence
Livermore National Laboratory (LLNL)

see

ODEPACK - A Systematized Collection of ODE Solvers

https://computation.llnl.gov/casc/odepack/odepack_home.html

Part 2s

Summary

78

()

())(22
6

),(

)
2

,
2

(

)
2

,
2

(

),(

2/),(),(,),(

),(,2/),(

),(
),(

5
43211

34

2
3

1
2

1

1111

2/12/112/1

111

1

hOkkkkhxx

hkxhtfk

hkxhtfk

hkxhtfk

xtfk

txtfxtfxxtxtfxx

txtfxxtxtfxx

txtfxx
txtfxx

nn

nn

nn

nn

nn

P
nnnnn

C
nnnn

P
n

P
nnn

C
nnnn

P
n

nnnn

nnnn

+++++=

++=

++=

++=

=

Δ++=Δ+=

Δ+=Δ+=

Δ+=

Δ+=

+

++++

++++

+++

+

method Kutta-Runge order-forth The

method Euler modified The

method midpoint modified The

 method Euler implicit The
 method Euler explicit The

79

Example for errors:
1D ODE for a
radiation problem
(Hoffman 2001)

80

Packages for initial value ODEs

ü  ODEPACK - A Systematized Collection of ODE Solvers
computation.llnl.gov/casc/odepack/odepack_home.html

ü  IMSL

ü  NAG

ü  Mathematica

ü  Maple

ü  see also http://gams.nist.gov/ (Guide to available
mathematical software

Part 2x

Applications in physics
(a couple examples)

82

1st order ODE: examples in physics

),(txf
dt
dx

=

•  Steady state flow of heat
•  Decomposition and growth problems
•  Flow of water through an orifice
•  Atmospheric and oceanic pressure
•  …

83

2nd order ODE: examples in physics

0),(2

2

=++ txf
dt
dxb

dt
xda

•  Motion of a particle along a straight line
vertical projectile motion
rocket motion
oscillatory motion (harmonic, damped, forced)

•  Electric circuits
•  Rolling bodies
•  …

84

A system of two 2nd order ODEs: examples

0),',',,(

0),',',,(

2

2

2

2

=+

=+

tyxyxf
dt
yd

tyxyxf
dt
xd

y

x

•  Projectile motion in 2D plane
•  Planetary motion in 2D plane

Part 3

Boundary-value problem
(one-dimension 2nd order ODE)

86

Boundary-value problem
Boundary-value problems – involve differential equations
with specified boundary conditions:

example: one-dimension second order ODE (where P and
Q some constants)

The boundary-value problem is more difficult to solve than
the similar initial-value problem with the same differential
equation

2211

2

2

)()(

)(

yxyyxy

xFQy
dx
dyP

dx
yd

==

=++

 and

87

Three types of boundary conditions

ü  for the function y(x) - Dirichlet boundary conditions

ü  for the derivatives y’(x) - Neumann boundary conditions

ü  for a combination of y(x) and y’(x) – mixed boundary
conditions

conditions boundary two satisfy must solution the
 closed is domain solution the

)(
21

xy
xxx ≤≤

88

Principal methods for B-V problem

ODE
Boundary-Value

Problem

Finite Difference
Methods

the shooting
method

the equilibrium
method

Linear
Combination of
Trial Functions

Rayleigh-Ritz
method

Collocation
method

Galerkin
method

Finite Element
Methods

89

The shooting method

The key idea of the shooting method is to
transform the boundary value ODE into a system
of first-order ODEs and solve as an initial value
problem.

Only boundary condition on one side is used as
one of the initial conditions. The additional initial
condition is assumed.

Then an iterative approach is used to vary the
assumed initial condition till the boundary condition
on the other side is satisfied.

90

The shooting method (cont)
Assume

Let us consider an initial-value problem with

where c is a parameter to be adjusted

2211)()(yxyyxy == and

cxyyxy ==)(')(111 and

We use a root search
algorithm to find c that
insures
Quite often the fourth-order Runge-
Kutta is combined with the secant
method

δ<− 2yci

21 xx

y

91

92

93

The equilibrium B-V method

ü  Discretizing the continuous solution domain into a
discrete finite difference grid

ü  Approximating the exact derivatives in the boundary-
value ODE by algebraic finite difference approximations

ü  Substituting the FDAs into the ODE to obtain an
algebraic finite difference equation

ü  Solving the resulting system of algebraic FDEs
(for linear ODEs – a system of linear equations)

Idea: construct a finite difference approximation of the
exact ODE at every point on a discrete finite difference
grid. Then a system of equations must be solved
simultaneously. Here are the steps:

94

95

96

97

Boundary Condition at Infinity

ü  Replace ∞ with a large value of x (x = X)

ü  Match an asymptotic solution at large
values of x

Two procedures for implementing boundary
conditions at infinity

98

99

100

101

102

Part 4

Eigenvalue problem

104

Eigenvalue problem
Eigenvalue problems - equilibrium problems where the
solution exists only for special values (eigenvalues) of a
parameter of the problem

example:

solutions exists for

Shooting methods are not well suited for solving
eigenvalue problems

Eigenvalue problems are generally solved by the
equilibrium method

0)1()0(02
2

2

===+ yyyk
dx
yd

nk π±=

105

106

107

1D stationary Schrödinger equation
Bound states

∞→→

=−+

xx

xxVEx

0)(

0)())((2)(" 2

ϕ

ϕ
µ

ϕ
!

Solutions exist for only specific energies E (eigenstates)

0)()1())((2)(" 22 =⎟
⎠

⎞
⎜
⎝

⎛ +
−−+ ρρ

µ
ρ R

r
llVER

!

The radial Schrödinger equation for a spherically symmetric
potential

108

Numerov’s method

109

110

Solving 1D Schrödinger equation
Key points: consider a boundary value problem

1.  define boundary conditions for two left-end and two right-

end points
2.  assume two values for the energy Emin, Emax

3.  for canceling numerical errors it is better to solve the
equation moving to some matching point from the left and
from the right (using Numerov’s method)

4.  at the matching point the logarithmic derivatives are
continuous
where index l mean the left marching solution and r –
right (scaling ‘right’ solution on the ‘left’ is
recommended

5.  use bisectional method to find E that satisfies the cond.

∞→−→→=−+ xxExxxVEx or)2exp(0)(0)())((2)(" ϕϕϕ

)()()()(11 −+−− nnnn xxxx ϕϕϕϕ

)(/)(')(/)(' mrmrmlml xxxx ϕϕϕϕ =

111

Summary
The shooting method:

Good:

§  any initial value ODE method can be used

§  it is easy to achieve higher-order accuracy

Not good:

§  shooting for more than one boundary condition is time
consuming

§  a nonlinear problem is to be solved

112

Summary
The equilibrium method:

Good:

§  automatically satisfied to the boundary conditions

Not good:

§  it can difficult to achieve higher than 2nd order accuracy

§  a system of Finite Difference Equations must be solved

§  nonlinear ODEs yield a system of nonlinear FDEs.

