Nonlinear Differential Equations

and The Beauty of Chaos



Examples of nonlinear equations

Simple harmonic oscillator (linear ODE)

2
d’x(1) _ ()
dt
More complicated motion (nonlinear ODE)
2
m? ;(t ) _ he()(1 = ax(t))

Other examples: weather patters, the turbulent motion
of fluids

Most natural phenomena are essentially nonlinear.
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What is special about nonlinear ODE?

For solving nonlinear ODE we can use the same
methods we use for solving linear differential equations
What is the difference?

Solutions of nonlinear ODE may be simple, complicated,
or chaotic

Nonlinear ODE is a tool to study nonlinear dynamic:
chaos, fractals, solitons, attractors



A simple pendulum

Model: 3 forces

 gravitational force
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Equations

d’0 S do
=—,sm(f@)—o—+ f cos(arx
2 , sin(6) » J cos(ax)
, _mgl g _p _r
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Computer simulation: there are very many web sites
with Java animation for the
simple pendulum



Case 1: A very simple pendulum

d’6
dt*

NGO

= —q sin(6)




o(t)




Is there any difference between the nonlinear
pendulum

d’6
dt*

= —q sin(6)

and the linear pendulum?

d*o
dt*
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Amplitude dependence of frequency

= For small oscillations the solution for the nonlinear
pendulum is periodic with

w=wo=\/ﬁ

= For large oscillations the solution is still periodic but with

frequency
W< =+g/L
= explanation: sin(0) = 6 - 1192 .
—_— >
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do/dt
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Phase-Space Plot
velocity versus position
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phase-space plot is
a very good way to
explore the dynamic
of oscillations
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Case 2: The pendulum with dissipation

d’0

dt*

= -} sin(f) - a

do

dt
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Phase-space plot
for the pendulum with dissipation
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Case 3: Resonance and beats

d’6
dt*

= —ay; sin(6) + f cos(ax)

= \When the magnitude of the force is very large — the
system is overwhelmed by the driven force (mode
locking) and the are no beats

= \When the magnitude of the force is comparable with
the magnitude of the natural restoring force the beats

may occur
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Beats

®= In beating, the natural response and the driven
response add:

6 = 6, sin(ax) + 6, sin(w,t) = 26, cos( “ _2600 t) sin( @ -;a)o t)

mass is oscillating at the average frequency
(w+ @,)/2 and an amplitude is varying at the slow
frequency (w-aw,)/2

RCOR
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o(t)

Example: beats
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do/dt




Resonance o

©)
25 ——————————— For a simple harmonic oscillator
20 — 0002 200,101, 07101 the amplitude of oscillations
15 | ﬂ | ” | f\ 1 increases without bound

_ ZSE;A/\/\
E sl \/\/

/\/\V{\VAV/\V/\/\
| U

20+ -

NA2ALi000000000 A2 aN
QOO PRNOOOOREANONDPROOOOONPA~AOGOOOO

25 I A B . L 1 N
0 20 40 60 80 100 120

time

That is not true for the nonlinear

oscillator 20 15 10 05 00 05 10 15 20
17

0



Case 4: Complex Motion

d’6
dt*

= —qy; sin(6) — a% + f cos(ax)

= \We have to compare the relative magnitude of the
natural restoring force, the driven force and the
frictional force

® The most complex motion one would expect when the
three forces are comparable
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Case 4: Chaotic Motion

LT e e e B B B S S B e e

010,02, 0.7 =066 | Chaotic motion is not random!
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Case 4: Chaotic Motion

= A chaotic system is one with
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an extremely high sensitivity
to parameters or initial
conditions

The sensitivity to even
miniscule changes is so high
that, in practice, it is
Impossible to predict the
long range behavior unless
the parameters are known to
infinite precision (which they
never are in practice)
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Measuring Chaos

How do we know if a system is chaotic?

The most important characteristic of chaos is sensitivity
to initial conditions.

Sensitivity to initial conditions implies that our ability to
make numerical predictions of its trajectory is limited.
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How can we quantify this lack of
predictably?

This divergence of the trajectories can be described by the
Lyapunov exponent A, which is defined by the relation:

Ax, | = |Ax,fe”

where Axn is the difference between the trajectories at time n.

If the Lyapunov exponent A is positive, then nearby
trajectories diverge exponentially.

Chaotic behavior is characterized by the exponential
divergence of nearby trajectories.
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Ax,

= |Ax
‘ 0‘6%
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Example of Lyapunov exponent

Even simple equations can produce complex behaviour when there is feedback in the system. For example, take a simple
function like

f(x) =4z (1 —x)

The graph of this function is just an upside-down parabola passing through the (. y) pairs (0.0). (1/2.1). (1.0), as
shown in the following figure:

f(x)
A
1

1

1/2

Graph of the function f

The number 4 in the definition of the function is there so that the graph of the function fits neatly into the unit box; in
other words, if we apply the function to any number in the unit interval ) < x < 1, then we get another number in the

unit interval.
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Now, pick a real number x (| between 0 and 1 (the "initial condition" or "initial point") and apply the function f to this x
to get

x[1] = f(x[0]) = 42 [0] (1 — = [0])
For example, suppose we choose z(()] = ().3; then we get
x[1] = f(xz[0]) = 4(0.3) (1 — 0.3) = 0.84.
Now apply "feedback" to x [1] by applying the function again to get
x[2 = f(z[1]) = £ (f (z[0]))
and keep repeating this process to get

23 = f(@2) = £(f(f (@ [0]):

z[] = f(zB) = £ (f(f(f (z]))).

and so on.

So, for each number n = ().1. 2,..., we put
zn+ 1] = f(xzn]).
This process is called "iterating" the function f with the initial condition (or "initial point") x [0]. The sequence of numbers
z[0], 2 [1]. 2 [2]. 2[3]....

is called the "orbit" of the initial condition x [0)].
25



If we add a small error to the initial point x [()], e.g. we look at
u[0] = 2 [0] + 0.001

and then we look at the orbit u [0]. u [1]. u[2] .... of u [0], we might expect that the small error is not very important.

However, it turns out that a function like the one above tends to amplify small errors until they become large, so the
difference or "error" between the two orbits, i.e. the sequence

wl0] = z[0]. u[l] —z[1]. wf2] — 2 [2]. ..u[k] — z [&]. ...

tends to grow until it is as large as the numbers = [k| themselves.

The following diagrams illustrate this phenomenon: first, we show the orbit of an initial point in blue. We plot the points
x|k| (for k = 0. 1.2 etc.) against the step-number k: this is called a "time-series".
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Orbit of an initial point

Orbit of an initial point
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Orbit of two initially close
points

Orbits of two initially close-by points
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Error between the orbits

Efk]

Error between the orbits
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In fact, no matter how tiny we make the initial error, in most cases it will tend to be amplified until it grows large.
This behaviour, where small errors tend to become amplified until they are as large as the "signal" itself, is called
sensitive dependence on initial conditions.

Another popular name for this phenomenon is the "Butterfly Effect", so-called because the idea is rather like the tiny
flapping of a butterfly’s wings becoming amplified until it causes a hurricane on the other side of the world.

This is because the weather is sensitive to small errors in the same way that the function above is, so that - no
matter how accurately we try to measure the weather right now (the temperature, humidity, etc.) - inevitably small
errors in our measurements are amplified until they make our long-term weather forecasts unreliable.

This effect is one of the hallmarks of "chaos": chaotic systems all have this feature (but not all sensitive systems are
chaotic!) The other hallmarks of chaos are to do with periodic orbits ("cycles", where there is a repeating pattern in
the orbit . [0]. x [1] ....) and "mixing" behaviour (like the kneading of dough, where orbits tend to get thoroughly
"mixed around" throughout all the possible values).
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Growth of small errors

Remember that we begin with a small initial error. Let’s call this £ [0|. So, we begin with
0] =2 [0] + E[0]

i.e. initial condition x [0] and error £ [(). Then we compare the "exact" orbit x[0]. x[1]. x[2].... against the orbit with
the error u [0]. u [1] . u[2] .... and see how the difference between them grows.

In other words, we look at the sequence of errors:
E0] =ul0] —z]0].
El]l =ull] —z[1].
E2] =ul2]—z[2].
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Growth of an initial error

f(x)
)

1

Yy

E[1]

0 [x[0]i 1u[0] 1
»] |e
E[0]
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To see how much the error is amplified at each iteration step &k, we compute

Ek+ 1]
' E'[k]

i.e. we see how big the next error E |k + 1| is, in comparison with the current error ' |[k|. (For example, if the next
error were twice as big as the current one, then the expression above would have the value 2.)

After n steps, the initial error £'[()] has been amplified by a factor of:

.....

'E [n]
E 0]

:' E[n] _lEln—l]
En-1]| |En-2|

Bl
E0]

Now, suppose we had instead just looked at the simple linear function
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Now, suppose we had instead just looked at the simple linear function
glx) = cx.
where ¢ is some constant greater than 1. Then any error is simply magnified by ¢ at each iteration:
gle+F) =clz+FE)
=cx +cF
= g(2) +cE;
g(g(x) +ck) =ec(g(x)+ck)
=cg(z) + () E
=g(g(x)) + () .

so that after n steps, the initial error has been magnified by

K7

'E n]
E 0]

(Note that if ¢ were less than 1, the error would actually be decreased rather than increased.)
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If we want to find out what the value of ¢ is for such a linear function g, we have

In(e) = l In (' Eln] )

n E'|0]
This is the idea behind the Lyapunov exponent: we take a general function [ and use this same formula to see how
much small errors tend to be magnified. We take more and more iterates (larger and larger n) and calculate the

corresponding values for ¢. If, as we let n grow larger and larger, these values settle down to a constant, then this
suggests that the error tends to grow on average like ¢".

Taking the logarithm turns a product into a sum:
1 E [n| 1 E [n] En—1]
—1In = —In ‘
n E 0] n En-1|| |E[n- 2]

- (5 S (|

The Lyapunov Exponent is defined to be the limiting value of the above quantity as the initial error [ [()] is made
ever smaller-and-smaller, and the number of iterations n is sent to infinity.

Sn)
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Notice that
Elkl=f(zlk=1+E[k—-1])— f(xz]|k—1])
so that

Bl [Gelk—1+Elk—1)~ f k1)
Elk-1 Ek—1]

Now, suppose that the function [ is smooth (i.e. we can differentiate it to get /7(xr)). In this case, you should notice
that the expression on the right-hand side looks familiar! Let’s rewrite it like this (puth = E' [k — 1| and = = z [k — 1]

):
EV\] B flx+h)— f(x)

Ek—1] h

If we let i go to zero, then this is just the expression for the derivative! So, as h tends to zero we have:

E [k

m - fl(;l' II\’ — 1])
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Thus we have

) = () Z ()

k=n

:—Zlu | frixz[k—1])|)

(&) (7

Finally, letting n go to infinity (i.e. looking at more and more iterates), we obtain a formula for the Lyapunov
Exponent of a differentiable function f:

k=n

Az [0]) = lim ( ) Zln( | fr(x [k —1])

If this number is positive, then this means that small errors in the initial condition x [()] will tend to be magnified,
and the system is showing sensitivity. (Remember that sensitivity is one of the three hallmarks of chaos.) If this
number is negative, then small errors tend to be reduced, and the system is showing stability.

So, the Lyapunov exponent gives us a way to measure the stability of our system.

37



Order and chaos in the same
system

Even some very simple systems are capable of showing both orderly and chaotic behaviour.

These systems may make transitions (called "bifurcations") from one type of behaviour to another, as some
parameter is varied, rather like tuning-in to different radio stations by turning the dial on a radio.

For example, remember our function
[(7) = dx (1 — ;l’)

whose graph was a parabola through (. y) = (0.0), (1/2. 1), and (1. 0). We can add a parameter p to let us move
the height of the parabola up and down:

fo(2) = (4p) (1 — )
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Graph of function with a
parameter p

f(x)
1

-p
0 1/2 .

Graph of function with a parameter p
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Lyapunov exp versus parameter

40

Lyapunov exponent vs. parameter



Notice the large negative spikes pointing downward. In reality, these spikes in the graph go off to minus infinity,
showing that the behaviour of the function is incredibly stable at those parameter values. Remember that we have
calculated an estimate of the /ogarithm of the error-multiplier: if this value is very large and negative, then the
error-multiplier is very small, which indicates that errors tend to vanish away and the orbit of the system is super-
stable.

Between the spikes, the graph touches the p-axis (so that the Lyapunov exponent is zero): this indicates that these
parameters give an orbit which is on the edge of stable and unstable behaviour. It is here that sudden changes
(bifurcations) in the behaviour of orbits take place.

Notice that the graph stays below zero until it reaches a point near the right hand side of the plot: this is where
sensitivity first appears. As the graph rises above the axis, this means that the Lyapunov exponent is positive so
that errors tend to be magnified. Even so, in this right-hand region there are still spikes where super-stable orbits
appear.
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Chaotic structure in phase space

1.

Limit cycles: ellipse-like figures with
frequencies greater then @),

Strange attractors: well-defined, yet
complicated semi-periodic behavior. Those
are highly sensitive to initial conditions. Even
after millions of observations, the motion
remains aftracted to those paths

Predictable attractors: well-defined, yet fairy
simple periodic behaviors that not
particularly sensitive to initial conditions

Chaotic paths: regions of phase space that
appear as filled-in bands rather then lines
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The Lorenz Model & the butterfly effect

= In 1962 Lorenz was looking for a simple model for
weather predictions and simplified the heat-transport
equations to the three equations

dx

— = 10(y—-x

” (y—x)
& = —Xxz2+28x-y
dt

a - 073

= The solution of these simple nonlinear equations gave
the complicated behavior that has led to the modern
Interest in chaos
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Summary

= The simple systems can exhibit complex behavior
= Chaotic systems exhibit extreme sensitivity to initial
conditions.
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Practice

= Duffing Oscillator

2
%+a%—%x(l—x2) = f cos(ar)

= Write a program to solve the Duffing model. Is there a
parametric region in (Ol,f, @) where the system is
chaotic
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Fourier Analysis of Nonlinear Oscillations

=  The traditional tool for decomposing both periodic

and non-periodic motions into an infinite number of
harmonic functions

= It has the distinguishing characteristic of generating
periodic approximations
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Fourier series

For a periodic function

y(+T)=y()
one may write

27T

Y+ S (a, cos(nax) + b sin(nar)),  @="
T

(1) = 7"‘

s

I
[

n

The Fourier series is a “best fit” in the least square
sense of data fitting

A general function may contain infinite number of
components. In practice a good approximation is
possible with about 10 harmonics
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Coefficients:

the coefficients are determined by the standard
technique for orthogonal function expansion

2 T
a, = ?jo'cos(nwt)y(t)dt,

2.
b, = = { sin(nar) y(t)dt,

2
T

) =

49



Fourier transform
The right tool for non-periodic functions
| -
1)=— (Y(w)e'”dw
y(1) T2m fw (@)

and the inverse transform is

| .
Y(w)=— [y(t)e™dt
() Tom foo w(?)
a plot of ‘Y(w)‘z versus @ is called the power spectrum
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Spectral function

If y(¢) represent the response of some system as a
function of time, Y (w) is a spectral function that
measures the amount of frequency @ making up this
response
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Methods to calculate Fourier transform

= Analytically

4

Direct numerical integration

= Discrete Fourier transform

(for functions that are known only for a finite number
of times t,

= Fast Fourier transform (FFT)
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Discrete Fourier transform

Assume that a function y(t) is sampled at a discrete
number of N+1 points, and these times are evenly
spaced

Let T is the time period for the sampling:
a function y(t) is periodic with T, y(t+T)=y(t)

The largest frequency for this time interval is

w =2m/Tand @, =nw, =n2x /T =n2x/(Nh)
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Discrete Fourier transform

= The discrete Fourier transform, after applying a trapezoid
rule

1 = poy
Y= [ = e
— 00 =1

2.777 2t

P(t) = F fe“"’Y(w)cm_W e ™ Y(w)

n=1
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DFT in ferms of separate real and
Imaginary parts

e” = cos(x) +isin(x)

Y(w,)

h N
EZ [(cos(27kn / N)Re(y,)
+ sinQakn/N)Im(y,))
+ i(cos(2mkn / N)Im(y,)
— sin(Qmkn/ N)Re(y,))]
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Practice for the simple pendulum

Solve the simple pendulum for harmonic motion, beats,
and chaotic motion (the dissipation and driven forces
are included)

+ Decompose your numerical solutions into a Fourier
series. Evaluate contribution from the first 10 terms

+ Evaluate the power spectrum from your numerical
solutions
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