(Chapter2)  Electrostatics

One of the fundamental properties of matter is “charge”
« Charge is quantized
+ Charge comes In the two types (- and +, by convention)
« Net charge cannot be created or destroyed (conservation of charge)

To begin, lets consider the case where the charges are not moving
= electrostatic

Consider two charges: g and Q R_~0
o
q
The force on Q due to g is: —
F=—L 24
Coulomb’s Law se——=N
| 4mg, R°

= 3 -12 2/ 2
Permitivity of free space: 5 =885x10°°C" N

R=F-7
G F-F
F=7i

What about multiple charges? = Use the principle of superposition;

The interaction between any two charges is not affected by
the presence of a third charge.
= F,=F+F,+..

ot

Problem 2.1. Twelve equal charges, g, are situated at the corners of a regular
12-sided polygon (for instance, one on each numeral of a clock face).
(a) What is the net force on a test charge Q at the center?
(b) Suppose one of the 12 g's is removed (the one at “6 o'clock”).
What is the force on 0?7 Explain your reasoning carefully.

(a) .

[.: — Z Fo— 0 by the principle of superposition
1

(b) Removal of ¢ is equivalent to addition of —¢
v = net charge at “6 o'clock” is 0.

Electric Field

Recall Coulomb Law: The two charges ¢ and Q are not touching.
There is no contact force. So how is there a force?

One way to answer this question is that charge g disturbs
the space around it.
This disturbance is known as field, £.

Charge Q then interacts with the field created by ¢ and experiences
a force given by:

F=QF
Using Coulomb's Law: —
= 1 q &
E=—0 %
‘ 4re, R° |

For multiple charges, simply add

Charges discrete  — Sum

[

Charges continuous — integrate

FF)=——03 s,
4me, T W]

EF)=——y L,

4rne, =R,

[}

EG)-—— [ Y5
4re,” R”

dq depends on the geometry of the system.




Continuous Charge Distribution

(a) Line Charges ~ dg —> Adl'

|
charge/unit length

(o) Surface charges dq — oda'

"charge/unit surface area

(c) Volume charges  dq —> pd'

'charge/unit volume

Note: Be careful about 93 !

‘R has magnitude 1, but points in a direction that depends
on the location of dg and field point defined by 7.

Problem 2.7. Find E(z) a distance z from the center of a spherical surface
of radius R, which carries a uniform surface charge density G.

Case: (1) Z<R
(2) z>R

By symmetry £ is along Z.
Let us work in spherical coordinates.

dq =oda = oR*sin &16U¢ (spherical coordinates)

R=R-3
From the Law of Cosinus: i = R* + 2% —=2Rzcosd .~ Bysymmetry:
z=Rcos @ " E ioat) = E o) = 0
cosy =————
R 7 B= [dE,= [dEcosy

surface surface

cosy

" ame, ) (R + 27 —2Rzcos6) R
j d¢=27
2R % (z—Rcos8)siné

4ze, 4 (R:+zl—2chose)“

;J- :i&w[oﬁ:singl [z=Rcosé
( L

]

let u=cosf = du=-sinbdb 0=0 u=+1
O=r u=-1
E < 27R%o | z-Ru
A 4re, ? (R:+z:—2Rzu)“ Look up integral in the Tables!
ZZmQ:afl zu—R T
4me, |27 R +2°=2Rau? |,
__1 2tk [(z=R)_(-z-R)
4re, z* l I- RI |:+R|
1 272R* 1 4zR* 1
z>R| E.=—o ”R:a[2]=— LS S

P 4ns, z dne, Z° 4ng, 2
[ 0 2 t_.u_—ﬁ
As ifthe g isin

‘ the center of the sphere

Problem 2 Find E’(F) inside and outside a sphere of radius R which

carries a uniform volume charge density p.

4 3
qg=pV=piR
o pol @ AR [ hsimeqsn |
S a5, 7 3%, Linecenerofine sphere |
e inside [= 1 Q,u?&,-. B i
4zg, r V. oV
(4/3)mr » 4.3
e = =—qg=-m
Qe R = TI=3 P
——

Divergence of Electric Field

We can always calculate E by direct integration. But ... for problems
with symmetry there is an easier way.

Consider the electric field flux through a surface: @, = I E.da

For a point charge: §E-d§ _ 1 i,—F~(r:Sin 9d9d¢f)= q
4re, ro 8,

This is the general result:

q
The flux through any surface enclosing the charge is =N

For multiple charges (by superposition)

CJ.E -da = % Gauss’ Law

o




if we use the divergence theorem

(R

r EO

andwewrite Q.. = .fpd T
4

= f(@f)dr:ijpdr

v &y

=|v.E=£
20

Using Gauss' Law greatly simplifies calculations where
a symmetry is present.

So ... pick a “Gaussian surface” that exploits the symmetry
of the problem.

Problem 2.14. Find E(F) inside a sphere which carries charge with
density proportional to the distance from the center:
p=kr (k is constant)

Choose as a Gaussian Surface a spherical shell of radius 7. [§E_' -da = o,

E(4:zr:)=gi‘|‘pdr

&

= si [ (kr'Yr sin v déidg)

4
=ﬂjd,,,-s I 4nk
g() 0 E\)

2
E—,_ 1 4 r
=
4nre, £o

)

Curl of Electric Field
The following holds for any static charge distribution:

It is straightforward to show that CJ‘E-' dl =0
Then, applying Stokes' theorem J.(‘-7 x E) da = ﬁEﬂ .dl =0
]VxE:O

The electric field is a vactor quantity whose curl is zero

3

From the theory of vector fields:

If the curl of a vector function (;;) vanishes everywhere,

then 4 can be written as the gradient of a scalar function.
= Vxd=0 o 4=Vf

Electric Potential
Since VxE=0 = E—‘:,—€7V

Where v (F)= fé“ dl
r

scalar " reference point (arbitrary)

minus sign is just by convention

from which it follows

v(p)- V(&):-hjé-di

The actual value of the potential at a point is arbitrary
(and, therefore, has no physical significance).

Itis only the difference in potential that is physically meaningful
By convention (and for convenience) we usually let reference point
tobeat 9 and set V(oo) =0,

The potential obeys principle of superpositon = V' = Z 8




Problem 2.23. For the charge configuration: k
hollow spherical shell with  p = — asr<b

0
Find ¥ at the center: V(o):—jl?-dl-

Calculate £ in3 regions: //\

(B r<a Q=0 = E=0

(i) a<r<b j.‘:‘dE:%

£

E(4m':)=£—jpdr =l

-a)

@ rsb  Epn)=p-a) E- —
B :

b ©0

2.3.3. Poisson’s Equation and Laplace’s Equation

Recall E=-VV and V.E=£ = V(—?V):ﬂ
g() 81!
Gauss Law In
differential form
Poisson’s Equation 2y Yol

e &,

Laplacian Operator

The special case of Poission Equation p=0i is known as

vy =0]

Laplace’s Equation

(=]

2.3.4. Localized Charge Distribution

1 q |5
Ame, B )?-Ir r"|

For a point charge: V( )=

For many charges:
discrete v (,-) 1 i 9

4ne, T R, |
continuous ‘V(F)—L dq

4me, ° R
where dq could be a line, surface, or volume charge.

Example: volume charge density p '
VF)=——| 2

4re, R
/

volume integral

2.4.1. The Work Done to move a Charge
Energy conservations

How much work is required to move charges around?
B b
Recall: = 37 - 7
W= [F-di = [QF)di
L g ‘ fo;ce you exert

(i i " h
‘ [Fedi :]’F-dl‘ [ Fedi = l"(ﬁ)-l’([i)]m
ik . .

=Q[—j£‘~dl_}
w=olrk)-r@)]

This is the work you must do to move a charge Q from point a to point b.

2.4.2. The Energy of a Point Charge Distribution

Potential Energy
Don't confuse “potential" and “potential energy"!!!
How much work is required to produce a configuration of charges?
Begin with all charges at o0 :
* Bring in charge g; - no work
*Bringincharge ¢y W, =g¢,[V(7)-V ()= [/z;ll—l
R 4re, R,

"Bringincharge ¢; W, =g, [(%;‘h *41 \l(/,
TEg Ry R

And so on.
The total work is then the sum of W for all charge pa|rs

o2 z
1 1 n q,q, 7E,
2 47[80 =1 =l R

j#

or W ==

y

4,
R,




Potential at 7, (location at g;)
due to all other charges.

i=1

Or, in terms of potential ‘W _ % i g ‘; (Z)

Potential energy of the system
for discrete charges.

2.4.3. The Energy of a Continuous Charge Distribution

1 (o=2V E)
W_EIdeT (E=-9v)

But the potential is related (through its gradient) to the electric field.

We can therefore show

W = & IEsz Energy stored in

Problem 2.34. Consider two concentric spherical shells of radii @ and b.
Inner shell carries charge g
Outer shell carries charge ¢

Calculate the energy of this configuration. i _— .
w== IE‘(Ir
>
alpoce
1% approach:

Accounting for the Gauss' law,

define the limits of integration (a ~FS b)

‘E“l =0 (elsewhere)

2" approach:

Consider electric field as = L =
a sum of individual fields E=E + E,

E*=(E, +E,] = E? + B2 +2E, -E,
F;[( Wi = W =W+ W,+g,[E - Edr

ol gpace

Electric Field
all space
1% approach:
. i 2 dr [Ki'_% J’E:er
wlufl 4 ridrsinéd6d¢ Lo
2 Y\ 4rne, r

W= %(LJ:Iwism &[BI(%)zr:dr

4rne,

2 b
= W=&(J_] o) ar
2 \ 47e, / o o

from integration over @ from integration over &

_4a (1-1]
8re,\a b

2" approach: o
=l'V] +W’2 +€,,J‘E‘ 'EztlT (u';f:. I[f‘dr

W, :iJEx:rlr:& £ I(l} amidr=—L
2 2\8xz, ) \r 87g, a

£\3

W, = %IEfdr = %tL][(lJ 4adr = = L

4me, ) L\ ne, b
= 1 §.a
E e G Field due to Inner sphere
o
E; :-“l—ii r>b Field due to outer spherical shell
= = 1 \E—q
= E-E=—rm| — (r>5)
are, ¥
r 1 \2 1 q:
& | by bydr =~ —— | §'6, | 4mr" —dr=—
f ' L“Im;J s J war 4re b

w -4 l.l_z]w_:(l_l)
“ 8rme,la b bl 8ms,\a b

2.3.5. Electrostatic Boundary Conditions

Consider a surface which carries a surface charge density (charge/untt area)

What is the electric field near the surface?

S

L o

I

Use the Gauss' Law to determine E.

For a Gaussian surface make a little box, called a “Gaussian pillbox"

The “box top” (area A) is
above S and the “box bottom"
(area A) is below S.

oA
&
Only the top and bottom of the box contribute to the integral
(in the limit of an infinitesimal width box)
) oA
= EpnA-EpAd=—
Eﬂ
o
L L =
= Epoe = Eptos =—

0

Now apply Gauss' Law lj'E da = er/ -
&

There is a discontinuity in ‘E‘ across a boundary containing
asurface charge.

What about £ ? (j‘é-(ﬂ—zo
E:Imvcl - Efii-lalv[ =0

= E! I=E] 1

above' below




Combining £* and E” components, we can write electric field
in vector form

- - o .
=—

0 Unit normal

above — Hbelow

What about potential? b
¥ bove Vbclaw = jE -dl
a

al

Butin the limit of 1= J"”)—’ 0

But F=-V = £ G .
Ba  E=-VK (E B n}
&
= = g .
A Vabow . (_ % Vbclmr ) ===
2
= = T ..
\ above v Vb(‘/!)h' s—=—MN
EO
a
én
V= i
on
aVﬂhmw _ aVlwlaw = _2
on on & |

The integral vanishes: I/abow‘ - Vbclow =0
Vnhove = Vbelow
2.5.1. Conductors

Basic properties of a conductor:

(I) E=0 inside
(1) p=0 inside vecause V-E=L = p=0 if E=0

(ll) net charge is on surface
(V) a conductor is an equipotential
(v) E is L to the surface, just outside

2.5.2. Induced Charges

If you put a charge ¢ next to a conductor it will induce charge:

*q

Cancel electric field inside

2.5.3. Surface Charge and the Force on a Conductor

Recall: [Eahow _Em-/uu = Egﬁj

0

Fora conductor, 7 =0, so i = 0

= g .
——N

0

inside

= E=

above

And, if E,,,,=0, then V¥V, =0 (its an equipotential). So,

e % o Ve O
above o
& on &
or rearrangin av
gg g OV
on

Problem 2.47.
Consider the following charge configuration: Two infinitely long wires

running parallel to the x-axis with uniform charge density +A and -A.
(a) Find the potential at any point (x,y,z), using the origin as reference.

(b) Show that the equipotential surfaces are circular cylinders, and locate
the axis and radius of the cylinder corresponding to a given potential V.

(a) Consider a single wire first (see problem 2.22) .

Gz Laa _H
§E-di= e;(.l_

&g g o
Bl = (B g
& 27e, s

We cannot set reference point at infinity because charge extends to .
So, let's pick an additional reference point at radius a.

s L A (s
] V(s)=-(E-dI=- == =
= V(s) J’E dl !2::5,, —ds T, ln((’]




Hence, the total potential at some point P is

A S_ s, A s_
= Inf = |=In| = ||= Inl 2=
2ne, a a 2me, \s,
In Cartesian coordinates: . s,
-4_,_,3»—}'

-A 4 a +A

/2

5,i= [(y—a): +::]"
= [(y+a):+z:] r

e [fee2]

T
(b) So, what is the equipotential (e =iz

surface at V'=V,? ( _ A n’ (y+af+z D
" 4rs, l() —af +2*
4ne ¥, =1 (y+a):+::1
A (y-a)f +#2° |

eat;{.x:ol'a/), _ (y+a)2 +2?

(y-—a)ia-::2
(v+af +2 =k|(y-af +2]

YV +2ay+a* +2° =k + 2%kay—kd —kZ =0 }x(-1)

1A |
=const=k k= e‘f’f"ﬁi}

Vk=D)+22(k=1)+a*(k=1)-2ay(k +1)=0 }:(k-1)

Y+ +a —Zay(kH)

s

k+1
Then we can write ) +2? +a” —2a) -1 =0 as:

) -~ =
(y =y )' + 22 = R2 This is equation of a circle.

Therefore, for two infinite line charges, the equipotential surfaces
are (circular) cylinders of radius R offset from the origin by v,

- letithe R
. (k¥T+k=1k +1=k+1)  , 2k-2
R = = =a =
(k-1 (k=1)"
']
B 2ak
fe-1] |
Let us express ygand Rinterms of Vg, A, a (¥, >0)
Andold 41 278V,
xﬂ=nllz+: aem,,i,ilmzcoth =50
- e o -—
2rel,
cosh e
el
o= B
smh( 2260, J
Similarly,
2avk e 2
= =2a =T =a15aT L g
T e P 7]
R= ”

. [ 2rel,
h 0" 0
sin (—1 )




PROBLEN

PROBLEM 2
EXECUTE

W ),

V(r)=~j£-m-=-j’Ll,dmL(l] = l-o) 4 1
. 2 4ng, r* 4rng,\r), A4me,\r 4ne, r

1

Forr<R:
r R r
V(r)=-[E-dr=- [E-dr- [E-dr=
o - R

outside inside

R r
:—J’ Li‘ r—-“ 1 i_‘r ly =

\drg, r° w\471e, R°
_L(l)R_L 2Y g (1 o 1ri-R)
dre,\r). Ane, R\ 2 ), 4ne,\R R 2

sededslgu L qlab g 115 * )
4re, 2R R 4rg, 2R R-

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere
whose radius is R and whose total charge Is ¢. Use infinity as your reference point.
Compute the gradient of ¥ in each region, and check that it yields the correct field.
Sketch V(r).
-
IDENTIFY | By definition V(;) =— J'E -dl (Eq.221)
Relevant
| CONCePts | Reference point in infinity. e
From problem 2.8:
= 1 g,
E=———"-F  forr>R (qutside the sphere)
4rme, -
- 1 gr.
E= F for <R (inside the sphere)
4re, R
EVALUATE T L W LAy T S
—_— - & rd@  rsinb d¢
When 7 R =l becavse of xpherical symmetry
= é(1). | S = 1.
VI ==1 —| = r:——q ,r:E:—VV=—q —F
4re, or\r 4re, r- 4re, r-
When r < R

Gy-_a Lof; r ;:LL(_Z_f);=
4re, 2R or R 4rme, 2R\ R°

PROBLEM 2,32
IDENTIFY

Relevant  (a) (Eq. 2.43)
concepts

p - charge density (uniform)

1
W=— 'fpV(r. 0,p)dr V - potential inside the sphere
2 Sphere (in spherical coordinates)
volume dt - element of the volume

From Problem 2.21 (* < R):

V(r6.0)=¥(r)= 4,:50 ﬁ( B ;J

Due to symmetry, spherical shell of radius  and thickness dr can be used:

dr =4m’dr

| ProBLEN 232 S

Problem 2.32 Find the energy stored in a uniformly charged solid sphere of radius R and
charge @. Do it three different ways

(2) Use Eq. 2.43. You found the potential in Prob. 2.21
(b) Use Eq. 245 Don't forget to integrate over all space.
(¢) Use Eq. 244, Take a sphenical volume of radius 6. What happens as a — ao?

(@

Lo akd (b) €q.245 7 = £0 J‘Ez(r 0,0t
Concepts D T
(cont) “all

Spherical symmetry \ space |

From problem 2.8:

— E= Lii for #> R (outside the sphere)
E y 4re, r°
-_ Fe 1 [
S R " for r < R (inside the sphere)
0
£, 2 R
(€) (Eq. 2.44) w==tl [Edr+ [VE -da
2 enclosed
volime surface

* Enclosed volume or enclosing surface: a>R
* At the end we will let a—wx




PROBLEM 2 32 (cont.) ";)’
SET UP & EXECUTE

i 2
9P |y 1 X ap s Rk
45,R|"3 R*S|  4gR 5 sg,

1£ 1 gq Yo, 1 1 g, 8. )
w1l L3 L mar=Lp-L @ 4rf[3-L 2
ZIp4n£0 ZR( R'] 2" 4ze, 2R I, R

PROBLEM 2 32 (cont.)

| EXECUTE (cont.) (b)
d dr
50 2
= J. msldc4m dr+ J. oumde4m dry=

PROBLEM 2 32 (cont.) (©

EXECUTE (cont.)

w=2 [Edr+ [VE da |=
enclosed

volame surgace at
r=a r=a

da
{J’ E; udmr dr+f E} admidr + I iside Eousiae?” S 0d6d ¢

i

~|<-

J
[

2 R
_Gf_a 4,,{L+l_l+l} -1 3q
2 \4zng, SR R a a) {4ms, 5 R

1 g 1
‘d 4 “d i" | sinédd | d
L r+( )(/ J’ r r¢[4n“a](4" J: j J’H’[

EVALUATE |




PROBLEM 1.58

Check the divergence theorem for the function

V =rsin6F +4r° cos 06 + r* tan 69,

using the volume of the cone shown in the figure (the top
surface is spherical, with radius R and centered at the origin).

PROBLEM 1.58

z
[ SET UP
V=Vi+V,0+V,9,
V.=r*sinf V,=4rcos V,=r"tanf

= = v,
v-v:li(r=V,)+ d (sin 6, )+ —— 2
or rsing 66

rsing g
1 055 . 1 . 8 1 8 (.,
=——\rrisind)+ —(sin 647° cos 8 )+ —— *tand)=
r 6:'(rr s ) rsin@ﬁﬁ(bm s ) r5m96¢(r ! )
=—]—,4r"sin0+ ] 4r:(cos:9—sin:9)+0=
re rsiné
= ,4'. (sin:t9+cos:0—sin:0)=
siné
=4rc9$’9 s
sind
EXECUTE & ‘z
I,= [4rdr=R*

0

2,

g ml+cos 26
I;= [cos*0do = [ ——=—2do
0 0 .

o ® X
o6 o4 sm(—)
I.=lfd9+-1— Jcos(@)d®=l+ 8).% ﬁ i
P27 4y 12 8

s 12

I, = :quﬁ =27
0

volume

[@-7)ar =R“(27r)ﬁ(27r+3\/§)== ”1’; (27 +3V3)

PROBLEM 1.58

IDENTIFY  (a) Green’s (divergence) z
Relevant

pmekieni theorem (Eq. 1.56):

1
J-(V-V) drt = (‘j‘ V. da | 300
all enclosed element element
volume v of the surface S of the y
enclosed
volume surface 0

(b) Volume (“ice cream cone”) is a conical section of

the sphere with surface composed of a “cone” and an
“ice cream”.

( ¢ ) Geometry of the problem and function formulation
suggest spherical coordinate system.

PROBLEM 158
SET UP

Defining the enclosed volume in terms
of spherical coordinates:

r:0—>R;, 8:0-7/6; ¢:0—>27r\

30° ':
Volume element | ; y
dr=r’sinf dr d6 d¢ « A

EXECUTE ¢

[ @P)ar= | (4r°;iz;](r1sinadrdad¢)=

volume volume

7/6

= ?4r3dr J.cos2 9d91jd¢ =13l
0 0 0

PROBLEM 1,58

SET UP & EVALUATE

We check the validity of divergence theorem by showing

that the right-side Integral gives the same value as the
left-side integral

JO7)ds = § 7 @

y
all enclosed element element
volume v of the surface S of the
enclosed
volume

surface

Enclosing surface can be split into two surfaces, (a) the “ice cream” and (b) the “cone”

We can define these two partially enclosing surfaces in terms of spherical
coordinates as follows:

The “ice cream"”

r=R 6:0->7/6 ¢$:0-2r

The “cone”

r:0->R 6=7/6 ¢:0>2r1




SET UP & EVALUATE EVALUATE
Note that the surface elements of two (j‘ V. di =
surfaces are different: bt
The “ice cream” surface of the
surface
a=R>si F=dar y = =
da = R"sin0d0d¢r = dar _ '[Vvda+ IV-da=ll+13
V.di =V,da=(R sin0)R sin0d0dg)= s one
3 /6 2 6,
=R'sin* 0d0d¢ I=R* jsinzwajd¢=zxk‘j%0=
0 0 o
The “cone”
‘ [z 3 zR* 3 S e
_— s wR\ G- ) e |3 (Pda=1+1
da = rsin 8drd ¢ = da,0 12 8 6 2 J 1772
V-di=V,da, =(4r* cos6)rsin Odrdg) =3 r’drdo 8o R
atléy ( X ¢) IE=J§J‘r'er’d¢=—” 3\/3 ”RA
7 0 ] 6 = 12 2” <+ 3\/3
[ ProBLEM 222 " A R
IDENTIFY S r,=r
Problem 2.2 F= i’ Gt f=lfaoh
{a) Find the clectric ficld (magnitude and direction) a distance ¢ above the midpoint between 472'8 9’{ < 7, _F\
two equal charges, g, a distance d apant (Fig. 2.4). Check that your result is consistent with - 0 !
what you'd expect when : 5 d Superposition of vector [ Symmetry
(b1 Repeat part (a), only this time make the right-hand charge —¢ instead of +¢ ) E, E;
SET UP Draw a diagram R
A
e EXECUTE B _ (E,, + E, )i +(E,. + E,.)%
x
‘ Smmery. £ = _E,, . E, = a 4 | 4 g
! E.=E, "E. =2E, 2 =
q di2 | d2 g 4\ ) R
E,, =——==—=c0os8 #?=: +{?) cosé = =
2 w2 9
Figure 2.4 ~ dng, R 1 q z ' z +(£)
E=E.2=2E z=2 = = z 2
4re, 3 d\ ) d 2
g e b z°+ (5) 10

IDENTIFY| 55 _ 1 g R GoBh
EXECUTE (cont)| | 2gz . 4re, R? 7, —F
= -2 ) )
4”50 d 2\3 Superposition of vector £ Symmetry z [ _E
2
z'+| = .
( 2 j SETUP | Draw a diagram =
N
EVALUATE |EXECUTE Superposition:
z>>d=d—>0 E:(E“+E:t)£+(El:+E::)2O _ .
.= 1 2gz ., 1 2z, 1 2. Symmety: g ==E,, . E,=0 q 4 d 4
ﬁ(llmE)d_m:— SZ= = =52 2 >
4re, (J)S 4re, z 4re, z E,=E, . E, =2E,
i = i 4 siné \)z-'=~1+(ﬁ1_):-s,'ng=%=_d—
Far away, two charges look as a single charge 2q Y 4xe, W’ h 2)" R 4
: {5)
11 12




PROBLEM 2.2b (cont.) EXECUTE (cont.)

~ R . 1 q d A
E=EXx=2E x=2 7 =X
' 4/2'80 . (d d
2" &= 2.0z +| —
2 2
- d "
E= : g X
4re, 1\3
, (d
P+ =
2
EVALUATE ~ d .
Xz2>>d=>E= q—x
4re, z
d—>0=E=0.

From far away, the field looks like a the field of a dipole with dipole moment qd 13

Symmetry
SET UP

EXECUTE

larger
cube

__4q
£ 24g,

“Gauss’ Law”

(Dmml = Cj-(Eda):

SMMEYY: @,y = (4x6)D,, =240,
of

21 —- - -
PROB B[ IDENTIFY | 15 of the electric field E o,= IE-da
Q s
encl

Through a surface §

<§E-d5=

Draw a diagram (a larger cube where q is at center)

€

4
6'0

smaller
cube

EVALUATE

Problem 2.10 A charge g sit st the back comer of a cube, a5 shown in Fig. 2.17. What s the
flux of E theough the shaded side?

Problem 2.16 A long coaxial cable (Fig. 2.26) carries 3 uniform volume charge deasity p on
the inner cylinder (radius @), and & uniform iurface charge density on the outer cylindrical
shell (radius b). This surface charge is negative and of just the right magnitude so that the
<ahle as a whole is electrically neutral. Find the electric ficld in each of the three regions: (i)
inside the inner cylinder (s < a), (i) between the cylinders (@ < 5 < b), (iti) outside the cable
(3 = b). Plot |E| a» a function of s

Figure 2.26

PROBLEM 2.16 [ERSS=.

Relevant
concepts
SET UP
W

w)

(]

“Gauss’ Law”

Draw diagrams with Gaussian surfaces

Gaussiaz rurface

§E-dﬁ=

&0

Cylindrical symmetry; volume and area of a cylinder

Q encl

16
EXECUTE
pVGau,wan 2
()... JBedi=F 2m.1=Sot i _prvi
o 5 4 £,
Gaussian
surface
e E=L
2g, .
PV chuge 2
7 volume |
(). §Eedi= E 2y =Led o wime _pml
Gaussian £ & &,
surface
E=£_;
,,,,,, 23
fio = e . Qm/ﬂu‘-‘ — AL -
(iti)... $Eedd= E-2ns.1=Soa - St “Coor _ . £
Gaussian £ &y 18
surface




PROBLEM 2

ont.) EVALUATE

PROBLEM 2.18 TﬂEr:JTlFY From Problem 2.12 electric field inside a sphere with

Relevant uniform charge density P is proportional to the radial
concepts | gistance from center:
= ~_Pra P o
uperposition E="—p="L%
3¢ 3¢
SETUP Draw vector diagram . 0 0
.‘* P is a point in the
r+ '© ) overlapping part
o - -
_® d=r -r
EXECUTE
= - — P (- . L =
E=E +E =L (f -7)="-d
3g, 3g,
EVALUATE . .
d = const = E = const a

Apply Gauss law E-4ﬂ7‘2 =Lﬁ”r3p

gO
Solve for E (direction is always radial due to spherical symmetry):
= 1 ~ P -
E=—prr=—rF
EVALUATE 380 380

4
le = V.\'pherep = nR3p = pE———

E:i,T:M 1 g; as in Problem 2.8
4re, R® =

Problem 2.18 Two spheres, cach of radius R and camrying umform charge densities 42 and

- #. respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the
positive center to the negative center d. Show that the field in the region of overlap is constant,
and find its value. (Hinz: Usc the answer to Prob. 2.12 |

Figure 2.28

PROBLEM 2 12

Problem 2.12 Use Gauss's law 10 find the electric field inside & uniformly charged sphere
{charge density p). Compare your answer to Prob. 2.8,

IDENTIFY =
“Gauss’ Law” c";E .da = Qi
try: o
Spherical symmetry: E a’ at every point on the
“ surface R

SET UP & EXECUTE |

Gaussian surface: Sphere with radius r< R
s 2
use spherical symmetry §E -da =E -4mr

Gaussian
surface

4
Qwu‘l = —gmip 2

uniform charge density

PROBLEM 225

Problem 2.25 Using Eqs. 2.27 and 2.30, find the potential at 2 distance 2 above the center of
the charge distribotions in Fig. 2.34. In each case, compute E = -VV, and compare your
answers with Prob. 2.2a, Ex, 2.1, and Prob. 2.6, respectively. Suppose that we changed the
night-hand charge in Fig. 2342 10 —g: what then is the potential at £7 What field does thar
suggest” Compare your answer 10 Prob. 2.2b, und explain carcfully any discrepancy

o P
H ! o
! ]
| Al
'] d - 22 =
(4) Two point charges (b} Uniform line charge (©) Uniform surface charge
Figure 2.34

24




PROBLEM 2.25

IDENTIFY
Relevant (@
2
R (Eq. 227)
4re, TR,
(b) of
g 1 A7)
VF)=—|—=dl' Eq. 2.30
) 4na{,-[ R (Eq. 2.30)
(c)
V()= J-a'(r) " (Eq. 2.30)
4re,° R
Use Tables of Integrals!
SET UP & EXECUTE
(@ V= 1 2q
47('80 R d 2
z"+ (5) 2

T See Problem 2.2a

PROBLEM 2.25 (cont.)

SET UP & EXECUTE 1c6m )

A m[ L+m]

47, L+l + 2
__A In LNz + 1}
2, z

(©
t o2mdr _

4”20 ri+z?
EVALUATE

V=

By symmetry
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