Non-uniform distributions



Non-uniform distributions

Most situation in physics — random numbers with non-
uniform distribution

= radioactive decay
= experiments with different types of distributions

Principal idea: Generating non-uniform random number
distributions with a uniform random number generators



Probability Distribution Functions PDF

Discrete PDF continuous PDF
Domain {X1,%2,Xa,...,%XN} (a, b
probability p(x) p(x)dx
Cumulative Pr=3Y1_4 P(x1) P(x) = [} p(t)dt
Positivity 0<p(x) <1 p(x) >0
Positivity 0<P <1 0<P(x)<1
Monotonuous  P; > Pjifx; > x;  P(x;) > P(x)) if x; > X
Normalization Py=1 2{0) =1

As an example, consider the tossing of two dice, which yields the following possible

values

[2,3,4,5,6,7,8,9,10,11,12].

These values are called the domain. To this domain we have the corresponding

probabilities

[1/36,2/36/3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36).



Expectation values

F1 Discrete PDF

F1 Continuous PDF

El Expectation of function f(x)

b
Eff = (%) = / dx f+(x)p(x)

1 Variance



Uniform distribution

The uniform PDF |

b—a
where f(x) =1ifx>0and d(x) =0if x < 0.

p(x) = (b —x)0(x — a)

Fora =0, b = 1 this distribution gives p(x) = 1for1 > x> 0and 0
everywhere else. It forms the basis for all generators of random
numbers.



Exponential distribution

The exponential PDF

—OX

p(x) = ae
gives positive probabilities for x > 0 with mean value

,u—/dxxp /dxxaew‘:—
and variance

oG o0 2 1 1
2 _ —ox __ _
a—/o dxxzp(x)—u —/0 dx xae = 5 - = —



Normal distribution

The normal PDF
1 - (x—a)2

x) = e 2
p(x) T
gives positive probabilities for any x with mean value
o0 (= a>2
= dx xp(x) =
/ Cdxaps) =

Gaussian integral

o0 2
/ dxe™ = Vo= /dxe—ﬁ = bV27

Differentiate with respectto b =




Normal distribution

= the variance is

o0 1 / o (1‘—(1)2 1 / o X2
2 2 2 2 2
o = dx (x— x) = dx (x—a)“e 22 = dxx*e w2 = b

It is convenient to introduce standard normal distribution with 4 =a =0 and

variance o2 =1
1 - (x—a)2

X — e 2
p(x) N
The uniform and exponential distributions have simple cumulative functions

but the normal distribution have cumulative special function called
error function erf(x)

erf(x) :/ dte "

— 00



Discrete random variables

Suppose we measure some discrete random variable X. If the result of the
measurement x; comes with probability p;, the result x, with probability p, e

n
p=(x) = Zpixi
i=1

where p; is the probability mass function.
All p; must be positive and normalized

n
Z pi = 1 normalization
x=0
Example: for dice game p1 =pr = ... = ps = &

Variance



Binomial distribution

Suppose we are making » independent success/failure experiments with
probability of success being s. The probability of exactly x successes in
n trials is given by the binomial distribution

p(x) = x!(n_x)'s“‘(l—s)_ x=1,2..n
Normalization
n n n -
;p(x) ;x'(n_x)'sx(l _S) 1

Newton’s binomial

n
n!

[@+b)" = Zm!(n—m)'a o

m=1

= ns vari o =ns(l —s
Mean 1 and variance o? 1



Binomial mean and variance

Mean

5) (= 1)—(=1)

" "L nlst (L= (n = D)l 1(1 -
= Yot = 3 e = e L

x=1 x=1

= nsls+ (1 —9)]""! = ns

Variance

n

7 = el = 3 T

x=1

_ )21 g)tD=6D I (] g
= nn=1) 22 (x—=2)![(n—2) — (x—2)]! +Z(x—1)(n x)'—n2s2

x=1

— (n—2)I9(1 —5)(*=2)7y
= n(n — 1)522( y![)('n 92) —)y]! +ns —n%s® = ns(1—ys) 11




Poisson distribution

Consider binomial distribution at n — oo, s = 2 — 0 (with X fixed) and finite x.

n

n! N* A

P = nlggo x!(n—x)!;(l a ;)
¥ A .. —1)...(n — 1) .. A\ —x X
= — lim (1 — —) lim n(n )-.(n=x+1) lim (1 — —) = Z A
x! n—oo n n—00 n* n—00 n x!
= Poisson distribution p(x) = 2;e~

Normalization

x=0 x=0
Mean
— N R I
,u—Zx;e = de Z(x_l)'—)\ee—)\
x=1 x=1
Variance

o* = i(x—l—l—l) ACACIN ,\Ze—*i X FA-N = NHA-N = )
- ! - (x —2)! ; 12

x=2



Multivariable distributions

Assume that we have two sets of measurements X; and X, with probability p;;
of getting x;; in the first measurement and x,; in the second.

Normalization: Y., pj = 1 (N is called sample size).
The means u; = (x1) and uy = (x;) are

N N
pro= (X)) =) xupj,  p = (%)= ) pix;
ij=1 ij=1

A measure of strength of correlation between X; and X is given by the
covariance

N
cov(X1,Xp) = ((x1— p1)(x2 — p2)) = Y pyilx1i — p1) (x5 — pi2)
ij=1
N
= D pixixy — pip = (X1x2) — pign 13
ij=1



Central Limit Theorem

Suppose we have a sequence of independent measurements (random
variables) with the same PDF p(x) with mean p and variance o*. Suppose we
are interested in the sample average of these measurements

X1 +XxX2+ ... +XxXN
N

IN =

where each x; is the result of i — th measurement.

Q:What is then the PDF of a new variable z?
A: It is obvious that the mean p of z is same as mean p = (x;) of each x;.

Less obvious:
oy = % (Central Limit Theorem)

The central limit theorem states that as N gets larger, the distribution of the
difference between the sample average zy and its limit x, when multiplied by

the factor v/N approximates the normal distribution with mean 0 and variance
2
o-. 14



Proof of central limit theorem

The probability to get x; on the first measurement is p(x;), x> on the second
measurement is p(x;) etc.

Since measurements are independent, the probability to get x; on the first
measurement and x, on the second measurement .... and xy on the N-th
measurement is p(x;)p(x3)....p(xy).

Since we are interested only in the sum x; + x, + ...xx and not how it was
obtained from individual measurements we need to sum over all possibilities
with the constraint that x; +x, + ... + xy = z.

Mathematically it can be expressed as

p(z) = > px1)p(x2)...p(xn)0(z = = +X2N+ “”xN)

where §(z = #3250 ) — 1 jf 7z = ARt gnd ( otherwise.

15



For continuous random variables

X1 +Xx+...X
— /dxlp(xl)/dxzp(xz)..../dep(xN) 5(2 _ 2N N)
where Dirac d-function enforces the constraint that the mean is z.

The definition of Dirac J-function d(x) is co at x = 0 and 0 everywhere else such
that

[@x505) =£(0)  forany £(x).
The 4-function can be expressed as

dq

ipx
— €
2m

d(x) =

and then the expression for p(z) factorizes into a product of one-dimensional
integrals

D a . i (x14+x X
=>p(z) = /_q eIQZ/dxlp(xl)/dxzp(xz)..../dep(xN) e & (x14x24...4-xn)

N
— /dq ig(z—p) [/dxp(x) e'q o ] 16



Now we consider the individual integral

Since N is large and ‘i(-’%l is small we can expand the exponent and get

iq(x—p 1 — 2 _ 2 2 2

Returning to p(z) we get (recall lim,, ., (1 + )" = &%)

n

2.2 (z—p)?
27 2N? 27 271'%
N
which is a
normal distribution with mean p (as expected) and variance o3 = ‘j\,—z

Note that the distribution p(z) at large N is normal whatever (smooth)
distribution p(x) was.

17



From RAND to p(x)

 Random number generators give random
numbers uniformly distributed in the
interval [0,1].

 How to generate numbers distributed in an
arbitrary interval [a,b] with PDF p(x)?

18



Method 1: von Neumann rejection

Generating non-uniform distribution with a probability
distribution w(x)

1.0 |-

0.8 |-

|

reject

0.6 -

W(X)

04 |-

|

| g |

accept

0.2 |-

0.0

0.0

25

3.0

generate two random
numbers

X on [Xmln’ max]

yl On [ymln’ ymax]

if y.<w(x;), accept

if y. > w(x), reject

The x; so accepted will
have the weighting w(x)

19



Example for w(x)=exp(-x?)

double w(double) ;

int main ()

{

int nmax = 50000;

double xmin=0.0, xmax=2.0, ymin, ymax;
double x, y;

ymax = w(xmin) ;
ymin = w(xmax) ;
srand (time (NULL) ) ;
for (double i=1l; i <= nmax; i=i+l)
{
x xmin + (xmax-xmin)*rand()/(RAND MAX+1);
Yy ymin + (ymax-ymin)*rand()/(RAND MAX+1);
if (y > w(x)) continue;
file 3 << " " << x << endl; /* output to a file */

}
system ("pause") ;
return 0O;

}

/* Probability distribution w(x) */
double w(double x)
{

}

return exp(0.0-1.0*x*x) ;




Example
3000 -

non-uniform distribution
2500 - w(x) = exp(-x')

2000 - AN

1500 S \\

AN
1000 <

500 - AN

number of random numbers in a bin
/)

\

0 —
00 02 04 06 08 10 12 14 16 18 20

bins
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Transformation of variables

The starting point is always the uniform distribution

w o {1 0<x<I
PX =10 everywhere else

All random generators provide numbers distributed in this way.

When we attempt a transformation to a new variable x — y we have to
conserve probability

22



Transformation of variables

Suppose we have a p(y) different from uniform PDF in the same interval [0,1].
Integrating the above equation we get the cumulative distribution of p(y):

x(y) = / ydy’p(y’) = P(y)

0

If we can invert this equation, transformation of variable

y =P (x)

provides the non-uniform distribution with PDF p(y).

23



Example 1

Suppose we have a general uniform PDF in the interval a,b].

1
_ - a<x<b
PO) { 0 everywhere else
If we wish to relate this distribution to the one in the interval [0,1]
dy
dv =
pO)dy = - ——

The cumulative function has the form

_ [ _y—a _
R )

and the inversion gives the anticipated result

y(x) = a+ (b—a)x
24



From uniform to exponential

Assume that
ply) = e

is the exponential distribution in the interval [0, cc]. The conservation
of probability gives

p(y)dy = edy = dx

The cumulative

y ,
P(y) = / & e = 1—e? = x(y)

v O

IS easily inverted
y(x) = —In(1 —x)

This gives us the new random variable y distributed with PDF e
in the interval [0, oc|. 25



From uniform to normal

If a random number generator gives x distributed uniformly
in the interval [0,1] the transformation

y(x) = —In(1 —x)

gives us the new random variable y distributed with PDF ¢
in the interval [0, oc|.

It may be implemented like that

,;c”: rand()/(RAND_MAX + 1)
= —log(1l —x)

-
l

26



Example 3

Another example is the PDF

n—1)ba™! -
ply) = ((a i)jy),, , fo dypy) = 1

( with n > 1) in the interval [0, oc].

The cumulative

1 , at!
(a+by)" (@a+by)t

,
P(y) = (n— l)ba"_I/ dy’
0

IS easily inverted:

y(x) = 3 |(1—x)7 — 1

27



From uniform to normal

For the normal distribution p(x) e~* it is difficult to find an inverse since

the cumulative is given by the error function erf(x).
However, for two normally distributed variables the trick to go to polar

coordinates solves the problem.
Suppose x and y are two random variables distributed normally

1 _2+2
g(x,y) — ﬂe £

Switch to polar coordinates
r = Vx*+4y?% 9 — arctan -

results in

Normalization check

1 o0 27T 2 1 o0 2
/ rdr/ dpe /% = / rdre 71?2 =1
27 I Jn Jn

28



From uniform to normal

For PDF e~/2 the distribution over the angles is uniform so one can use the
random number generator (rescaled to [0, 2«| interval) whereas the distribution
over r should be related to random numbers in the interval [0,1].

To do this, we introduce a new variable u = % with the PDF p(u) = e¢™™. From
the results of Example 2 we see that it can be generated from random
numbers x’ 3 [0, 1] by

u = —In(1 —x')

With

x = rcosf® = V2ucos@
y = rsin = v2usinf

we can obtain new random numbers x, y in the interval [0, oo] by

x = y/—2In(1 —x') cos b
y = v/—2In(1 — x)|sin#

with x’ in the interval [0,1] and @ in [0, 27]. 29



More on integration - importance sampling

Importance sampling: more attention to regions
corresponding to large values of the integrand

}f(x)
, p(x)
where p(x)is a probability density over x

I =ff(x)dx = p(x)dx

The density p(x)is called the importance function

Then with x; from the distribution with density p

30



Importance Sampling

Since random numbers are generated for the uniform distribution p(x) with x € [0, 1],
we need to perform a change of variables x — y through

x) = [ "oy,

where we used
p(x)dx = dx = p(y)dy.

If we can invert x(y), we find y(x) as well.

31



Importance Sampling

With this change of variables we can express the integral of Eq. (61) as

(y) "F(y(X))
/ Ply )p(y) / p(y(X))

meaning that a Monte Carlo evalutaion of the above integral gives

b)) . 1 o Fly(x))
/;p(y(x)) e z:p(y(x,))

The advantage of such a change of variables in case p(y) follows closely F is that the
integrand becomes smooth and we can sample over relevant values for the integrand.

It is however not trivial to find such a function p. The conditions on p which allow us to
perform these transformations are

o p is normalizable and positive definite,

© itis analytically integrable and

O the integral is invertible, allowing us thereby to express a new variable in terms of
the old one.

32



Importance Sampling

The algorithm for this procedure is

@ Use the uniform distribution to find the random variable y in the interval [0,1].
p(x) is a user provided PDF.

@ Evaluate thereafter

b b
I=/a F(x)dx:/a p(x),;(—:)dx,

(x)
by rewriting
S R(X) ® F(x(y))
. P560% =/, Beon @
since »
S p(x).

@ Perform then a Monte Carlo sampling for
° F(x(y)) F(x(y1))
/:. p(x (y)) SN Z p(x(y:))’
with y; € [0, 1],

@ Evaluate the variance
33



Demonstration of Importance Sampling

1 1 1 3
I:/ F(x)dx:/ dx = —.
0 o 14 x2 4

We choose the following PDF (which follows closely the function to integrate)

p)=2(4-20 [ pxax=1

It
resuitung F(O) . F(1) . 3
p(0) p(1) 4

Check that it fullfils the requirements of a PDF. We perform then the change of
variables (via the Cumulative function)

y(x) = [0 p(x)a' = x (4~ x),

or
x=2—(4-3y)"/?

We have that when v = Nthen ¥y — Nandwhen v — 1 we have ¥y — 1



The Metropolis algorithm

In 1953 Metropolis introduced “the idea of importance
sampling” that can considerably improve speed and
quality of calculations.

I = fw(x) f(x)dx = (b- a)% E w(x;) f(x;)

In the simplest version, x.,, =x,+4(2u,—1) where his a
step and u; is from a uniform random distribution
The step is accepted if
w(x;,,) .
wix)
where «; is a random number from a uniform distributi%n



Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution
was introduced by Metropolis, Rosenbluth, and Teller in 1953. The
Metropolis algorithm is a special case of an importance sampling procedure
in which certain possible sampling attempts are rejected.

The Metropolis method is useful for computing averages of the form

Jdx f(x)p(x)
Jdx p(x)

where p(x) is an arbitrary probability distribution that need not be
normalized.

f) =

36



Example: one-dimensional integral

For simplicity let us considerthe Metropolis algorithm for estimating
one-dimensional definite integrals. Suppose that we wish to use importance
sampling to generate random variables according to an arbitrary probability
density p(x). The Metropolis algorithm produces a random walk of points {x;}
whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability

T(x; — x;) from one value x; to another value x; such that the distribution of
points xo, x1, ....,; converges to p(x).

It can be shown that it is sufficient (but not necessary) to satisfy the “detailed
balance” condition

p(x)T(xi = x;) = p(x)T(x — x;) (%)

The relation (*) does not specify T(x; — x;) uniquely. A simple choice of
T (x; — x;) that is consistent with Eq. (x) is

T(x; = xj) = min(l‘,p(x-’))



If the “walker” is at position x; and we wish to generate x;.;, we can implement
this choice of T(x; — x;) by the following steps:

K Choose a trial position xyi.1 = x; + d; where §; is a random number in the
interval [—4, 6].

1 Calculate w = %’E‘;—“)’l

E Ifw > 1 accept the change and let x;.; = Xal.

A If w < 1 generate a random number r.

A If r <w, accept the change and x;;.1 = Xijal.

[ If the trial change is not accepted, then let x;;.; = x;

38



It is necessary to sample many points of the random walk before the
asymptotic probability distribution p(x) is attained.

How do we choose the maximum “stepsize” §7?

If § is too large, only a small percentage of trial steps will be accepted and the
sampling of p(x) will be inefficient. On the other hand, if ¢ is too small, a large

percentage of trial steps will be accepted, but again the sampling of p(x) will be
inefficient.

A rough criterion for the magnitude of ¢ is that approximately one third to one
half of the trial steps should be accepted.

We also wish to choose the value of xy such that the distribution {x;} will
approach the asymptotic distribution as quickly as possible. An obvious choice
is to begin the random walk at a value of x at which p(x) is a maximum.
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