
1

An m×n matrix is a rectangular array of complex or real
numbers arranged in m rows and n columns:

2

Types, Operations, etc.

   Types: square, symmetric, diagonal, triangular (upper
U or Lower L), tri-diagonal, banded, transpose, sparse,
Hermithean, …

   Basic operations: A+B, A-B, AB (generally AB≠BA).
   Square matrices

   Determinant: det(A)
   Inverse matrix A-1: AA-1 = I (I is a unit matrix)

   …

3

Applications

Linear systems of equations

Eigenvalue problem

4

Linear systems of equations

   m>n over determined system (data processing)
   m=n square case (what we will do)
   m<n under determined system

5

Linear systems in matrix notation

6

Two cases for right-hand coefficients

  right-hand coefficients bi ≠ 0
Unique solution if the determinant det(A) ≠ 0

  right-hand coefficients bi = 0
 Unique solution if the determinant det(A) = 0

7

Two fundamental groups for solving (1)
Direct elimination methods – systematic procedures for obtaining
solutions in a fixed number of operations

  Gauss elimination

  Gauss-Jordan elimination

  the matrix inverse method

  Doolittle LU factorization

  …

Direct elimination methods are generally used when one or more of
the following conditions holds:

  the number of equations is small (<100)

  the most of the coefficients are nonzero

  the system is not diagonally dominant

  the system is ill-conditioned

8

Two fundamental groups for solving (2)
Iterative methods – obtain a solution asymptotically by an iterative
procedure

  Jacobi iteration

  Gauss-Seidel iteration

  SOR – successive-over-iteration

  …

Iterative methods are used

  when the number of the equations is large and the most of the
coefficients are zero (sparse matrix)

Iterative methods generally diverse unless thye system is diagonally
dominant

9

Useful row operations
Useful properties for solving systems of liner equations

  any equation may be multiplied by a constant (scaling)

  the order of the equations may be interchanged (pivoting)

  any equation can be replaced by a weighted linear combination
of that equation with any other equation (elimination)

10

Analytic solutions for n=2

a11x1 + a12x2=b1

a21x1 + a22x2=b2

expressing the first unknown x1 from the first equation
x1 = (b1 - a12x2)/a11

and substituting to the second equation we have a
single equation with one unknown x2.

11

Gaussian elimination

  Since there is no such an operator as elimination
neither in C++ nor Fortran we should translate this
procedure to an appropriate numerical method for
solving systems of linear equations.

  Numerical method = Gaussian elimination

12

Let subtract the first equation multiplied by the coefficient a21/a11 from the
second one, and multiplied by the coefficient a31/a11 from the third equation.

13

Repeating the same procedure to the last of two equations
gives

where

14

Doing back substitution we will find x2 and then x1.

This direct method to find solutions for a system of
linear equations by the successive elimination is
known as Gaussian elimination.

15

  zero diagonal elements
  round-off errors
  ill-conditioned systems
  computational time

16

Zero diagonal elements
  The problem may be solved by interchanging the

rows of the system, pushing zero elements to off
the diagonal. This is the partial pivoting
procedure.

  Moreover, reordering the system in a way when
a11>a22>a33>...>ann would increase efficiency of
the method. This is the issue of the complete
pivoting.

17

Round-off errors
  For the each new elimination the Gaussian method

utilizes results from the previous eliminations. This
procedure accumulates the round-off errors.

  Thus, for large systems you may get wrong numerical
solution by doing everything right.

  It is highly recommended to check solutions by direct
substitution of x1, x2, ..., xn into the original system of
linear equations.

18

Round-off errors 2.

  How can we reduce the round-off errors?

  Usually, complete pivoting may be very efficient.

  Scaling, multiplication of the i-th equation by a
constant ci, may also help in improving accuracy.

19

ill-conditioned systems
  a small change in coefficients will produce large

changes in the result.

  In particularly, this situation occurs when the
determinant for A is close to zero.

  The solution may be very unstable, regarding the
way you are solving the system

20

Computer time
  As the number of equations in the system increases,

the computation time grows nonlinearly.
  Systems with hundreds, even thousands, equations

are common in physics. And you may face a problem
of waiting for weeks, if not years, to get an output
from your computer.

  Sometimes iterative methods can help to increase
speed, but generally they are less accurate.

21

The most powerful method!

  Using standard libraries!!!

  Specifically, LAPACK library is a very large Linear
Algebra Package with hundreds programs.

  However, you have to be careful selecting a program
that is right for your specific system of linear equations.

22

Eigenvalue problem

Ax = λx

Structure calculations for quantum systems
(atomic, molecular, nuclear, solid state systems)

coefficients λ (eigenvalues) are unknown!

23

Other form
Regrouping terms gives

Looks like a system of linear equations

For the each eigenvalue there is a unique set of
solutions called eigenvectors

24

One more form
Introducing a unit matrix I, which is

then

25

Finding λ
Solutions for the system
exists if and only if the determinant of the matrix is zero

For a n×n matrix the equation above would give a
polynomial in λ of degree n

The coefficients c are determined through the matrix elements
aij by the definition for the matrix determinant. This polynomial
equation is known as the characteristic equation of the matrix
A. Roots of this equation would give the required eigenvalues.

But, this method is NOT practical unless n is very small

26

Eigenvalues
It has been proved that it is not possible to calculate the roots
of an arbitrary nth-degree polynomial exactly in a finite
number of steps, for n >5
The eigenvalue problem stands apart from other problems in
computational linear algebra.
All methods for finding matrix eigenvalues are iterative.
Most methods for finding all eigenvalues and eigenvectors of
a matrix are based on the fact that the transformation
 A → Q-1AQ
does not change the eigenvalues of A.
Thus "transformation" methods attempt to find matrices Q
such that Q-1AQ has a form that makes eigenvalue extraction
trivial (the eigenvalues can be read off the diagonals of
triangular and diagonal matrices) or at least easier

27

The direct power method

28

29

The basis of the power method

30

31

The inverse power method

32

33

34

The shifted power method

35

Meanwhile in physics

  In physics, we often deal with either symmetric aij=aji or
Hermithean aij=aji* matrices
(a* stands for complex conjugate elements).

  It is important o know that all the eigenvalues for these
matrices are real.

  Symmetric matrix eigenvalue problems are MUCH
easier to solve
we can avoid complex arithmetic
they are generally solved using algorithms especially
 designed for symmetric matrices

36

The Jacobi method
The Jacobi method for the symmetric eigenvalue problem is
no longer considered state-of-the-art (there are other methods
that are somewhat faster).

However, it has the advantage that it is simple to program and
to analyze, and it is no less stable or robust than the more
sophisticated methods.

It is guaranteed to find all the eigenvalues and eigenvectors of
a symmetric matrix in a reasonable amount of time.

37

The Jacobi method
The Jacobi method constructs a sequence of similarity
transformations

where the Q-matrices are Givens rotation matrices of the form

for Givens rotational matrices

38

The Jacobi method
Multiplying a matrix by has the effect of replacing
rows i and j by linear combinations of the original rows i and j.
Coefficients c and s can be chosen so that a zero will be
introduced into the (j, i)th position of A.
However, to preserve the eigenvalues of A, we are forced to
multiply by Qij, which has the effect of changing columns i and
j,
… and the multiplication will normally cause the element just
zeroed (aji) to become nonzero.
This is not a problem if we plan ahead; we simply have to
choose c and s so that the zero is not created until the end—
after remultiplication and postmultiplication.

39

The Jacobi method

40

41

But when we zero a new element of A, a previously zeroed
element may become nonzero. Every time we knock out one off-
diagonal element, others pop back up; so it might seem that our
algorithm is useless.
Fortunately, although our transformed matrices never become
quite diagonal, they do make steady progress toward that goal.

42

43

  Once we have eigenvalues, we may solve the system
of linear equations to find a set of
solutions x = {x1, x2, … xn} for the each value of λ.

  These solutions are called eigenvectors.

  For Hermithean matrices, the eigenvectors
corresponding to distinct eigenvalues are orthogonal.

44

  In general, the scheme above for solving the eigenvalue
problem looks very straightforward.

  However, this scheme is getting unstable as the size of the
matrix increases.

  The standard libraries have many robust and stable
computer programs for solving eigenvalue problem.

  In particularly, programs based on the Faddeev-Leverrier
method are very popular and successful in atomic and
molecular structure calculations.

  The Lanczos algorithm is a good choice for large and sparse
matrices which are common in many-body problem.

45

Many scientific programming problems arise from the
improper use of arrays on computers

  Computers are finite: you can run out of memory or
run very slowly when dealing with LARGE matrices
for storing A(10000,10000) matrix -> 1 GB memory

  Processing time: matrix operation, on average, require
on the order of N3 steps. Doubling the dimension leads to
eightfold increase in processing time

  Paging: when a program runs out of RAM (virtual
memory on HDD). When a program is near the memory limit,
even a slight increase in a matrix size may lead to an order of
magnitude increase in running time.

46

  Matrix storage: the computer stores matrices as a
linear string of numbers. For a(2,2) matrix
Fortran: a(1,1) a(2,1) a(1,2) a(2,2)
C: a(0,0) a(0,1) a(1,0) a(1,1)

  Processing sizes to subprograms: you must watch
that the sizes of your matrices do not exceed the
bounds in the subprograms.
Main program

 dimension a(100)
subroutine One(a)

 dimension a(10)
 …
 a(300) = 8.0

47

Do not write your own matrix subroutines
unless you solve a simple problem.

Get them from a well established scientific library

48

  Short list: free commercial
netlib (meta library/free) nag ($$$)
slatec (free) imsl ($$$)
lapack (free) essl ($$$)
lapack++ (free)

  Extended list:
http://www.physics.odu.edu/~godunov/computing/lib_net.html

