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Non-uniform distributions 

Most situation in physics – random numbers with non-
uniform distribution 

§  radioactive decay 

§  experiments with different types of distributions 

§  … 

Principal idea: Generating non-uniform random number 
distributions with a uniform random number generators 
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 Expectation values 
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Uniform distribution 
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Exponential distribution 
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Normal distribution 

7 



Normal distribution 

8 



Discrete random  variables  
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Binomial distribution 
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Binomial mean and variance 
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Poisson distribution 
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Multivariable distributions 
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Central Limit Theorem 
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Proof of central limit theorem 
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From RAND to p(x) 
•  Random number generators give random 

numbers uniformly distributed in the 
interval [0,1].  

•  How to generate numbers distributed in an 
arbitrary interval [a,b] with PDF p(x)? 
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Method 1: von Neumann rejection 
Generating non-uniform distribution with a probability 
distribution w(x) 

•  generate two random 
numbers 
xi on [xmin, xmax] 
yi on [ymin, ymax] 

•  if  yi < w(xi), accept 
•  if  yi > w(xi), reject 
•  The xi so accepted will 

have the weighting w(x) 
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double w(double); 
int main () 
{ 
 int nmax = 50000;  
 double xmin=0.0, xmax=2.0, ymin, ymax; 
 double x, y; 
 
 ymax = w(xmin); 
 ymin = w(xmax); 
 srand(time(NULL));  
 for (double i=1; i <= nmax; i=i+1) 
  { 
      x = xmin + (xmax-xmin)*rand()/(RAND_MAX+1);   
      y = ymin + (ymax-ymin)*rand()/(RAND_MAX+1);  
      if (y > w(x)) continue; 
      file_3  << " " << x << endl;   /* output to a file */ 
  } 
 system("pause"); 
 return 0; 
} 
 
/* Probability distribution w(x) */ 
    double w(double x) 
{ 
    return exp(0.0-1.0*x*x); 
}  

Example for w(x)=exp(-x2) 
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Example 
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Transformation of variables 
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Transformation of variables 
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Example 1 
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From uniform to exponential 
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From uniform to normal 
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Example 3 
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From uniform to normal 
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From uniform to normal 
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More on integration – importance sampling 
Importance sampling:  more attention to regions 
corresponding to large values of the integrand 

function importance the called is  density The
x over density yprobabilit a is  where
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The Metropolis algorithm 
In 1953 Metropolis introduced “the idea of importance 
sampling” that can considerably improve speed and 
quality of calculations.  
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In the simplest version,                                    where  h is a 
step and ui is from a uniform random distribution  
The step is accepted if 
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