
Numerical differentiation

We all know what is differentiation:

d
dx

f (x) = f ′(x)

The function f (x) may ba a function known analytically, or a set of discrete data. For
the functions known explicitly the differentiation is straightforward while differentiation
of discrete data requires an approximate numerical procedure.
Most common numerical procedures are based on fitting approximating functions to a
set of discrete data with subsequent differentiation of the approximating function; for
example

d
dx

f (x) =
d
dx

Pn(x)

where Pn(x) is an approximating polynomial.

Even though the approximating polynomial Pn(x) passes through the discrete data
points exactly, the derivative of the polynomial P′

n(x) may not be a very accurate
approximation of the derivative of the exact function f (x), even at the known data
points.
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Numerical differentiation

In general, numerical differentiation is an inaccurate process. Numerical
differentiation procedures:

1 Differentiation of direct fit polynomials.
2 Differentiation of Lagrange polynomials.
3 Differentiation of divided difference polynomials
4 Differentiation of Newton forward-difference or Newton

backward-difference polynomials on equally spaced xi.
5 Differentiation of based on Taylor series. This approach is very useful in

numerical solutions of differential equations.

Three straightforward numerical differentiation procedures that can be used for
both unequally and equally spaced data are:

1 Direct fit polynomials.
2 Lagrange polynomials.
3 Divided difference polynomials
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Accuracy of polynomial approximation

Theorem.
Suppose that x0, x1, ..., xN are N +1 distinct numbers in the interval [a, b]. and
[xj, f (xj] is a set of data. There exists a unique polynomial PN(x) of degree at
most N with the property that

f (xj) = PN(xj) for j = 0, 1, ...,N.

The Newton form of this polynomial is

PN(x) = a0 + a1(x− x0) + ...+ aN(x− x0)(x− x1)(x− xN−1),

where ak = f [x0, x1, ..., xk] for k = 0, 1, . . . , N are divided differences

Corollary (Newton Approximation).
Assume that PN(x) is the Newton polynomial given in the above theorem and it
is used to approximate the function f(x):

f (x) = PN(x) + EN(x).

If f is differentiable N + 1 times at [a, b], then for each x ∈ [a, b] there exists a
number c = c(x) in (a, b), so that the error term has the form

EN(x) = (x− x0)(x− x1)....(x− xN)
f (N+1)(c)

(N + 1)!
.

Not that the error term EN(x) is the same as the one for Lagrange interpolation.
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Direct fit polynomials

The direct fit polynomials are

Pn(x) = a0 + a1x + a2x2 + ....+ anxn

For N = n + 1 points the set {xi, f (xi)} determines the exact nth-degree
polynomial with best fit to the data points. After that, f ′(x) is simply

f ′(x) ' P′n(x) = a1 + 2a2x + 3a3x2 + ...+ nanxn−1

f ′′(x) ' P′′n(x) = 2a2 + 6a3x2 + ...+ n(n− 1)anxn−2

etc.
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Lagrange polynomials

Example: second-degree Lagrange polynomial

P2(x) =
(x− b)(x− c)

(a− b)(a− c)
f (a) +

(x− a)(x− c)

(b− a)(b− c)
f (b) +

(x− a)(x− b)

(c− a)(c− b)
f (c)

f ′(x) ' P′2(x) =
2x− b− c

(a− b)(a− c)
f (a) +

2x− a− c
(b− a)(b− c)

f (a) +
2x− a− b

(c− a)(c− b)
f (c)

f ′′(x) ' P′′2(x) =
2f (a)

(a− b)(a− c)
+

f (b)

(b− a)(b− c)
+

2f (c)

(c− a)(c− b)
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Divided difference polynomials

Pn(x) = f (0)i + (x− xi)f (1)i

+ (x− xi)(x− xi+1)f (2)i + (x− xi)(x− xi+1)(x− xi+2)f (3)i + ...,

f ′(x) ' P′n(x) = f (1)i + (2x− xi − xi+1)f (2)i

+ (3x2 − 2xxi − 2xxi+1 − 2xxi+2 + (xixi+1 + xixi+2 + xi+1xi+2)f (3)i + ...,

f ′′(x) ' P′′n(x) = 2f (2)i + (6x− 2xi − 2xi+1 − 2xi+2)f (3)i + ...
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Equally spaced data: Newton polynomials

Newton forward-difference polynomials.

Pn(x) ≡ f0 + s∆f0 +
s(s− 1)

2
∆2f0 +

s(s− 1)(s− 2)

6
∆3f0 + ...

where h = x1 − x0, x = x0 + sh,
∆(n)f0 = fn − nfn−1 + (n(n−1)

2 fn−2 + ...+ (−1)nf0.
We get

f ′(x) ' P′n(x) =
dPn(s)

ds
ds
dx

=
1
h

dPn(s)
ds

P′n(x) =
1
h

[
∆f0 +

2s− 1
2

∆2f0 +
3s2 − 6s + 2

6
∆3f0 + ...

]
In the second order

f ′′(x) ' d
dx

P′n(x) =
1
h

d2Pn(s)
ds2

P′′n(x) =
1
h2

[
∆2f0 + (s− 1)∆3f0 + ...

]
As n increases, ∆nf becomes less and less accurate.
In practical applications we usually need to know derivatives at the point x0
(s = 0), then

P′n(x0) =
1
h

[
∆f0 −

1
2

∆2f0 +
1
3

∆3f0 −
1
4

∆4f0 + ...
]

P′′n(x0) =
1
h2

[
∆2f0 −∆3f0 + ...

]
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Differentiation of Newton polynomials

Errors: differentiate the error term in divided differences.
For s = 0

d
dx

[error(x0)] =
d
dx

[En(x0)] =
1

(n + 1)!
hnf (n+1)(b), x0 ≤ b ≤ xn

Newton backward-difference polynomials.

Pn(x) = f0 + s∇f0 +
s(s + 1)

2!
∇2f0 +

s(s + 1)(s + 2)

3!
∇3f0 + ...

P′n(x) =
1
h

[
∇f0 +

2s + 1
2
∇2f0 +

3s2 + 6s + 2
6

∇3f0 + ...
]

P′′n(x) =
1
h2

[
∇2f0 + (s + 1)∇3f0 + ...

]
As n increases ∇nf becomes less accurate.

At x = x0 P′n(x) =
1
h

[
∇f0 +

1
2
∇2f0 +

1
3
∇3f0 + ...

]
,

P′′n(x) =
1
h2

[
∇2f0 +∇3f0 + ...

]
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Centered-difference formulas.

Example for x = x−1, s = −1.0

P′n(x−1) =
1
h

[
∇f0 −

1
2
∇2f0 −

1
6
∇3f0 + ...

]
,

P′′n(x−1) =
1
h2

[
∇2f0 −

1
12
∇4f0 + ...

]
Centered-difference formulas.
There is a way to have better accuracy for n ≥ 2 terms: centered-difference
formulas.

P′n(x0) =
1
h

[
δf0 +

1
2
δ2f0 −

1
6
δ3f0 + ...

]
,

P′′n(x0) =
1
h2

[
δ2f0 +

1
12
δ3f0 + ...

]
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Examples.

Divided differences are defined through function values. For specific order n it
is straightforward to express divided differences in terms of function values.
Below we present some results for the first and second orders.

One-sided forward difference

First-order derivative

P′1(x0) =
f1 − f0

h
+ O(h)

P′2(x) =
−3f0 + 4f1 − f2

2h
+ O(h)

Second-order derivative

P′′2(x0) =
f2 − 2f1 + f0

h2 + O(h)

P′′3(x0) =
20 − 5f1 + 4f2 − f3

h2 + O(h2)

Centered-difference formulas

P′2(x1) =
f2 − f0

2h
+ O(h2)

P′′2(x1) =
f0 − 2f1 + f2

h2 + O(h2)

Analytic difference formulas at any order could be derived in a similar way.
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Taylor series.

Taylor series enables us a to derive finite difference approximations for total
and partial derivatives in differential equations.

f (x) = f0 + ∆x f ′0 +
∆x2

2
f ′′0 +

∆x3

6
f ′′′0 + ...+

∆xn

n!
f (n)0 + ...

where f0 ≡ f (x0), f ′0 ≡ f ′(x0), f ′′0 ≡ f ′′(x0) etc.

Taylor series for one variable:

f (t) = f (t0) + ∆t f ′(t0) +
∆t2

2
f ′′(t0) + ...+

∆tn

n!
f (n)(x0) + ...

Taylor series for two variables:

f (x, t) = f (x0, t0) + ∆x f ′x(x0, t0) + ∆t f ′t (x0, t0)

+
1
2
[
∆x2f ′′xx(x0, t0) + 2∆x∆t f ′′xt(x0, t0) + f ′′tt ∆t2(x0, t0)] + ...

The Taylor series for f (x) (or f (x, t)) can be used to obtain difference formulas
for f ′ (or fx, ft etc).
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Derivatives using Taylor series.

Let us choose i as a base point for Taylor series

fi+1 = fi + ∆xf ′i +
∆x2

2
f ′′i +

∆x3

3!
f ′′′i +

∆x4

4!
f ′′′′i + ...

fi−1 = fi −∆xf ′i +
∆x2

2
f ′′i −

∆x3

3!
f ′′′i +

∆x4

4!
f ′′′′i + ......

⇒

fi+1 − fi−1 = 2∆xf ′i +
∆x3

3
f ′′′i + ..., fi+1 + fi−1 = 2fi + f ′′i ∆x2 +

1
12

∆x4f ′′′′i

We can solve for f ′i and f ′′i

f ′i =
fi+1 − fi−1

2∆x
− ∆x2

6
f ′′′(b), xi−1 ≤ b ≤ xi+1

f ′′i =
fi+1 − 2fi + fi−1

2∆x
− ∆x2

12
f ′′′′(b), xi−1 ≤ b ≤ xi+1

Without the remainder terms the results are identical to those obtained from
Newton divided-difference polynomial:

P′2(x1) =
f2 − f0

2h
+ O(h2), P′′2(x1) =

f0 − 2f1 + f2
h2 + O(h2)

Difference formulas at an arbitrary order can be obtained by combinations of
Taylor series for f (x) at various grid points. (Higher order difference formulas
need more points)
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General method for deriving difference formulas by Taylor series.

1 Choose n of the derivative f (n) for which the difference formula should be
derived.

2 Choose the order r of the remainder in ∆xr.
3 Specify the type of difference formula (centered, forward, backward,

non-symmetrical).
4 Determine the number of required grid points ( ' n + r − 1).
5 Write the Taylor series of order (n + r) at the (n + r − 1) points.
6 Combine the Taylor series to eliminate the unwanted derivatives and solve

for the necessary derivative.
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Example

Third-order, non-symmetrical, backwards-biased difference formula for f (x).

Let us take n = 1 and r = 4 so that we need n + r − 1 = 4 points (including
base point). For a backward-difference we can choose points i− 2, i− 1, i, i + 1
so Taylor series for these points have the form

fi+1 = fi + ∆xf ′i +
∆x2

2
f ′′i +

∆x3

6
f ′′′i +

∆x4

24
f ′′′′i + ...

fi−1 = fi −∆xf ′i +
∆x2

2
f ′′i −

∆x3

6
f ′′′i +

∆x4

24
f ′′′′i + ...

fi−2 = fi − 2∆xf ′i + 2∆x2f ′′i −
4∆x3

3
f ′′′i +

2∆x4

3
f ′′′′i + ...

Now we form the combinations

fi+1 − fi−1 = 2∆xf ′i +
∆x3

3
f ′′′i + O(∆x5)

4fi+1 − fi−2 = 3fi + 6∆xf ′i + 2∆x3f ′′′i −
∆x4

2
f ′′′′i + ...

⇒ f ′i =
fi−2 − 6fi−1 + 3fi + 2fi+1

6∆x
− 1

2
f ′′′′(b)∆x3

Phys 420 (I. Balitsky) Numerical differentiation September 30, 2014 14 / 18



Error estimation and Richardson extrapolation

The error can be estimated by comparing the results for two different step
sizes.
This error estimate can be used for error control and extrapolation improving
the accuracy.

Consider a method which approaches an exact solution as

fexact = f (h) + Ahn + O(hn+m)

and for the step h/R

fexact = f (h/R) + A
( h

R

)n
+ O(hn+m)

Subtracting the second equation from the first one we get

0 = f (h)− f
( h

R

)
+ Ahn − A

( h
R

)n
+ O(hn+m)

and therefore

Error(h) = Ahn =
Rn

Rn − 1
[
f (h/R)− f (h)

]
Error

(
h/R

)
= A(h/R)n =

1
Rn − 1

[
f (h/R)− f (h)

]
⇒ Extrapolated value = f

( h
R

)
+

1
Rn − 1

[
f (h/R)− f (h)

]
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Example

We saw that Taylor Series of f (x) about the point x0 and evaluated at x0 + h and
x0 − h leads to the central difference formula:

f ′(x0) =
f (x0 + h)− f (x0 − h)

2h
− h2

6
f ′′′(x0)− h4

120
f (5)(x0) + ...

This formula describes precisely how the error behaves. This information can
be exploited to improve the quality of the numerical solution without ever
knowing f ′′′, f (5), ... (Recall that we have a O(h2) approximation)
Let us rewrite this in the following form:

f ′(x0) =
f (x0 + h)− f (x0 − h)

2h
− h2

6
f ′′′(x0)− h4

120
f (5)(x0) + ....

where
N(h) =

f (x + h)− f (x− h)

2h
The key of the process is to now replace h by h/2 in this formula.

Phys 420 (I. Balitsky) Numerical differentiation September 30, 2014 16 / 18



We find

f ′(x0) = N(h/2)− h2

24
f ′′′(x0)− h4

1920
f (5)(x0) + .

Look closely at what we had from before:

f ′(x) =
f (x0 + h)− f (x0 − h)

2h
− h2

6
f ′′′(x0)− h4

120
f (5)(x0) + .

Careful substraction cancels a higher order term: take

4f ′(x0) = 4N(h/2)− 4
h2

24
f ′′′(x0)− 4

h4

1920
f (5)(x0) + ...

add

−f ′(x0) = −N(h) +
h2

6
f ′′′(x0) +

h4

120
f (5)(x0) + .

get

3f ′(x0) = 4N(h/2)− N(h) +
h4

160
f (5)(x0) + ...

Phys 420 (I. Balitsky) Numerical differentiation September 30, 2014 17 / 18



Thus

f ′(x0) = N(h/2) +
N(h/2)− N(h)

3
+

h4

160
f (5)(x0)

is an O(h4) formula.

Notice what we have done. We took two O(h2) approximations and created a
O(h4) approximation. We did require, however, that we have functional
evaluations at h and h/2.
This approximation requires roughly twice as much work as the second order
centered difference formula.
However, the truncation error now decreases much faster with h.
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