(Chapter 3)  Special Technigues

This Chapter address the practical solunon_ of the primary task of electrostatics: .
Given charge distribution 2(7 ), what is electric field distribution, £(7)?

According to Coulomb's Law  £(F)= %)’L‘p(?)dr' Usually, it is difficult 1o calulate integral!

78, * 1 1
Somewhat easier. * o calculate first potential (7 =—J'“ﬁ(f')r1f'

4, 7 r
* to apply symmetry and use Gauss's Law
Easier way is to solve problem in differential form
3.1. Laplace Equation
3.1.1. Introduction
P

Recall Poisson’s Equation: V¥ =—%+
&

We are looking for the region where p = 0. VlV -0

This reduces Poisson's Equation to Laplace's Equation: .

Let’s look to solutions of Laplace's Equation.

& _FV v
At first, we will work in Cartesian coordinates: (3= 2) T e T TS

V(x.y.z) is a harmonic function.

3.1.2. Laplace Equation in One Dimension
v _

(l—D) —=0 V(.\'):»L\'+[z
ox* 1
Constants given by
T boundary conditions
d?
One variable = can be written _d. —  (Ordinary differential equation)
=
Properties of solutions:
1 Laplace's
* V)= E[V(X +a)+Vlx=a)l  forany a averaging equation

*® No local maxima or minima (extremes).
Extreme values of ¥(x) occurs only at the boundaries

(Z=9)
dx

3.1.3. Laplace Equation in Two Dimensions

v v
(2 - D) —+—5 =0 (Panial differential equation)
o o
Properti f solutions:
1
e V(,r‘ _v) = 5en §Vd1 (¥ at a given point 1s the average of those around the point)
LR circte
* Vhas no extrema (excepton boundary) ~—> Earnshaw’s Theorem:
[F_X' 20 o u] A charged particle cannot be
x v held in a stable equilibrium

by electrostatic forces alone.

3.1.4. Laplace Equation in Three Dimensions

In (3-D) the solutions have the same properties as in (1-D) and (2-D):

= 1
. V(r) = — §Vd(l (Average over the spherical surface)
spherical shell

® no extrema except on boundary

Problem 3.3
(a) Find the general solution to Laplace’s equation in spherical
coordinates for the case where ¥ depends onlyon 7, ¥ = V/(F)

(b) Do the same for cylindrical coordinates, assuming ¥ depends only on s.

(a) In spherical coordinates

:EV) |
Pl g
ér) rising

1 &v
r*sin* 8 0¢°

= v li(r‘ﬂ =( (Ordinary differential equation)
redr dr
,dV
—=g ¢, =const.
dr
@ _q ¢, = const.
r r

(b) In cylindrical coordinates given, ¥ depends only on s.

VY = l_i(sl)i-
| scs (&) -
v ov
V(F)=V —=—=0
O=r6) = L%
= V:V—li(sil]=0
sos\ 0Os

oV

s—=¢,

Os

v
—=l V Ins+c,
as s <

3.1.5. Boundary Conditions and Uniqueness Theorem
Itis not enough to formulate Laplace Equation.
(In Problen 3.3 constants ¢} and ¢, are not defined.)

To determine conditions which arise when solving Laplace's Equation,
we must know the boundary conditions

For example, in order to determine potential one must define boundary conditions.

First Unigueness Theorem

[The solution to Laplace's Equation in some volume V is uniguely

determined if the potential ¥ is specified on the boundary
surface.

This means that, provided
2
*Visasoutionto YV V=0

= Vis correctly specified value on the boundary

= Vs specified everywhere inside the surface.




3.1.6. Conductors and Second Uniqueness Theorem

In a volume V surrounded by conductors and containing a
spherical charge density p, the electric field is uniquely
determined if the total charge on each conductor is given.

i.e. only one field configuration exists given Q,, Q,, .... p.

3.2. The Method of Images

3.2.1. The Classic Image Problem
Consider a charge g on the z-axis above a plane conductor (z=0)
which is grounded (¥=0).

qis at (0,0.d)

What is ¥ in the region above the plane?
It is not the same case as it would be if the conducting plane were absent.

We need to solve Paisson's Equation for z>0 ) o
with a single point charge, g. V¥ = ‘;
Boundary conditions:

* V=0 for

s V=0 for  x*+yt+z? >4’

This problem has a unique solution
Method of images: treat the conducting plane as a mirror and replace
the conducting plane with an image charge.

The image charge has the same magnitude as the original charge, but
opposite sign (for a plane conductor)

So for a charge +¢ at (0,0,d)
the image is at (0,0,-d)
and has a charge —.

Proof
Consider the two point charges and no conductive plane.

1 q " -q
4re, [\,z +y* +(z—¢1\f} : [\‘1 +y? +(Z+l1):}

= Vixyz)=

At position of the plane: z=() V=0
2

0

Il

Far away: x +y +22>>d” 14

V of the system of two mirror charges satisfies Laplace Equation
and the same boundary conditions as the charge ¢ at z-axis
above the grounded infinite conducting plane at z=0.

According to the First Uniqueness theorem, these two systems (one

charge and conducting plane and two charges) are equivalent.

3.2.2. Induced Surface Charge

av
« Recall the surface charge density ¢ = —é:na— (Section 25.3.)
n

« For grounded plane in Section 3.2.1. 1= 2
ov
g ==&, ,\_L=n
(274

r
1

. q - q
dre, “,t: »‘_\"f(:—(ﬂ‘ [\'3 +y:+(:+dﬂ :

V(x3.2)=

_ 1| -gl-a) ~glz+d) |

% 4m:o“xl +y? +(z—d)7r i K‘*."z‘(-?*d)}T IJ’

,l

= |o= —4d

Induced surface charge is
negative as expected since

72
27r(x2 +y: + (12)3 | the point charge is positive.

|
The largest value at x=y=0

and the total induced chargeis Q= J'ar{a

<=y plane

da = dxdy

In polar coordinates  x* + > =r? (:=0)
da=rdrdg

©

m:';qd_.dd . ad -
[E};‘I‘[Zﬂ(rz-rdz)‘zl L Wn 4




3.2.3. Force and Energy

So, the charge ¢ induces a surface charge 7= on the plane.

~qd

2wl ry +d ]

We can use the potential we found in the upper half plane to calculate
fields and force, but remember we are working only in the upper haif
plane. Force is, however, equivalent to the attractive force between
charge g anditsimage—¢q: p___1 4

4re, (2d)

However, the energy is % what we would get from simply having two charges.

Why? E does not exist in the lower planeand W« [Edr

Proof: e
The energy is equal to the work done to bring the charge ¢ from « to z=d.
w—d

[ goand i )|

mirror charge=g ) |

Problem 3.11. Find V everywhere.
Two long, straight copper pipes, each of radius R, are held a distance
2d apart. One is at potential ¥, the other at -V},

-w_ — T . .dwyo

The problem reduces to two long linear image charges —A and A
separated by 2a. Following substitution hold:

(Refer to Problem 2.47)

Problem 2.47 — Problem 3.11

Yo = d
R —> R Pees =>
y = x
z >y

As seen in Problem 2.47 these two image charges generate two
cylindrical equipotential surfaces, one with -V, and other V.

From Problem 2.47
K+

a )= &I

+ Ak
R=ag' 22
-y

O ) .
#-r=o{ {2 F-525)

Potential everywhere is:

‘V— A IHI:M} with &t =d* -R?
|

9
N

- 4me, (x——a): ey:

Also,

A

(st




3.3. Separation of Variables

A general technique for solving differential equations is to use the method

of Separation of variables.
Recall, in Modern Physics you did this for Schrodinger Equation.

Basic idea: Search for solutions which are products of functions that
each depend on only cne variable.

For example, solving Laplace's Equation V¥ =0 by looking for solutions

V(x,y)= x(x) ()

Subject, of course, to the appropriate boundary conditions.
Now the solution obtained may be an infinite sum, but that's OK provided
the boundary conditions are satisfied.
Is this true for all sums?

NO! In order to satisfy general boundary conditions, the functions in the
sum must form a “basis."” The basis set is comprised of
orthogonal functions.

mpleteness of a set of functions
Let f,(v) form a basis on the interval 0<y<a.

A set of functions f,(V) is said to be complete if any other function
f(\') can be expressed as a linear combination of them:

10)=3C.10)

n=l

Orthogonality

A set of functions is orthogonal if the integral of the product of any
two different members of the set is zero:

Tf;()')ﬁ'()’)dy =0 n'#n

What do the solutions look like?
It depends on the coordinate system used.

3.3.1. Cartesian Coordinates

Consider two dimensions in Cartesian coordinates.
Then Laplacian is , & & .
Vis—+— and V¥V =0

T oy
Let's look for solution in the form of products V(x,y): X(x)Y()’)

Then Laplace equation gets a form ld'X id‘}’ =0

= pr——
X dx Y ady

1 d*X
———=const. = C,
X d N !

1d%Y
——5=const.=C,
Y dv* -

This will only be satisfied in general if;

Supjectto C,+C, =0
C, may be positive or negative, and
C, will then be opposite in sign

How do you know the sign of C; and C,?
= Depends on boundary conditions.

For C4<0 (call it -4?)

%=—k’z\’ = X(x)= Asinkx + Bcoskx
then C = k2 >0
‘(’% -y =Y(y)=Ce” + D
fy?

V(x,y)=X(x)Y(y) = (4sinkx + BéOSk*)(CE‘)“* De_ky)
For C;>0 (call it k2) X(x)= Ae™ + Be™
Y(y)= Csinky+ Dcos ky
V(x,y)= X ()Y (y) = (4e° + B KCsinky + Deosiy)

What about the constants 4, B, C, D, k?

* Apply boundary conditions
« The boundary conditions will apply constraints on the constants.

Note: Since k can take on multiple values,
the solution may have an infinite number of terms.

In general (for C,>0)

Vixy)= 3 (Ake“ + Bke"“XCk sinky + D, cos ky)

allowed k

Usually some of the constants (4, B, C, or D) will be zero.
The remaining constants can then be grouped together into
a “new” constant.

3.3.2. Spherical Coordinates

In spherical coordinates, we follow a similar procedure as in
Cartesian coordinates

2 1 a( 2 6) 1 O i 0 1 ¢}
Viess—|r— |+ 5———|sin— |+ ———
roor\ or) r‘sindaé 86 ) r*sin’@ o¢’

For now we will only consider potentials which are independent
of ¢ and look for solutions of the form:

V(r,0)=R(r)0(0)

which leads to

1d(.dR\ 1 d{. do

——|r"— |[+————|sinfd— |=0
‘R dr dr 951n9 de de ‘
| G Ca=—1(i+1) ‘

For convenience, we defined constants C,=/(/+1)
and C,=-I(I+1).




tfollows 9 rl 4R _ and for ©(6) is more difficult to proof.
7 < I+1)R
r r

The general solution in spherical coordinates is then:

R)=ar' +-2.  ©(0)=F(cos)
) ¥

"LegenJre polynomials”

Legendre polynomials: A, (x




Problem 3.12. (Refer to Section 3.3.1.)

Find the potential in the infinite slot given in the Figure below if the boundary
at x=0 consists of two metal strips, one from y=0 to y=a/2 is held at a
constant potential ¥, and the other, from y=a/2 to y=a is at potential -V

Set up:

—> Boundary Conditions (8.C.) *
(&) V=0 when y =0
@) V=0 when y=a
@ii) V=V, when x=0 0<y<al2
V==V, when x=0 al2<y<a
(iv) V-0 as X—»

Execute:
Clearly, no z-dependence ~ => V=V (x,y)= X(x)Y(y)

%:: (X‘(X)Y(y))ﬁrg—;(x(x)y(y»: 0

2 2 1 d°X 1d°Y
Yd—),(+/\'d—},/—0 = ——t=—==0
dx? dy* X dx Yady’
G =k c . o
C, is positive to match B.C. (iv) :
X(x) = Ae" + Be™ BC. iv: V(x)=»0,x>®..4=0
Y(y) = Csinky+Dcosky BC. it V(y)=0,y=0.D=0

= V(x y) Be™Csin ky = Ce™sinky, C=B-C

B.C. (i): V= Owhen y=a .sinka=0
ka=nr . k=2Z (n=1,23,.)

So, we actually have an infinite number of possible solutions,
but we still have to match boundary (ondjons (iti)

= Vixy)= ZCe"'""sin

For x=0 ¥(0,y)= ZC sm(””" ) V,(»)

= Ditchlt's Theorem:
Any function can be
expressed in such series

C,, are Fourier coefficients. Fourier series

To get C,, multiply both sides of the above equation
by sm(n ny /a) and integrate  (1<n'<n)

DIZC Nn( )sm("m}/ IV())Sml"’“Jd,
-Zflm( ’”‘jsm "”‘}zv jz msm[ )d

solution below

( J [ 'va 0 if n=n' Proof on the next page
J'sm sin| dy={a . .
= if n=n

[
From Table of inTegm}s: e
Js'mz(b.v)dr _ 1 B sm.(:b.\')+ c S er—
D
J'sm (bx)sin cx)(l\ M sm[(b+c)r +C &b #6% ussivmrnnion
2(b-c) 2(b+
” . s )
n=n', h:"—;r ”n f an) ( = -Jd}’=

sm‘

_sin(n’ —n)ir] sin[(n’ +n)zr] 0.
2(n" - n)w 2(n’ —ﬂﬂ

S

= Z(n—n)fr 2(n +nr
| a a

n=n', b= J‘sm =2 i
2 4nrr

[ -n)n)} ol (2 m)m}’
L

- All that's left is the term with n=n" - S o

= C( ) _[V() sm( }l = C, ——I%())sm( }iv

So, apply B.C. (iii):

T ey o)

=_V{—cos nayla)”* cos(n;ry/a){u J

nxla |u nrla |,, 2

SR )
ANEVE ’°°‘[2JJ

[z 1023

u

&)

T

'
TR
c O & O

U

a sm(zn 7)_a
r2- P T 2]
a -
= [ ]: 0 for n odd or divisible by 4
=% ]: 4 for n even but not divisible by 4

P n=2,6,10,4,...

We can write this series

C =< "* ‘

‘n 0 otherwise as n=4j+2| where
J=0,1.23,..

= V(x y)—' '(4/+Z)mwu sin (4_/ + 2) .

4j+2

That's as far as we can go.




PROBLEM 3.6 Find the force on charge +q in z

(Fig. 3.14) The xy plane is a
grounded conductor,

3d ? +q
IDENTIFY This is a classic image problem
Relevant (See Section 3.2.1) - grounded ‘
concepts Xy plane can be substituted by two ¢ <2
oo mirror charges, +2q and -q. d | q y

Superposition

Coul /
oulomb law x/ ‘z T
3de +q ‘ F(+2q)

Draw the diagram including the mirror charges F(.q)

instead of the grounded xy plane.
d?t-2q l
Show the forces on +q due to each of the | F(-2q)
charges.
~d t +2q y
-3d ‘T -q

EXAMPLE 3.2 & PROBLEM 3.7

Example 3.2: A point charge q is situated
a distance a from the center of the grounded
conducting sphere of radius R.

Find the potential outside the sphere.

4ns, SR, 4n5, \ R, N,
(a) Using the law of cosines, show that the above equation can be written as:

V(r.6)=—— q q }

478, | r* +a* = 2racos JR: +(ra/RY —2racost

Problem 3.7: V(F)=

(Eg. 3.17)

1 &g 1 (‘/\+‘]_z

] Figure 3.12

where rand ¢ are the usual spherical polar coordinates, with the z axis along
the line through q . In this form it is obvious that V = 0 on the sphere, r= R.

(b) Find the induced surface charge on the sphere, as a function of & Integrate
this to get the total induced charge (What it should be?)

(c) Calculate the energy of this configuration.

EXAMPLE 3.2 & PROBLEM 3.7, combined (cont.)
EXECUTE

From Fig. 3.13:

"=rcos@-b V4 BN

y' =rsiné As / Y

]

= R'? =r?cos’ @—2rbcosf + b +r¥sin? b =
= rz(c:c:s2 6 +sin’ 0)+ b* = 2rbcos

=R =r? +b* - 2rbcosh )
{law of cosines}

EXECUTE
9 | -29 . .29 _-q |

F=F  4F . +F =9 :
(20) T Fezq) T g 4re, | 2d) (4d)2+(6d)2

p_q_:[_i.l_L];__ 1 (29 ),
dre,d*\ 2 8 36) 4dme,\ 7247 ]

EVALUATE Force is directed downward ...

EXAMPLE 3.2 & PROBLEM 3.7 (a), combined

IDENTIFY |  Apply method of images.
Relevant Find a mirror charge that satisfies same boundary conditions:

concepts | V=0 at the surface of the sphere, and V(x) = 0.
Apply Eq. (3.17) 4
EET up | Aply the same trick as in section 3.2.1. 7\\ R T A —
r ‘:R (field point)
"
N\

\4 R
LA § 4q

Figure 3.12 Figure 3.13
Examine a configuration consisting of the point charge g together with

another point charge e _ﬁq
a

R
placed a distance = @ to the right of the center of the sphere

EXAMPLE 3.2 & PROBLEM 3.7, combined (cont.)
EXECUTE (cont.)

z=a—rcosf

y=rsinf

2 2 2
z°+y° =R

= N> =rcos’ @ —2racosf+a’+risin’l =

=r2(cosz(9+sin26’)+az—2racos¢9

= NR=+r*+a*-2racosd




EXAMPLE 3.2 & PROBLEM 3.7 (a), combined (cont.)

EXECUTE (cont.) i ;
; 9 __1 (g g
Vi = === +
From£q. 3.7 V(F) dze, &, are, (n m'j

R=+r’+a* -2racosd
R =+r*+b* =2rbcosf

[_5,)
| 1 q a J

= | V(F) s —| —— + — =
1 4ae, | Vi v a* ~2racosd ., (RRY &
r +| —| —=r—-cosé

a a

V]

R R
ge==g be=
a a

1 q q General solution
il - - - (to be used in part (b))
4ne, Jr' +a”—2racosé J 8 [ a,

R+ ﬂ) —2racos@
R 7

EXAMPLE 3.2 & PROBLEM 3.7 (a), combined (cont.)
EXECUTE (cont.)

I | |
r=R = l’(R):L{ = b=0.
S 47z, [JR? +a* —2Racosé R® +a* —2Racosé |

V(w0)=0.

Image charge ;]’ =-qR/a is located at ¥ = b = R*/a.

{0l NS A(RA N (b) Find the induced surface charge and
the total induced charge on the sphere.

(c) Calculate the energy of this configuration

IDENTIFY O o sisy at p=p, Ll

Relevant | (0) & =_€r>a (Eq. 2.49) Ton or

concepts ) FromEq.3.18:

() forany z, W =jﬁ(2)'di F(Z)=LLZ~-
4re, (° - R:)'

EXECUTE | (b) h
: N

o(R.0)=

1| —

y . "
(r* +a* =2racoso) ¥ (2r - 24 c.)sl‘)+%tk: '('—,‘(’ | - Zrucnsﬂ} [:— 2= :uw.\nJl

=2 (r?+q? —2Racos€)-3/:[k—acoso—£+ac059}
4r R

5(0)=$(R2 +a* —2Racos¢9)_"/:(R: —az)

PROBLEM 3.7 (b,c) (cont.) (b) continued

EXECUTE (cont)| ,, p — JR®+a’-2Ra=a-R.

q (2 2 1 1 q (.2 :\a-R-a-R
=9 (s*=R —— ey p2 )RSt A=
Dinduced Za(a {a*—R a—R} 2a(a ) a’—R?
R '
D induced =Zi('"2R)='_q_q
2a a

(c) Energy is equal to the work done by the force on charge q to bring it
from infinity to a. According to the method of images, this force
should be equal to the interaction force between q and the induced
image charge q" 1 44

4nz, (a— Iz):

(See Figure 3.13)

_ 1 (_5(:] a __ 1 q*Ra
4re, nl (a‘—Rz): 4”[_‘0(“2_R2)2

W=(/‘R z i q'Rl:l 1 :I

a 1 q*R
4““(::-/(:)2 4me, | 22°-R* ],

4ze, 2(a* - R?)

PROBLEM 3.7 (b,c) (cont.)
EXECUTE (cont.) (b) Total induced charge on the surface of the sphere:

Dindiced = ,I o(6)dA = Zj:fa(e)kwsin 6do

dd

L_(p3- a:)R’[ngéJ'ij'(Rz +a*-2Ra cosﬁ)_'wd(cos&)} -

47R b
1
where cosf = t.

#(Rz —aJ)RZZIr[%(R: +a? —2Ra/)'“]

-1

q (- 2 1 1
Qinduces =7 \@" =R — - -
et 20( L/R-+a-+2ak \/R'+a'—-2(1R:,




3.4. Multipole Expansion

We know that the potential of a point charge is

q
Vir)= =,

But, what if we had two charges, say of opposite sign. We might expect the
potential to approach zero at large r faster than for a point charge.

L /
|

+
d
iy
In fact, for large r, V(r) oc =
This configuration is known as a “dipole”.

Strictly a pure dipole would have to have d—0.

This is sometimes called a “physical dipole’.

Dipole .- .
4 +q
V()= —] (-_uij:;w
dre,\ r r-d) 4nze, r(r-d)
1 qd
14 =
) dre, r(r—d)
1
r>d = r-d=~r = |[V(r)=~ 94 ==
4dre, r-

Similarly, there are higher “multipole terms”
For example:

Quadrupole e o

At large r, the quadrupole potential goes as V(r) oc —
R

Vel | e,
dweo | fr=d) - & P =) (Vo s G-a) +Va )

7(r)=— [_(1+ q q

4re,

q
+ =
ror=d  Ja? 4t Jd:+(r—rl):J

q(\ d* +(r=d)f —vd*+r* )(‘/d:+(r—d): +vd*? vr:j’

qd ?(/((I:‘v(r—d):—(l:—-r") 1

V(r):L i ’
{H V& T2 (Ja - e-ay N+ 7) |

”'(’)2-1— L, l{(d:*(r:-2r({+(/:)_.di_,.:)
4| He=d) (\/ld: +(r—(I)Jp’ *’:))LJ!I" +(r=d) +Vd? +r2)

r>>d

gd (1 d-2r
Vi) —| ——+——
¢) dre, [r(r—d) 2¢° J

3

Vir)~ ad ﬁ@l Quadrupole
4re, 2r r

Given any charge distribution, p (r), we can always EXPAND
the potential into a sum of multipole terms.




Consider an arbitrary charge distribution, o (7).

V)= [ 5ol

4rme, * R

We can expand the % term in a power series:

W —Z( ) P, (cos 9') (Proof on the next two pages.)

m ¥ n=0)

where P, is a Legendre polynomial.

) 1]
Expansion of ‘_‘
e

R =2+ =21 cosl =

(binomial expansion)

Collect together like powers of r/r
i, (r AL (Y (3c0s 0 =1) (Y[ Scos’ 6" =3cos6’
=—[1+|= |(cos8')+| — +—J +
r‘ r r 2 r 2

Idenn Le endre Polynomlals

")=1

p (cos#’) = cos#l’ = l '
| - | “R_rz( )P,,(cos&)‘

Py (cosd) = =0

Scos

|B,(cos ) = 308" 8’ =3cos
e o

1
So we can then write the potential, ¥(r) as an expansion in =

(Eq. 3.95)

1= Z MI 'Y P,(cos &) p(r )dr

4;!8

Ok g ot

Including expanded Legandre's polynomials: (Eq. 3.96)

v(r )~ jp(r)dr +—Ir cosé' p(r')dr *—j [%cos: 0‘—%}0('-'){11"* .

moncgrole term dipole term

quadrupole term

This series is known as a multipole expansion.

3.4.2. Monopole and Dipole Terms

The first term is the monopole term.

Voon(r)= J p(r pr|-_1 2

47r£(, dng, r

So, if the total charge (net charge) is zero,
the monopole term is also zero

The next term is the dipole term
1 1
Vyp\r)=———|r'cos @ p(r')dr'
dlp( ) 4z, rz_“ P( )d
r'cos@'=F'r

1
=V (F —_‘E—r“‘ 7 p(F)dr

If we define a dipole moment i) = I ( )dz'

L 57
I/(Iip (r)= 4”6 7
0

then we can write

Note: muiltipole moments are expansion in a power series of L
&
—» location of the origin may effect the value of the multipole term.




Problem 3.26.
A sphere of radius R centered at the origin has
plr,8)= i(R —2r)siné Set up:
= z
Find approximate ¥(z).

Identify: Eq. (3.96) and y(:) - y(,. = _,)

Execute: »
(i) Monopole term ¥
0= pdr= —2r)sin 9)(# sin GdrdGdg)

= A'RI sm 2 Gdrdéd g
Note (R—2r)dr=Rr—r:{R =0

:>Q=O—>V—0

mon

ot—x

(if) Dipole term
J-rcos Op(r)dr = K]?J.rcosa[i2 (R-2r)sin 6’}'2 sin Gdrd 6d ¢
r

Note & integral
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(i) Quadrupole term
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After some calculus ... (see next two pages)
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From Tables of Integrals:
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