Classical and Statistical Thermodynamics

Statistical thermodynamics: machinery for interrelating the statistical properties of a
mechanical system containing a very large number of particles.

Once this machinery is developed, we can obtain some very general results that do not depend
on the exact details of the statistical treatment. These results take the form of general
statements regarding heat and work, and are usually referred to as classical thermodynamics.
Historically, classical thermodynamics was the first type of thermodynamics to be discovered.
In fact, for many years, the laws of classical thermodynamics seemed rather mysterious,
because their statistical justification had yet to be discovered. The strength of classical
thermodynamics is its great generality, which comes about because it does not depend on any
detailed assumptions about the statistical properties of the system under investigation. This
generality is also the principle weakness of classical thermodynamics. Only a relatively few
statements can be made on such general grounds, so many interesting properties of the
system remain outside the scope of classical thermodynamics. If we go beyond classical
thermodynamics, and start to investigate the statistical machinery that underpins it, then we
get all of the results of classical thermodynamics, plus a large number of other results that
enable the macroscopic parameters of the system to be calculated from a knowledge of its
microscopic constituents. This approach is known as statistical thermodynamics, and is
extremely powerful. The only drawback is that the further we delve inside the statistical
machinery of thermodynamics, the harder it becomes to perform the necessary calculations.
Note that both classical and statistical thermodynamics are only valid for systems in
equilibrium. If the system is not in equilibrium then the problem becomes considerably more
difficult (irreversible thermodynamics).



Fundamental concepts

Thermodynamical systems

System: part of the universe within some closed surface called boundary.

State of the system 1s specified by the values of measurable state properties.

Microscopic system: roughly of atomic dimensions, or smaller.

Macroscopic system: large enough to be visible in the ordinary sense.

Isolated system: no interchange of energy with the surroundings.
Closed system: no matter crosses the boundary.

Open system: there 1s an interchange of matter with the surroundings.

Extensive properties: proportional to the mass of the system (example: energy)

Intensive properties: independent of the mass (examples: temperature, pressure)



Specific properties

The specific value of extensive property: a ratio of the value of the
property to the mass of the system <=> value per unit mass.

Specific volume = 1/Density:
V 1

v =—m= — = —
m p

Specific values are of course intensive properties.

Modal specific value of the property: ratio of the value of the property
to the number of moles of the system.

1 kmol (kilomole) = mass in kilograms numerically equal to the
molecular weight, for example, 32 kg for O, . 1 mol (mole) = 105
kmol

1 mol = mass of N, molecules. Avogadro number N, = 6.022 x 10??



Temperature and thermal equilibrium

Consider two macroscopic objects that are 1solated from the rest of the universe, but
are 1n contact with each other.

Q

Ty > 1g

We say that block A has a higher temperature than block B 1f the energy (heat) flows
from A to B. After the lapse of some time, called the relaxation time, the flow of

energy from A to B ceases. At this point the two blocks are in thermal equilibrium
with each other, and we would say that they have the same temperature.



Heat

The word heat refers to energy that 1s transferred, or energy that
flows, spontaneously due to a difference in temperature. We often
say heat flows 1nto a system or out of a system, as for instance heat
flowed from block A to block B above. It 1s incorrect to say that heat
resides 1n a system, or that a system contains a certain amount of
heat.

There are three mechanisms of energy transfer: conduction,
convection, and radiation. Two objects, or two systems, are said to
be in contact 1f energy can flow from one to the other. The most
obvious example is two blocks sitting side by side, literally
touching. However, another example 1s the Sun and the Earth,
exchanging energy by radiation. The Sun has the higher
temperature, so there 1s a net flow of energy from the Sun to the
Earth. The Sun and the Earth are 1in contact.



“Zeroth law” of thermodynamics

Q=0
A > B

Q=0 Q=0

When any two bodies are each separately in thermal equilibrium with a
third, they are also in thermal equilibrium with each other.

The rate at which the thermal equilibrium is approached depends on the
nature of the boundary of the system

Adiabatic boundary: no heat flow from the surroundings
Diathermal boundary: no temperature difference with the surroundings



Kelvin scale of temperature

Temperature scale 1s defined by two points.

First point - absolute zero. The temperature at which the pressure of a dilute gas at fixed volume would
go to zero 1s called the absolute zero temperature.

Second point - the temperature at which ice, liquid water, and vapor are in thermal
equilibrium
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Thermodynamical equilibrium

Mechanical equilibrium
If there are variations of pressure, or stress or parts of the system may
move. Eventually this motion ceases and the system is in mechanical

equilibrium.

Chemical equilibrium
The system may contain different substances undergoing chemical
reactions. Eventually, all chemical reactions cease and the system is in

chemical equilibrium.

Thermodynamical equilibrium
A system which is in thermal, mechanical, and chemical equilibrium is

said to be in thermodynamical equilibrium.



Processes

Quasistatic process: at any moment the system departs form an
equilibrium only infinitesimally. A quasistatic process is a succession of
equilibrium states.

[sochoric process: volume of the system is constant.

Isobaric process: pressure in the system is constant.

Isothermal process: temperature of the system is constant.

Adiabatic process: no flow of heat thru the boundary.

process: whose direction can be reversed by a set of
infinitesimal changes.
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Figure 1-6

1-6 Two containers of gas are connected by a long, thin, thermally insulated tube.
Container A is surrounded by an adiabatic boundary, but the temperature of container
B can be varied by bringing it into contact with a body C at a different temperature. In
Fig. 1-6, these systems are shown with a variety of boundaries. Which figure represents
{2) an open system enclosed by an adiabatic boundary; (b) an open system enclosed by a
diathermal boundary; (c) a closed system enclosed by a diathermal boundary; (d) a
closed system enclosed by an adiabatic boundary.



Fquations of State

Equation of state
f(P7 V? T? m) — O
Example: equation of state of an ideal gas: PV = NEkT

N = number of molecules, k£ =1.38 x 10_23K = Boltzmann constant

The equation of state can be written in the form that depends only
on the nature of the substance rather than on how much of the
substance is present:

f(P,v,T) = 0

Example: Pv = RT < pV = nRT

In S| units

PV = (number of moles)RT, R=EkENy, = 8.31JK_1 = 8.31 x 10° K™

mol kmol



Equation of state of an ideal gas
Pv = RI' & PV = nRT n:

number

of moles
101

R = 8.3143 x 10’

—~ g Ideal gas
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R = Njkp
Fig. 2-1 The limiting value of Pv/T is independent of
T for all gases. For an ideal gas, Pv/T is constant.

kp- Boltzmann constant kp ~ 1.3807 X 10_23i

K



P-v-T surface for an ideal gas
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Fig, 2-2 P-v-T surface for an ideal gas.
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Van der Waals equation for real gases

(PI a)(v—b) = RT

D2

Term a / 212 is due to intermolecular forces and term —b is
proportional to the volume occupied by molecules themselves

Equation of state of a real gas in the virial form
B C

Van der Waals equation in the virial form

RTb—a RTD

Pv = RT :
v v




P-v-T surfaces for real substances
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Fig. 2-6 P-v-T surface for a substance that contracts on
freezing.
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Fig. 2-7 P-v-T surface for a substance that expands
on freezing.
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Fig.2-9 Projections of the surface in Fig. 2-7 onto (a) the P-T plane and (b) the P-v
plane.



Vapor-liquid transition around critical point
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Expansivity and compressibility

\I)

Fig. 2—]4 A P-V-T surface for a solid or liquid. Notice that the
V axis is now vertical and has been greatly exaggerated.



Fig. 2-15 The intersection of the
surface of Fig. 2-14 with the v-7 plane
at pressure F,.

oV
lope of tangent = (-
Slope of tangen 757 )

Slope of chord =
Vo —Vi  AVp

T, — Ty ATp

Jm, (57, = AV

—

For infinitesimal changes

oV

Ve = (57 ) 07



Expansivity

+= v, - (G0
_ 1 nR 1
For an ideal gas B = = —

V P T

Mean expansivity

= I Vo —V; 1 AVp

b= v T VAT,



Compressibility

Consider an isothermal process

oV
Slope of tangent = ( )T

OP
For infinitesimal changes dVr = (8_‘/) dP
OP/T
Compressibility
1(8V)
K =
V\OP/T
_ 1 AVrp
Mean compressibility K =

Vl APT



Compressibility and expansivity are functions of
temperature and pressure
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Fig. 2-16 Compressibility « and expansivity § of copper as functions of
temperature at a constant pressure of 1 atm.






Consider an arbitrary process along the P-V-T surface
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w = (59) e (50)

In terms of expansivity and compressibility

d
AV = BVdT — kVdP < 7‘/ — BdT — kdP

We can restore equation of state from expansivity and compressibility:

vV T P

Vo 1o Fo
1 1 av dI' dP
I 1 . = — _ — I —
deal gas: T K= D = " T 5 0
PV
= InV —InT +InP = const = - = const

Solid or liquid : V~Vy = V = VWl1+8(T -1y — k(P — F)]



Critical constants of a Van-der-Waals gas

/ Critical point

Fig. 2-4 P-v-T surface for a van der Waals gas.
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For a Van der Waals gas

(Q_P) _ RT  2a
RT a ov /T (v—0)2  v3’
P = v—b 2 = (82_P) ~ 2RT 6a

ov? /T (v—"5)3 v*

When T =7, and v = v, (g—{:)T — (GQ_P)T =0

Ov?
a Sa
Pc — 9 c — ba Tc —
~ o2 Ve =9 27TRb
P.v. 3
— = — = 0.375
1. o



PC C
¢ — 0.375

VdW gas

Table 2-4 Experimental

values of P, /RT,
Compare

to real
gases




Relations between partial derivatives

V=V(PT) = dV — (g—‘;)Pqut(g—g)TdP,
P=PWV,T) = dP — (g—i)vdT+(g—€)Tdv
= (), () = |GGp)e(Gr)y + (5))
Take d1' = 0
VY /0P oV 1

~ 1_(5’_P)T(W)T -V e (8—P)T B (8P/5’V>T

rear =0 = (5p), (o), + (57), = 0

(o7)r = oo = (@p)a(ar)(ap)s = -




Mathematically

flx,y,2) = 0 =

df [z, y, 2(z, y)] Oflw,y 2(z,y)] | Oflzy, 2(x,y)] 0z(2,y) _

dx ox 0z ox
oflx,y,z]
| Oxxy) _ TEE
ax - 8fzv,y,z

: : 0z
Cyclic permutations X ->y -> z -> X

0z(z,y) Ox(y, z) Oy(z, )
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df [x,y, 2(z,y)] Oflz,y 2(z,y)] | Oflzy,2(x,y)] 0z(2,y) _

dx B ox | 0z 0x
oflx,y,z|
N 0z(x,y) _ f'awy '
0z

dflx(y. 2),y,2] _ Oflz(y,2).y,2]  Oflz(y,2).y,2] 92(y,2) _

dz a 0z | Oz 0z
az o 8fgayaz




Expansivity and compressibility

\I)

Fig. 2—]4 A P-V-T surface for a solid or liquid. Notice that the
V axis is now vertical and has been greatly exaggerated.



Exact differentials

Along path 1->2->3  dVj_,9 .3 = (%)P dT + (g—g)T dP
Along path 1->4->3  dVi_453 = (g—g)T dP (g—;)p d1’
= (5p),27+ () 7 = (5p) 27+ (),

Since T =T, +dI' and P3s = P; +dP

(a_V) _(a_V) (a_V) _(8_V)
T ) p, OT ) p rap  \9P)p, OP ) 1 4 ar

dP drl’

g <a_v> g ((‘N/) 92V

~ 9P\aT 9T \ 9P OPOT



dV = (g—;)pdT+ (%)TdP is an

Definition: the differential  ¢g(x,y)dx + h(z,y)dy

dg(x, Oh(x,
IS called an exact differential if g( y) = ( y) .
oy Ox

Indeed, if g(x,y)dr+h(x,y)dy = df(x,y)
Of(x,y) of (x,y) Og(xz,y)  Oh(z,y)  O0*f(x,y)

Integral of exact differential between two points in the (x,y) plane does
not depend on the form of the path in the (x,y) plane:

(T2,y2)
/( [g(flj,y) dZC—I—]’L(.CI},y) dy] — f(x27y2) _f(xlayl)

xlayl)



Work in a volume change

Fig. 3-1 The work done by a
&\.<:cmC\p;xmimga:uim: anexternal
force is given by P, dA ds.

ClF — PextdA
= dW = dFds
= P dAds = P.dV

In thermodynamics
dW is positive when the
work is done by the system

If the process is reversible
Pext = P and

dW = PdV =

Vb
W = / PdV
Va



On a P-V diagram

Fig. 3-2 The shaded area represents the
work in a small volume change.

dW = PdV =

W

PdV



Isobaric Isothermal

Ve Vs
(a) (b)

Fig. 3-3 The shaded area represents the work in an (a) isobaric process,
(b) isothermal process.

Vi
W=PWV,—V,) W:/ PdVZﬂRTlD%
Va a



Other forms of work

Fig. 3-4 The work done on a wire in increasing
its length dL 1s #, dL.

dW = — Fexrdl = — Fdl



Work vs change in magnetization

| 60000000000000000000000
> B -
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5:—N%:—NACZ—€ P—EI = dW — Pdt — EIdt
H:T . AW = VHAB., V= AL

Magnetization M = magnetic moment per unit volume
B = ,u()(H ./\/l) = dW = —,LL()VHdH—,uQVHdM

The second term is the work due to the change of magnetization of the rod
Define M = puoV.M

— The work of magnetization is
AWmae = — HdM



Surface tension o = inward force exerted by film surface per unit
length of boundary

dW = —Fwdxr = —20Ldx = —odA



Work is not a property of the system

dVW is not an exact differential = we will denote it OW

V

Fig.3-7 Work depends upon the path.

Vi Vi
W = / dW = / PdV
Va Va
(1+1l) path = cyclic process

Weyelic = 7{ oW = 7{ PdV

a5 b 8 og
work is done by the system



Configuration work and dissipative work

Configuration work:
SW = Y1dXy + YodXo + ... = Y YidX;

X; = extensive variables (V, M, A)
Y; = intensive variables (P, H, o)

Each product is taken with proper algebraic sign

The extensive properties X1, X2, ... are said to determine the configuration
of the system and the workz Y;dX; Is called the configuration work



It is possible that the configuration
of the system can change without

TITTTTT 77777 performance of the work

f

-

N

W = /Pexth =0

Dissipative work

An example of dissipative work:
stirring a a cup of coffee. The work is
done on the system of fluid and stirrer

One more example: the work needed to
maintain a current | in a resistor R. The
work is done on the resistor.
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Fig.3-8 Inafreeexpan-  Unlike configuration work, the dissipative
sion ofa gas,.the conf?gu- work cannot be expressed in terms
ration work is zero since of change of some property of the
P, 1s zero. system on which the work is done.

Any process in which dissipative work is done is necessarily irreversible



First process:
a->C:. adiabatic free expansion,
c->b: reversible adiabatic expansion

Second process:
a->d: reversible adiabatic expansion,
d->b: adiabatic free expansion

Third process:
a->e: reversible adiabatic expansion,
e e->b: dissipative work on the system
- P %

I

Fig. 3-9 The same amount of work Experimentally: |
is done in all adiabatic processes the work done by the system In

between the same pair of equilibrium d->e is equal to the work done
states. on the system in e->b



Internal energy

In general, the differential éW is not exact but the differential dWaq is
exact in the sense that that the work is the same along all adiabatic paths
between given pair of states with the same kinetic and potential energies

b b
W = / SWoa / AW

Internal energy U: property of the system such that the difference between
its values at a and b is equal to the work done by the system along any
adiabatic path fromato b

b b
dU = —dWyq = /dU=Ub—Ua=—/ AWaq = Waqg = U, — Up = Woy

Statistical thermodynamics: internal energy of the system is a sum
of energies of the particles from which the system is composed.



Heat flow

W = work in a non-adiabatic process between a give pair of equilibrium
states

Waa = work in an adiabatic process between this pair of states

Heat flow: Q = W — W4
Q>0: heat flows into the system, Q<0: heat flows out of the system

Wad (CL — b) Ub Q %4

The increase in internal energy of the system, in any process in which
there is no change in the kinetic and potential energies of the system,
equals to the net heat flow into the system minus the total work done by
the system

Differential form of 1st law: dU = 0@} — oW
For a reversible process, the only work is a configuration work
= 0Q - ) YidX;
Example: for a P-V-T system dU = 0Q — PdV



Heat flow depends on the path

Istlaw:  §Q) = dU + oW

The net heat flow into a system in any process between states a and b is
b b
0Q = dU + W = Q:/ (dU + 6W) = Ub—Ua+/ SW = Uy —U, + W

Heat, like work, Is a function, not a point function

For a cyclic process Uy =U, so Q=W and

the heat flow into the system is equal to the work done by the system



The mechanical equivalent of heat

Compare

a->b: dissipative work in the adiabatic process on system in constant
configuration U, — U, = |Wy

a->b: dissipative work = configuration work =0, but there is heat flow
Ub — Ua — Q

h ”: change in U due to work is the same as
change due to heat flow

Unit: 1 calorie = amount of heat to warm 1 gram of water by 1C



Heat capacity

Mean heat capacity C = L

Q _

True” heat capacity C = lim —= T

Heat capacity depends on the process

)
Heat capacity at constant pressure: Cp = <d—§) b

Heat capacity at constant volume: (C; = (Z_C%)
.

Later: if we know (C'p and the equation of state,
we can find the heat capacity for any other process

Specific heat capacity: heat capacity per unit mass or per kmole

J J
SI: 1—— 1
Kkg ot K kmol
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Fig. 3-10 Graphs of ¢, and ¢, for copper as functions of tem-
perature at a constant pressure of 1 atm.
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Fig. 3-11 Graphs of ¢, and cp for mercury as functions of pressure
at a constant temperature of 0°C.

Heat reservoir: a system with very large heat capacity
(no change of temperature due to heat flow in or out).



Heat of transformation and enthalpy

Heat of transformation = ratio of the heat absorbed

to mass undergoing the phase transition | — 5_Q
J 1J m
Units: 1—
nits ka or I

Change of phase is always associated with change of volume

= W = PVo—-Vi) & w = P(vy—1v1)

Fromthe 1stlaw uz —u1 = | — P(vs —vy)

& | = ho—hy, h = u+ Pv “enthalpy”

Enthalpy is a function of state. Later: the heat flow in any reversible
Isobaric process is equal to change in enthalpy.

heat of fusion (solid — liquid)

heat of vaporization (liquid — vapor)

[ ]
—_t
o
]

heat of sublimation (solid — vapor)



As an example, consider the change in phase from liquid water to water vapor
at a temperature of 100°C. The heat of vaporization at this temperature is

lg = K" — k" =22.6 x 10°J kg,

The vapor pressure P at this temperature 1s 1 atm or 1.01 X 105 N m™2, and the

specific volumes of vapor and liquid are »” = 1.8 m? kg™* and »" = 107> m® kg™
The work in the phase change is then
w =P’ —v") =17 x 10°J kg™

The change in specific internal energy is
W' —u" =l —w =209 x 10°J kg™,

Thus about 929% of the heat of transformation is accounted for by the increase in
internal energy, and about 8% by the work that must be done to push back the
atmosphere to make room for the vapor.



25 x 103

l3(J kg—l)

Temperature (°C) t,

Fig. 3-12 Latent heat of vaporization of water as a function
of temperature. The latent heat becomes zero at the critical

temperature ¢, = 374°C,



Consider a cyclic process around the triple point so the only
changes in enthalpy occur during phase transitions

1. Solid -> vapor: heat flow into the system Ahy = i3
2. Vapor -> liquid: heat flow out of the system Aho = —lo3
3. Liquid -> solid: heat flow out of the system Ahs = — 9

Enthalpy is a function of state = does not change in a cyclic process

= l13 = l12 + lo3



General form of the first law

If there is a change of the kinetic energy of the system

If conservative forces act on the system, the system has a potential energy and
the work of conservative forces equals to (+) change of the potential energy

Itf W = WwW-Ww,,
then AU+ AE, = Q-W*"-W, & AU—I—AE]{—I—AEP = Q—-W"

Total energy of the system E = U+ E; + E,

If £y and E. represent the final and initial values of total energy a process
AE = E,—E, = Q—W*

- general form of the 1st law of thermodynamics

For infinitesimal changes dE = 0Q) — oW~



Example: energy equation of steady flow

R
N

\\\\\\\\\\\\\\\\

/// / ‘—f 2
NSNS N
X2

——w

///

Vz ————-

/

Py moow

////////////////////////////////

SONNINNANNANNNNNNSSN

7=,

\\\\\\\\\\\\\\\

X1 \
\\\\\\\\\\\\\\\\\\\\
z, N\y7

Q

I 7

II/IIII/////I/II/II (LLLLLLL L/

!

Fig. 3-13 Steady flow process.
W = Wag + Vo — PV +mg(22 — 21)



Total work - (work of conservative forces) = W* = Wy, + PVo — PiV)

AE = m(us —up) : increase in internal energy of mass m
m
AFE, = 5 (V22 — Vs ) : increase in kinetic energy of mass m
AE, = mg(zo —z1) = W, : increase in poyential energy of mass m

AE =Q-W" =
m
m(“2_ul)+§(v22_v12)+m9(22—21) = @ — W — P2Vo+ P11V

Per unit mass: Vo =muvy, Vi =muv;, Q =mq, Wi = mwsy

1 1
(Uz + Pug + §V22 —I-gZQ) — (U1 + Pvy + §V1 —|—921) —  — Wgh
u+ Pv=h : specific enthalpy

— Energy equation for steady flow:

1 1
(hz T §V22 T 922) — (h1 + §V1 T 92’1) = ¢ — Wgh



Examples
1. The turbine:

q>=0, 20>~21 = —wg, = (ha —h1)+ (VQ_VI)

2. Flow through a nozzle:

12—’ wsh 207 20 i

T e V2 = V2 1 2(hy — hy)

Fig. 3-14 Flow through a nozzle.

3. Bernoulli’s equation for pipe of variable cross section and elevation:
1 1
Wsh 20, QQO — h2+§V22+gz2:h1+§V12+gz1
1
= u—+ Pv+ §V2+gz = const
If change of u = heat flow - config. work - dissipative work = 0, then

1
Pv + §V2 + gz = const & P+ gV2 + pgz = const



Energy equation u = u(Pyv,T)

Since equation of state is f(P,v,T)=0,
we can consider u(T,v) or u(T,P), or u(P,v)

1. u = u(T,v) . .
du = (aT) A1 (av)Td”

0
From the 2nd law : equation of state = (a—u)
v/ T

ou
(57). =7 stlaw = &g = du+ Pdv

o -/ 0u ou
= ¢ = (8T> al'+ K@v) +P}d”

Constant volume : dv = 0, 0q = c,dT

R N O ()



, 0
= For any reversible process 0q = c,dT + K@_u) -+ P} dv
v/ T

At constant pressure: o0q = cpdl’

= cpdlp = c,dIp + [(@> +P}dvp
ov/T
dv

= Cp—Cy = [(%)TjLPKd_T)p

At constant temperature: dI' = 0 =

0 0
oqr = [(—u> - P} dvopr = (_u) dvr + Pdur
ov/T ov/T
For a reversible adiabatic process: o0g = 0

- w(50), = -1, +



ST = (Gp) ar+ (5p) P

Oh
Equation of state: = ( )T

OP
(g—;)P:? h = u+Pv = dh = du+ Pdv+vdP
5¢ = du+ Pdv < 8¢ = dh—vdP = §q = (g—;)PdTJr [(g—Z)T—v}dP
Constant pressure: dP = 0, 0q = cpdl = (%)P = cp
= For any reversible process 0¢q = cpdl + KS—;)T —v} dP
Constant volume : d0q = c,dI = cp—c, = — Kg—?))T—v} (g—i)v

h
Constant temperature : o0q = [(%D)T — v} dPr

Adiabatic process: o0q¢ = 0 = cP(g—i)s = — {(g—?})T—v}



3. u=u(Pv)




Mathematical digression

Consider w = w(x,y,z) where f(x,y,z) = 0

Formula:
(3_%0) _ Ow(z,y,z)  Ow(z,y,z) 0z(x,y)
ox/y ox | 0z ox

Proof: let z=z(x,y), then

UJ(.I‘ T d:v,y, Z(JZ’ + dllj,y)) o TU(.CI’J,y, Z)

O i=z(ay) % li=z(ay)
— 8w(w,y,z) dx. I 8?U($,y,2) Bz(az,y) dﬂj
0 la=z(ay) % li=(ay)

:> 8_w _ 'Y 9 | 8w(az,y,z) 8Z($,y)
Ox ’ _ Ox | Oz Ox




If w=w(x,y,2z)and f(x,y,z)=0

(5:),(52), = (52),

Proof:
(3_’&)) _ aw(x,y,z) | 8w(az,y,z) 8z(x,y)
ox o ox ! 0z ox
Y —
dw _ Ow(zy,z) | dw(x,y,z) 0z(y,z)
0z ” - oy ! ox 0z

ox ! 0z ox 0z

(a_w) (@) _ Ow(x,y,7) . Ow(x,y,2) Oz(z,y) | dx(y,z)
Y Y

Ow(x,y,z) 0x(y,2) | Ow(x,y,2) [ Oz Ox
ox 0z ! 0z ox 0z ’

8w(x,y,z) | a’UJ(Z,y,Z) 8x(y,z) _ 8w)

0z ! ox 0z - Oz



Using these formulas, one can prove
(55), = *(5p).
(%)P a Cp(g—f)zﬂ’

cv (?3’—];)3 - or (g—f)T’

oT oT

oqr = CP(%)pd”T“v(a—pMP T



Sroof of (dP) (dP)
Co | — = cp| —
rooto dv / s P\dv /7

Take T and v independent: P = P(T,v) and u = u(T,v)
In the adiabatic process
0 =d@Q = du—+ Pdv=u(v+dv, T+dT") — u(P,v) + Pdv
= (%) ar+[(%) +Plav = ar,=-1[(3) +P|a,

Using this formula we get \

AP, = P(v + dv, T + dT) — P(v,T) = (@—f)Tde (g_g) dT.,

oP _ dP OP 1 ou
= (22) =Zd _ (oP) _ 1|(ou P}
(81})8 dvs (82})T Co |:(8”U)T_|_

o = (D), = w(20), (20, (D),




Consider now r.h.s.

s en(30), — e [(20), < #](20), ) (2D),

From cyclic formula on p. 34 and inversion formula on p.35




d dh
Later : eqn. of state + 2nd law = (—u> and (—)
dv/ T dP /T

d dh
How to measure (_u) and (—) experimentally?
dv/ T dP /T

Energy equation v = u(P,v,T) = P =p(u,v,T)
Equation of state f(P,v,T)=0 = f(p(u,v,T),v,T) = F(u,v,T) =0

0 0 0 0 0
> ()elar). o), = -1 = &), = —o(3),
Similarly h = h(P,v,T) = G(h,v,T) =0
> (o)) = =1 = (5p)e =~ (5p),

o1
Gay-Lussac and Joule measured ( )

v



Gay-Lussac-Joule experiment

Ideal gas :

(5). = ¢

IR

?
%
é
%
%
/
/
/
1
é
7/
%
/

TV, //4

Fig. 4-1 Principle of the Gay-Lussac—
Joule experiment.

In general : 71 =

(8T

—) #= 0 “Joule coefficient”
8@ U



For an ideal gas : (g—f)u = 0 = (%)T —

Specific internal energy of an ideal gas is independent
of the volume and is a function of the temperature only

du
cv—d—T & du =

0

c,dl =

U T
U—uy = /du = / o, dT' = u = ug+ c,(T —Tp)

1o



INTERNAL ENERGY

Fig. 4-2 The u-v-T surface for an ideal gas.




Joule-Thomson experiment

T,
0 Steady flow,

Q:WSh:O,

No change in
elevation,

Velocities are small

= hi1 = ho

44q/aiatit@r?rbtlllitdd

Fig. 4-3 Principle of the Joule-Thomson

exper iment.

Keep P;,17 but vary pumping rate so P, changes



| d

t’/—*(\
‘ iy 9
| : \
| S AR O . Heating
P3‘ T3 % 5 / \
) P, T, | /
i -
P,,T, ot
| ///
" Inversion curve
P L p
(a) (b)

Iig. 4-4 (a) Points of equal enthalpy. (b) Isenthalpic curves and the inversion curve.

a->b or b->c: drop in temperature,
d->e: rise in temperature

OT
Joule — Thomson coefficient p = (Q—P) )



Oh

Experimentally, for an ideal gas u=0 = (—) = 0
oOP/T

Later: 1 can be calculated from the equation of state

Oh
For an ideal gas : (—) = 0
S 5 OP /T
ou Oh Ov 0P
(G0)r = Gp)p =0 = e = P(57), = (7)),
ov 0P
Pv = RI' = P(Q—T)P = U(E?—T)v = Cp — Cpy — R

Suppose hg 1s the specific enthalpy of an ideal gas in a reference
state in which the internal energy is ug and the temperature 1.

If cp is constant, the enthalpy equation of an ideal gas is

h = h()"_CP(T—T())



Reversible adiabatic processes

(). = <)

, 0P P dP dv Cp
For an ideal gas (—) = —— = Fy— =0, =
ov/T v P v Co
= InP+~vylnv = const < Pv?’ = const
3 v+ R D
For monoatomic gases ¢, = §R — v o= oI 3
Cy
D v+ R T
for diatomic gases ¢, = §R = Vo= oI =
Cy

The specific work in a reversible adiabatic expansion of an ideal gas

Pyl = K =

V2 V2 _ K 1—~ 1—~ Psvo—Piv
- _ v o o _ Pyva—Piv;
w = fvl dv P = Kfvl dv v = = (v, v ) = —

Obviously, also w = ugs —u; — c¢,(T5 — 1Y)



Carnot cycle:

I P
. |
Q e
b I‘ \\ D
% L\ B
v) \ E
LU ‘\ \ %
Q \ \ é
Q \ \ 2
\ \ %ﬁ
\ \\
\ %
\ /
\\\ \\‘\
\\\ ///////,/ Riigg T’

~
~
-
—_— -
—
—— —

Fig. 4-5 (a) Adiabatic processes (full lines) on the ideal gas P-v-T surface. (b) Projection
of the adiabatic processes in (a) onto the P-v plane. The shaded area is a Carnot cycle
(see Section 4-7).




Carnot cycle:

a->b: reversible
Isothermal process

v
QQ — W2 — nRTgln—b,

Va
b->c: reversible
adiabatic process

TV, = 1!

c->d: reversible
Isothermal process

d->a: reversible
adiabatic process

LVt = T~

@ _ T
Q1 17




Heat engine
System in Carnot cycle is an example of cyclic heat engines

Q Q = Q2— Q1
| T2 * | = W =0Q = Q22—
= net work per cycle
Thermal efficiency of a heat engine
¢ — W
W@
(2 Q2
For an ideal gas
T, ‘ | Q2 1>
e Q1 T
Fig. 4-7 Schematic flow = 9 = 1_5

diagram of a heat engine. 15



Refrigerator

Inverse Carnot cycle is an example of cyclic heat pump or refrigerator

a->d->c->Db

Coeflicient of performance

Qi
W Q- Q

For an ideal gas
13
Ty — T

C =

C —

Fig. 4-6 The Carnot cycle.



Entropy and 2nd Law of thermodynamics

The 2nd law of thermodynamics

3 examples:

SIS,
=

\
\
\
\
\
\
\
\
3

ST, o T F7,
L
-

FA TS TSI SIS ST SIS SIS SIS,

/ - /
/ " / I’
-

-
=
’
-
;
.
-
‘
-
-
=

\\\\\\\\\\\\\\\\\\\\

=
’
=
=
=
=
-
-
E
=
-
=
=
=
=
=
2
.

ARRRRRRRRRRRNNNWN
ARHTRRRRRRRR RN WAL

\\\\\\\\\\\\\\\\\\\

PP P PP L L L L il ’

AT AT ST AT SIS LSS S S S S SSSS

(a) (b) ()

Fig. 5-1 In part (a) there is a reversible heat flow between a body at temperature 7, and
large heat reservoir at a higher temperature 7,. In(b), a rotating flywheel drives a generat
which sends a current through a resistor in a heat reservoir. In(c), a gas in the left portio
of the container performs a free expansion into the evacuated region when the diaphra
is punctured.



Thermodynamic temperature

| d b

d

L %

Fig. 5-2 Carnot cycles represented in
the 60—V plane. Curves a-f-d and b-e-c
are reversible adiabatics.

W = ‘QQ‘ - \Q1|

2nd law :

For any two 05 and 04,

Qs
1

in a Carnot cycle has

the ratio

the same value
for all systems,

whatever their nature

Qs
(1

= = f(02,01)




0

‘gj| = [f(02,0;)
Q..
‘Q1| — f(efwel)
Q2
0s,01) = ——
= f(62,01) 0
1Qul Qi
| e = [f(62,0;)(0:,01)
Fig. 5-2 Carnot cycles represented in ¢(6s)

the -V plane. Curves a-f-d and b-e-c = f(‘927 ‘973) —
are reversible adiabatics. ¢(91)



Empirical and thermodynamic temperatures

. Pas
Empirical temperature ~ 0gas = 273.16 K X lim ( : )V

Strictly : for an ideal gas Pv = RfH and (ﬁ_u)e = 0
v
(2 15

Kelvin : T = A¢p(0) = — _Z
»(0) 0 T

for whatever system is carried through the Carnot cycle between 1> and 13

From our analysis of Carnot cycle for an ideal gas

1
92:Q2:2$9

60 il T

]
~




Fig.5-3 Any arbitrary reversible cyclic
process can be approximated by a
number of small Carnot cycles.

For a Carnot cycle

v

T, _ Qs
17 (1
Q1. Q2
= : =
JA 15
AQtop | AQbottom — 0
Ttop Tbottom
AQ);
= 0
S
0Q)
— — =0
77



S = Entropy

0Q 0Q . . L 0@
7{ = 0 = ra 1s an exact differential : dS = i

b
%dS =0 = S—-95, = /dS independent on path

specific entropy

S
n
Later: it is possible to define an absolute scale of entropy

In guantum mechanics

1
[ = Ze_kE”, Z = sum over quant. mech. states, = T

S — k(an 5886

In Z), k = DBoltzmann constant



Entropy changes in reversible processes

0@ _

For any adiabatic reversible process AS = / dS = / T

For a reversible isothermal process

b b
5@ 1 Qa—>b
Sb_Sa_/CL—j_Z/(zéQ_ 1

[
For a phase transition at constant P and T 52 7 51 = T

bé‘Q
For a general process Sp — Sq = / =

r, 1 13
2 qr T,
At constant pressure (sp — Sa)p = cp— = cpln —
T 1 13

0



Temperature-entropy diagrams

t Q@ %TdS:

U e /6@ JRCENC

|
|
| = net heat flow)
|

>, >,

In a cyclic reversible process heat flow = area enclosed by T-S diagram



Entropy changes in irreversible processes

Entropy is a function of state
=> change of entropy is the same
whether the process is reversible

or irreversible

// -

In a reversible process
at constant pressure

AT

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
-
”

=
AT I AT SIS AT SIS S LSS S IS S S S

ASbody — Cp In —
Heat flow into the body : @ = Cp(1Ty — 1)

Change of reservoir entropy is the same as in isothermal process

Q) 1s — 17
AS]reservoir — = —C
T, P,




15 15
2 [ T
Law of increasing
ol entropy:
AS > 0
v (= for reversible
processes)
o |
Bt
't i
1 |
L bl

Fig. 5-5 A graphof In (7,/T)) and (T, —T))/T,
as a function of 7,/T,.



Heat flow Q => entropy of the reservoir increases by Q/T

Temperature of resistor constant => no change of properties
of the resistor => no change of entropy of the resistor =>

ASreservoir + ASresistor
= AS > 0

//////////. T FIPIFITITITITII,

.

-
-
AR

Entropy increase of the
resistor as a result of
dissipative work
balances the entropy
decrease due to the heat
flow out of the resistor

\\\\\\\\\\\\\\\\\

\

o L ik




Clausius form of the 2nd law

There exists no thermodynamic transformation
whose sole effect is to extract a quantity of heat from a
colder reservoir and to deliver it to a hotter reservoir.

ASA — ASB = —

T2>T1&Q>O = AS < 0



Kelvin-Planck form of the 2nd law

There exists no thermodynamic transformation
whose sole effect is to extract a quantity of heat from a
given heat reservoir and to convert it entirely into work.

These two formulations of the 2nd law are equivalent.
To prove this, we will demonstrate that

if Kelvin Statement (" K"') is false then the
Clausius Statement (" C") is false, and vice versa.



Proof Clausius form <=> Kelvin-Planck form

Proof that (K false) => (C false)

If we can take heat from a reservoir at lower temperature T1
and convert it into work, we can then convert this work into heat
(work can be always converted into heat!) at higher

temperature T2 > T1. Hence, C will be false.

Proof that (C false) => (K false)

Suppose that the system undergoes a cyclic transformation ( and it
works in the following way):

1. Absorbs heat ()5 from reservoir T5;

2. Rejects heat ()1 > 0 into reservoir 17;
3. Performs work W > 0.

If Cis false, we can take Q2 from reservoir T1 and deliver it to reservoir T2 > T1.
Let the system operate one cycle, so that the heat extracted from T2 1s exactly Q2.

The result is that the total heat extracted from T1 (which 1s Q2 — Q1)

is entirely converted into work = K is false.



Q,— 0,
’l, |
0, o . e )
il I3, 12 - N D T3]
| | {
o b '
s —— :
| B =
Al |
0 T,' T . ! T,
1 J g, T
Ql e Qll

(a) (b)

Fig. 5-6 In part (a), the circle represents a Carnot engine and the rectangle an
assumed engine having a higher thermal efficiency. If the assumed engine were to drive
the Carnot engine in reverse as a refrigerator, as in part (b), the result would violate
the Clausius statement of the second law.

The sole result is the transfer from low- to high-temperature reservoir
(represented by width of the left part of the pipeline) => contradicts
Clausius statement.
=> NoO engine operating between two reservoirs at given temperatures
can have a higher efficiency than the Carnot
engine operating between same reservoirs



Combined first and second laws

0() =  du+oW
0QQ = TdS = TdS = dU + PdV
oW = PdV

NB: the two last equations at the left are true only for reversible
processes, but the right equation is not restricted to a process at all,
It is correct for any two equilibrium states

However, if the process is irreversible, T'dS # 0@} and 0W #= PdV

Example: stirring work done on adiabatic system kept at constant
volume.

TdS >0, but 0 =0 and PdV =0



Goal:
Derive three TdS equations

__ oP
TdS = c,dT+T(5%) dv
_ ov
TdS = cpdl —T(5%) dP
TdS = cp(3%) dv+e,(5%) dP

and

Put all partial derivatives in the standard form

& express them in terms of cp, 5, and K
(in addition to P, V, and T')



T and v as independent variables

ds = #(du+ Pdv)
=

du = (8T> dT+( )Tdv

ou 1 r/0u
s = 7 (7). 97+ 7 (5;), + Pl
- or ), T T \ou)r T
Since S is a function of stat ds—(@)dTJr(%
ince S is a function of state =\57). 5

(%
> (@), - 1@ -7 G- 7l

2] - [2() . - /

2 2
- ;aiauT - HaiauT ’ (Z—ITDM : [(@




(50). = - (5. (50), = &
9, OP
= (50), = T(57), P = gT—P

= Tds = c dT-I—T(aP) dv

oT

OP(v, T)  (0Ou o/or __0°P(v,T) OP(v,T)
=g = (8'0) Po= I —am o7
_ 0%u(v,T) OP(v,T) 0cy 0*P

= TovdT ~ or (av) T(c’)T?)

2
For He* (%)T B (%)A%L B <g—;i)T0.gg82 B 1'7X1O5miK




13 X 103

Reduced density, p,

Pressure (atm)

100

80 -

R
o
I

N
o
|

20+

Nz S
s O
T e
\
| | l\\l e

7

R R R T A TR TR DR

e 08 Fai e .20 3828
Reduced density, p,

Flg. 6-1 (a) The specific heat capacity at constant volume and (b) the pressure of He* as a
function of reduced density at temperatures between 3 and 20 K. Each curve is marked
With the temperature in kelvins. The reduced density p, is the ratio of the actual density of
He'to 68.8 kg m™2, The dashed lines are the tangents to the 6 K isotherm at p, = 2.2. The
#xperiments were performed by Hill and Lounasmaa. (These figures are reprinted by
wrmission from O. V. Lounasmaa’s article, “The Thermodynamic Properties of Fluid
lelium, Philosophical Transactions of the Royal Society of London 252A (1960): 357

{Vigs. 4 and 7).)



2 2
;ﬁiﬁuT - 7 bié’uT ’ (Z_];)J - %K%)ﬁp}

o), ), - T

du = (g;) dT" - (g:)Tdv =  du = c,dI + [T(g—i)v—f’}dv

From the 1st law: ¢cp —c, = K%) +P} (j;)
0P

Math formula : (8—T> _ (g_;) (%_5)

o e = 1(20) (2), — () (),

(32T

Y

From the He* data ¢, = 9950 J(kmol) 'K~!, ¢p = 14760 J(kmol) 'K~



T and P as independent variables

1
h = u+Pv = ds = T(dh—fudP)

dh = (%) dr+ (%) dp ds= +(28) dar+L[(8%) —v]dp
T | OF ) = 5 r\or ) ¢ T 71 BPTU]

ds — (8—) dT - (3) iP
S oT ) OF ) -

> (@), ~ () ()e = 7l(5p)e

0% s 0 [ Os _ 0 1{(8hn 1 0%h
oPOT — OP\OdT ), ~ OPT\OT)p T 9TOP’
8°s _ 8 [ Os — 0 1 /([ 0h —
dPOT — 9T\ 0P ), — 8T T |\0P ),
- 1 [(@) _,U] 1 _0%h 1(@)
T 2
T2 |\ 0P ) T OTOP ~ T\ 9T ),
oh . ov .
= (B_P T T aT)PJrv BvT + v



TdS = = (a—T) T + T(aa;) AP = cpdl — T(S;) iP =
9 52h 5 /0h 9 9 ?
(%)T a (aTaP) a aT(aP)T a (8;)13_8TT<(§;)13 h T(§T2>

2
> (38). = ~7(),



P and v as independent variables

(@) — Cuk
_ OP TP
We will prove v
0s __cp
(8’0) P — Tvp

ds = (82) dT+ (%) dv, dT = (5%) d
> & = (57),(5p).27+ [(52).(5)



From the above equations and eqn. (*)
= TdS = cp (%)Pdv + ¢, (g—g)vd}?



IdS equations

TdS = c,dT+T(5%) dv
TdS = cpdl —T(8%) dP

TdS = cP(g—Z)Pdv—l—cv(g—g) dP

Examples:

Increase of temperature of solid or liquid under adiabatic compression

T
6Td’u3 = dly = p dvg

K RCy

dg = Tds=0 = c,dIls

If the increase of pressure (rather than of volume) is specified

BT

RKCp

0 = Tds = cpdls — BvTdP; = dTs =

d P



If U is positive, T increases when the pressure is applied => if it is
desired to keep T=const, there must be a heat flow out of the system.

This heat flow can be found from 7TdS = cpdl — T(S;) dP
ov
— Sgr = TdS = — T(aT) dP = — BuTdPy

The pressure needed to decrease the volume of
the substance adiabatically can be found from

TdS = cp(%—f) dv+0v( ) dpP
> TdS = 0 = “dP,+ Ldv, = —1(85) = r2

The compressibility x is the isothermal compressibility & =

1,0
—— (—U) defines the adiabatic compressibility k;, = &g : V= —
v\OP/s Y Co



Properties of a pure substance
(s = sot [, dT F — [p dP () p.

= 9
dh = cpdl'+ |v—T(5%),|dP

\

ho= ho+ [ndT cp+ [i dP [0 —T(22),]

First integral: along a->b

Second integral: along b->d

If cp is available at pressure
P different from F,

P [ 52,
Cpy, = CP+TfPO (STQ)PCZP

\)\/// = Emntropy and enthalpy
N can be determined from
equation of state and cp(7T)

Fig. 6-2 Integration paths used in evaluation of
entropy.



Properties of an ideal gas

: _ RT Ov _ R 0%v _
For an ideal gas v = 5 (aT)P—P, (aTQ)P—O

=
= 2
Cp, — Cp _I_TfPO (ng)PdP — CP(T, P) — CP(T)
T T
C P
= 5—50+/ dT == RIn —, h—ho—l—/ d1l' cp
TO T PO TO
T P
If cp =const = s = sgp+cpln— — Rln —, h = ho+cp(T —1Tp)
1h Py
For an ideal gas cp = ¢, + R =
_ T v P v
S = SO—I—CUIHT—O—I—Rln% — SO+CUIHFO_|_CPIHE
For a reversible adiabatic process this gives ( = ‘;—P)

cobInP +cplnv = const = Pv7 = const



Properties of a van der Waals gas

It is convenient to choose T and v as independent variables

T v T

c OP c v—2>b
Ent ; = dl — d (—) = /dT—v R1
ntropy : s SO—I—/TO T—I—/Uov 57 ). So + . 7+ A

Internal energy : du = c,dI" + [T (
= Uy = u0+f;;chv—a(l—i)

v Vo

Q|
S

) —P}dv = Cpdl + —5dv

If ¢, = const =
s = 50+cvlnT£O+Rln ”__bb, U = u0+cU(T—T0)—a(l—i)

() v Vo

~a” is responsible for interaction between molecules => appears in energy
“b” is proportional to volume of molecules => appears in entropy

oP ov R 2aP
v = = T(57),(57) = [ zoE R(1+ zo7e)

For carbon dioxide at room temperature and P=1 bar the correction is 1%



VDW gas in a reversible adiabatic process

Va
|

so—l—cvlnTlOJrRlnv > = 1f ¢, = const

v—>b
0—

s = const = c,InT+ RIn(v—0>) = const < T(v—>b)/% = const

VDW gas in a reversible isothermal process

n

I'he heat absorbed in an isothermal process o) = TdS = RT d_”b
v =
The change in internal energy du = c,dI" + zdv = dur = af}l—g
RT
= owr = 0Qr — our = ( a)dv — Pdv
v—>b v?
.. Vo — b 1 1
— the work done in isothermal process w = RT1'In | a( )
U1 — b (0) U1



Joule and Joule-Thomson experiments

0 0 0 0
mrom the 1t law 0= (5,) =2 (50),0 #=(5p), =5, (5p),
Ist law + 2nd law = (%)T:T(g—i)v—ﬂ (g—;)T:—T(g—;)P+v

For a van der Waals gas

ou _a _ a
(%)T T p2 = N = Copy V2

° °® — t
= in Joule experiment T, — T, = = = <& ( ) 8 )

oh _ RTv’b—2av(v—>b)?
Also, (8_P)T — RTv3—2a(v—0b)2
= 1n Joule — Thomson experiment u = (g—T)h = Cl Rg;’f)’;jf(’i"’_gff
o1 2 — b)?
= Inversion curve for VDW gas : (G—P)h = 0 = 1y = a(;UQ 7 )



Properties of a liquid or solid under hydrostatic pressure

We assume [ = const and x = const

Change of specific volume

dv = (@> dT (8”> dP = pBvdl — kvdP
P T

aT oP
= U = vo+f£dTﬂv—f;;dle

For solid or liquid the change of specific volume is small =>

= Eqn of state: v = vo[l—l—ﬁ(T—To)—fi(P—Po)]

The ent /TdT L / Cap (a”) +
S = — S
© entropy o T oT /) p !

From the equation of state (%)P = [, (82”)]3 —=

= Cp, = 6p+Tf]§) (%)PdP = c¢p = const

1
= § = CplnT—BUQ(P—PO)—I—SQ
0



Empirical and thermodynamics temperature

= Ap(0)

»(0) can be determined for a gas near the triple point

Suppose P and U are known experimentally as functions of Vand 6
oU 0P
(v)e = T(57), 7

ov /T ol /v
T" is a function of # only = if 1" = const then # = const and (% .
(&)
U . oP\ db dT __
- (), = (%), 87 = # - sow U3
v
d1’

? :9(9)d9 — IHT:/dQ g(@) — const = T — Aefdg 9(9

b(0) = el 090

Example : “Boyle’s gas” PV = f(§) = we define § = 0355 (Pv)3

_ (PV)3 6 P _ (PV)
- P = 5=y = (W)V = v

From Joule's exp. (g—g)e =0 = g(0) = (91:%2/3 = % = 1T = A0




Multivariable systems

X - any extensive variable, Y - corresponding intensive variable

5Q = dU + 6W = dU + YdX
Y

0 1
?Q = dS = TdU + de = T(U,X) = integrating denominator

Multivariable systems : extensive X7, Xo and intensive Y7, Y5

Example : )W = PdV — HdM

X7 and Xy — extensive variables (like V and M), N
Y7 and Y5 — intensive variables (like P and H),

oW = YidX; 4+ YedX9 = 0Q, = dU + oW = dU + Y71d X, + Yod X5

2nd law = % = % for Carnot cycle of whatever substance

= 1’ is universal
= %% — g = %(dU + Y1dX: 4+ YodX5) — exact differential

T
& T(U, X1, Xo) integrating denominator




Caratheodory principle
S — S(T,Xl,XQ)

S = const is a surface
in the (T, X1, X5) space

Adiabatically accessible states
lie either on isentropic surface
or in the side of greater entropy

States on the other side are
adiabatically inaccessible

Caratheodory’s 2nd law:
In the immediate vicinity of every
equilibrium state there are states
Fig. 6-3. Any process such ‘as ay-byc,-d,-a; is that cannot be re_achefj from the
Carnot cycle for a 3-variable system. given state by adiabatic process




Thermodynamic potentials

Helmholtz function

For any process between two equilibrium states W = (U; —Us) + Q

Let us calculate maximal amount of work that can be obtained when a
system undergoes a process between two equilibrium states at a
temperature T in the case when the only heat flow Is from a single

reservoir at the same temperature T

From the 2nd law (S, — S1) + ASr > 0

ASp — :Q } — T(Sl_SQ)

[V

Q
T

= from the 1st law WT S (Ul — UQ) — T(Sl — Sg) — F1 — Fg

Helmholtz function : F = U-TS



Wr < Fy —Fy (= for areversible process)

Decrease In F sets an upper limit to the work in any process between
two equilibrium states at the same temperature. The process can be
change of state, change of phase, chemical reaction etc.

Assume W = PdV +YdX = W5+ 0Ar
(for example, A7 =Y dX can be HdM)

In the isochoric process W5, =0 = Ar < F; — F

=> The decrease in Helmholtz function sets an upper limit
for non-PdV” work in a process at constant V and T.

If the process at constant volume is such that A=0 and T=const,
Helmholtz function can only decrease or remain the same.
Conversely, such process is possible only if F2 < F;



Gibbs function

Let us define Gibbs function by the equation
G = F+PV = H-TS = U-T5+ PV

=> For two states with same T and P

G1— Gy = U1—U2—T(S1—SQ) P(Vl—VQ) o
— B —F+P(Vi—Va) > Wp+P(Vi —Va) = Ap
= AT < G1—Go

=> The decrease in Gibbs function sets an upper limit
for non-PdV” work in a process at constant V and P.

If the extensive variable X is constant in a process, the only work is
“PdV” work, then A=0 and G2 < G,
In such process Gibbs function either remains constant or decreases



g for an ideal gas

T
g = h—Ts = fTOCPdT—TfTOCpT +RT1n——|—h0—SOT } —
cp — const

T P
g =h—-Ts = CP(T—TO)—CPTIH?—FRTIHF—SO(T_TO)_l_gO
0 0

this can be rewritten as
g = RT[In P+ ()]
RTH(T) = cp(T —Tp) — cpTIn L — RTIn Py — so(T — Tp) + go

f for an ideal gas

T
f = u—-"Ts = fTOCvdT_TfTCUT —I—RTln——l—uo—SOT } N

Cy — const
1 v
f =u—-Ts = c,(T—Ty) —c,TIn — — RTIn — — so(T — Tp) + fo
T() Vo
For the VAW gas
T 1 1 — b
f = c(T—Ty)—coTln— —a(- — —) — RT'In— so(T = To) + fo

To v Vo vg — b



Thermodynamic potentials

For a closed PVT system

dU = TdS — PdV
dF' = dU —TdS — 5dT N dF = —5dI'— PdV
dG = dU —TdS — SdTI'+ PdV 4+ VdP dG = —5dTI'+VdP

dH = TdS + VdP

For example, if U =U(S,V) = dU = (35) dS+(5¢) av

oUu _ ou _
- (85)\/ = (a S P

oU - oU _
(%)v =1 (W)s - f
OF - OF _

similarly (8_T)V = =9 (W)T = — P

—

(%), - s (), -7
oT p ? oP T
OH - OH _
<W)p = (3—13)5 =V



Gibbs-Helmholtz equations

Suppose that F' is known as a function of 7" and V

(g—i)v = (g—\i)T = 7
P = — (g—‘lj)T <+ Equation of state,
~ o= (8_5)‘/7

U = F+TS — F—T(g—g)T « Energy equation,

Similarly, if G is known as a function of 1" and P

- - (1),
- - (1),

y
(50),= —5 (Gp)e=V = {9
H=G+TS = G—T(

Q|
S

);



Gibbs-Helmholtz equations for
multivariable closed systems

Consider system characterised by 1" plus extensive X, X5 and intensive Y7, Y5

System has two equations of state = we can choose any of (T, X7, Xs),
(T,Y1,Y3), or (T,X1,Ys) to describe the equlibrium state of system.

Let us choose (T, X1, X2), then

F=U-T§, dF = dU —=TdS — S5dT B

dU = TdS — Y:dX, — Yod X }i dFF = —5dT' —YidX{ — YodXs
OF OF OF

= (0T>X1,X2 0X1/T,X5 ! 0Xo/T,X, :

Let us now choose (7', Y7,Y3), then

dU = TdS — Y;dX; — YodX>5
oG oG oG
= — = -5, (—) = Xy, (—) = Xo.
(8T)Y1,Y2 oY1/ 1Y, ! 0Y>/ 1,x, :



Let Y5 be the intensity of a conservative force field,
then the corresponding potential energy £, = Y2.X5
and the total energyis E = U+ E, = U + YaXo

Define F* ¥ E—-TS = U—-TS +Y,X,

The tunction F* can be considered a generalized Helmholtz function,
corresponding to F' = U — T'S for a system whose total energy equals its internal energy only

0k
aYQ T,Xl
Proof

If T, X; and X5 are independent variables
dU = TdS —Y1dX, —Y2dX, = 3% [U(T X1,X0) —TS(T, X1,X2)| = - Y,

If T, X1 and Y5 are independent variables, X = Xo(T,X1,Ys) =

(%%). . = 25 (U1 X0 X1, X1, Ya)] = TS[T, X1, Xo(T, X1, Ya)] + Vo Xa(T, X1, Y2) )

chain rule p

- 0Xso (U [T7 X17 XZ} — TS [T, Xl, XQ}) 8X2(gé1,Y2)

+ Xo(T, X1, V) + Yo 222lrda)

= — 1 8X2(g§3<1 22 4 XG(T, X1, Ys) + Y 8X2(gél’Y2) = X




OF™
If T, X1, and Y5 are independent variables ( ) = -5
ol / x,,Y,
Proof
oUu (T, X1, X 0S(T, X, X
dU = TdS —YidX{ — Yod X, = ( 8T1 2) = A ( 8T1 2)
dU = TdS — YlXm - YQdXQ s aU(Té);l,XQ) _ T@S(Té);l,Xg)
(882*))(1 . — 8% (U[T, Xl,XQ(T, Xl,Yg)} — TS[T, Xl,XQ(T, Xl,YQ)}

+Yo Xo (T, X, Y2))

_ QU[T,X1,X5] SIT, X, Xy 7 OS[T . X1, Xo]

oT QT
. O 0X2(T,X1,Y2) | 0Xo(T,X1,Y2)
58 (V[T X0, Xa] = TS[T, X, Xy ) 2620000 |y 0000
= — ST, X1, X,|-Yp 222l Anta) p y, O8au) = g
- OF*\
Similarly, ( 5 Xl)T,Y2 = —Y



Generalized Gibbs-Helmholtz equation

dF = — SdT —YidX, — YsdX, = (g_g)XLXQ S
=~ U =F+TS = F— T(8T>X1,Xz

The enthalpy is defined as H = U + Y1 X1 4+ Y2 X5

dG = — SdT + X,dY, + X»dYs = (g_g)m = -5

H=U+Y1X1+Y2Xs = G+TS = G- T(—g)y ’

Maxwell relations
ON

0M) 0%z(x,y)

) 0y
)s =

dz = M(z,y)dx+ N(x,y)dy = (—)y —

@) G
B o

|
OC
TN <l

op
OT
oV

oS

(%),

QU Y|
'ﬂ‘< UJ"‘U



Stable and unstable equilibrium

“c”: above PVT surface
supercooled vapor
(metastable state)
Use: Wilson chamber
\ LIQUIP

PRESSURE

~d”: below PVT surface
superheated liquid
(metastable state)
Use: bubble chamber

Fig. 7-1 The P-V-T surface representing states of stable
ulmllln'inm for a pure substance.



We can define entropy S, Helmholtz function F and Gibbs function
H for the metastable state pretending that it is stable

For the isolated system the final state of stable equilibrium is that in
which entropy S is higher

For the system at constant volume and in contact with heat reservoir the
final state of stable equilibrium is that in which Helmholtz F is smaller

For the system at constant pressure and in contact with heat reservoir
the final state of stable equilibrium is that in which Gibbs G is smaller

From the definition of a state of stable equilibrium it is evident that no
spontaneous process can take place from an initial state of stable
equilibrium. However, such processes can occur if some of the
constraints imposed on a system are changed



Phase transitions

P
b b,
*
| | I I
I | | |
I l I |
I I I I
| | | I
: | l |
1 1 1
v oy v, U 5
(a) (b) (c)
G, = n/lfg// n ,nllllg///’
G2 _ n/2/g// L n/2//g///, g// _ g///
nt +ny" = nl +nl’, = The specific Gibbs function
both states are stable at const P has the same value in both phases

#GlzGQ



a—b—c and d—e— f:
processes at constant pressure

54" \
(39'-7)13 -
8 /77
(5, - - |
o
o M gl — % }
:> <ag//) B (69///) B 12_3 > O
ol /p ol /p T

Cc - metastable
T f - stable

d - metastable
Fig. 7-3 The specific Gibbs function of the a - stable
vapor and liquid in processes a-b-c and d-e-f
of Fig. 7-1.

b — e : first — order phase transition < ¢ is continuous but (_g) 1s not
P

oT



Second — order phase transition :
o,
and (—g)
Y T )

2
(58, ~(3),~% =

the value of cp must be different in two phases

2
are continuous but (ngZ> 1S not
P

Example: transition of a superconductor from superconducting to
normal state at zero magnetic field



A — transition in liquid helium

cp versus 1’
50 x 103— '
T 40
—
R
o)
£
S
T 0
3 L
10—

T . L 1 1 '
Wy | G 20 25 30
N
0 T(K)

& 4 Fig. 7-4 The lambda transition for
liquid He®.

Lig. | - ordinary liquid
Lig. Il -superfluid liquid

Fig. 2-13 P-v-T surface for helium with projection onto the P-T plane.



Clausius-Clapeyron equation

If liquid and vapor are at equilibrium at pressure P and temperature T g”’=g”.
At a temperature T+dT and pressure P+dP g”+dg” = g”+dg’” => dg”’=dg”™

dg = —sdl' +vdP =

—s"dT +v"dP = —s"dT +v"dP

:> (S///_S//)dT — (,U///_,U//)dp7 :>
g/ I — lng

(), , - o

oT 943 T (v —v'")

Clausius — Clapeyron equation for liquid — vapor equilibrium

1 i oOP _ l13
for solid — vapor transition ( 8T) e T

R T " OP _ l13
for solid — liquid transition (_aT) e T T =)



The third law of thermodynamics

In a spontaneous process (like chemical reaction) at a constant pressure
and in contact with reservoir at temperature T the G-H equation gives

0|G2 — G1] 0AG
Go— Gy = Hy— H T( ) & AG = AH T(—)
2 1 2 1T o - + 57 )
From experiments
{ limg o (2€) = 0
P
| AH
llmT_>() (%—T) = 0
> P
<
3 : 0|G2—Gi] -
| hmT—>O( oT o =
= e[, (),
AC — oT ) 1, 9T ) 1|’
b v e (oG .
(57), = =5
Fig. 7-5 The temperature dependence of P
the change in the Gibbs function and — lim (Sl o SQ) —

in the enthalpy for an isobaric process. T —0



Nernst heat theorem:
In the neighborhood of absolute zero, all reactions a liquid or solid In
internal equilibrium take place with no change in entropy.

Planck : the entropy of every solid and liquid substance in internal

equilibrium at absolute zero is itself zero : %imo S =
%

_ (T~ dr _ (Y dr
_fOCVT7 S(V7T) _ fOCPT } = limCy = limCp = 0

entropy is finite T—0 T—0

It is impossible to reduce the temperature of a system to
absolute zero in any finite number of operations

Proof: consider reversible adiabatic process which changes
temperature T and some other property X of the system

S1(X,, Ty) = fo TCTX, S1(Xp, Tp) = fOdeTCTX

adiabatic process = 51 =52 = fOTadTCTX = fOdeTCTX

take Ty, — 0 = / dT— = 0 < contradiction



Applications of Thermodynamics

Chemical potential

Diffusion of two ideal gases at same T and P:

Experiment:
P, +P,= P

Gibbs function for an ideal gas: ¢ = RT[In P + ¢(T)],

O(T) = (1= ) = Flng —InPy+

Initial Gibbs function : G; = ni191; + n299;
gi; = RT'(InP+¢1), goi = RI(InP + ¢2),




Final Gibbs function G; = ni91; + n299;
g1 = RT(Inpy + ¢1), gos = RI(Inps + ¢2),

Mole fractions: x7 = —4

ni+ng’

2
ni+ng’

To = n=niy+ nNo

p1V _ p2V PV
RT> "2 = Rpry N = RT

_ .  Db1 . P2
ny = = X1 = B, T2 = 5

Inp; = mP+Inzy, Inpy = InP+lnxy =
gif = RI'nP+¢1+1nz1), gof = RI(InP + ¢p2 + Inzo)

The chemical potential of each gas in the mixture is defined as
w = RIT(InP+¢+Inx) = RI'(lnp+¢) = g+ RT'Inx

The change of Gibbs function in the mixing process is
Gr—G; = m(m - 91) + n2(M2 —g2) = RT(’”& Inxi + no lnﬂi‘z)



Chemical potential for open systems

Closed system : dU = TdS — PdV, 8_U 8_U

— =1, — _p
U=U(S,V) = dU:(a_U) dS"‘(_‘(i)SdV } (8S)V (@V)S

Open system: we can add or remove material

dU:(

Q>|Q;
n|S

)ydS + (5

<8

)S,ndv T (g_g)v,sdn’ \

- (52, (),

in=0 = dU = TdS — PdV, ,

oU
Definition : p = (8—)‘/ . — chemical potential
T ’

= for open system dU = TdS — PdV + udn



In general: dU = TdS —YdX + pdn
S=85U,X,n) = dS = 5dU+ FdX — Ldn
F=FUX,n) = dF = dU—TdS—SdT = — SdT —YdX + pdn

GU,Y,n)=F+YX = dG = —SdT + XdY + pdn

p=—T(
= (G,
= (5:



Phase equilibrium and phase rule
Consider a phase composed of k constituents

U = U(S,V,ni,ng,...,ng) =

U = (a_g)v,n | (gg)s,n | (gg)V,S,n’ | (g’lsjjz)V,S,n’_l_'" | (g'f?k)vasan’

= dU = TdS — PdV + pudny + ... + ppdny,  where  p; = (32

)V,S,n’

Similarly, for fixed T and P

dG = dU —TdS + PdV = } (dG = pidng + ... + prdng,
= 3

- 0G
Y T (8_m

dU = TdS — PdV + pidng + ... + prdng )P,T,n’

\

Chemical potentials do not depend on the overall size of the phase.

Proof: gedanken experiment on phase consisting of two equal parts

AG 2AG AG
for each half u; = VS for two halves p; = —




We get for k constituents at temperature T and pressure P

G

ping + poang + ... + pupng + Go

U

TS — PV + puing + pang + ... + upnie + Gy
H = TS5+ ping + pang + ... + prpng + Go

F' = — PV + piny + pang + ... + pgng + Go

Consider k constituents in r phases at temperature T and pressure P

(In real life, gas is only one, but liquids and solids can be few)

We had a rule that g is the same for each phase in equilibrium.
For several constituents, this rule should be modified.

r k r k
G — >:>:M§J)n53) G:gmin (dG)T,P _ >:>:,u§j)dn§]) — 0

g=11=1 j=1 =1




We get a system of equations

0 = ,ugl)dngl) -+ ,uf)dngz) + .+ uY)dnY)
(D dn i (Q)dng) + ...+ ,ugr)dngr)

T Hg ANy T o

+ u,il)dn,il) + ,u,(f)dn,(f) 4+ ...+ /L,(:)dn,(:)

with constraints

dngl) + dnf) + ...+ dnir) = 0
dngl) + dng) + ...+ dnér) = 0
dn,({l) + dn,(f) + ...+ dn,(_:) = 0



(722)

To solve this system, consider n, as independent variables

and express dn( ) as dngl) = —dn §2) — .= dnq(:r)

=> we get a system

2 1 2 3 1 3 r 1 r
R
+ (g —py )dng’ + (1 — py)dng ’ + o+ (g — py )dng

= mn? + = D) o ) = )dn?

Now n(] 22) are independent and can be varied arbitrarily =
2 1 3 1 T 2 T
Y O S L N C
Similarly, py) = ps? = ... = p”, o) =Y ==
(7)) —

= the upper index In p 1s redundant : p.;””" = p;



Gibbs phase rule o @ ()

H1l —H1 == H
ué)—ué)— —uér)
k(r — 1) equations of phase equilibrium :
1 r
( ) _ “l(c) _ /‘Ec)

r(k — 1) 4+ 2 unknowns (r(k — 1) for » mole fractions and 2 for 7" and P)

(k—1)
r(k—1)+2=Fk(r—1) =  nonvariant system with zero variance,
r(k—1)+2=k(r—1)+1 = monovariant system with variance 1,
r(lk—1)4+2=k(r—1)+f = system with variance f,

Gibbs phase rule: f = k—7r+4+2  (no chemical reactions)

Example: water in equilibrium with vapor
k=landr=2 = f =k—r+2 =1 = Tor PcanbeV



Another example: triple point of ice, water, and vapor
f =k—r+2 =0 = T and P are fixed

Variance in systems with chemical reactions
Example: four constituents A, B, C, and D.

chemical reaction

naA+ngB ncC +npD

Number of variables is the same but there is one more equation
= f=rk-1)+2—-k(r—1)+1] = k—r+1

In general f = k—n—1r+2
n = number of independent reversible chemical reactions



Example: dependence of vapor pressure on total pressure

P :
total pressure

7777777777

N

NN

NN
NN

7//////////////////////////
. " o Ry

%
é Z . O O “ O a o p :
é | | é vapor pressure
Z | é For liquid
i 3 p' =
/////////////////////////////é s _ %)
)T Pn'=
(a) (b) = g

Fig. 8-1 A liquid in equilibrium with its vapor
(a) at the vapor pressure, (b) at a higher pressure For vapor
caused by the presence of an indifferent gas. p"' = RT(Inp + ¢)

(Gas pumped in at constant 71" so that P — P+ dP and p — p+ dp

The system is at equilibrium at new P = du” = du'”’



Temperature is constant =

For the liquid du” =dq¢" = —s§"dT +v"dP = v"dP =
For the vapor ¢ = ¢(T') = du'"" = %dp
M// — lle//, — dp B ,U//

If no indifferent gas is present P =py =

"dP = dp Pdp _ o P
viapr = RTP = po P RijodP
= 111};[—; — ET(P_pO)

When the total pressure P is increased, the vapor pressure p increases
also => as more of the indifferent gas is pumped in, more of the liquid
evaporates



Blackbody radiation

Blackbody absorbs 100% radiation
iIncident on it at any frequency

Radiation ) ) > > >

U . .
u = radiant energy density
T V
Experiment : the rate of radiation is a function of T only
. . = u = u(7)
Rate of radiation is proportional to u
3
From experiment : Planck’s law du = —&% v = frequency
e T —1
3
= u = [du = fooodu arv__ ~ T4
e T —1

The dependence of u on T can be explained by thermodynamics



From electrodynamics :
the pressure exerted on walls by radiation P =

(%), - (), -7 = 1(%), = » }

p— u _ (d_P) _ 1(du) _ 1ldu
3 dT % 3 T % 3 dT
__ T du 1
u =3 ar, 3U
=u ~ T4
u = ol o = 7561 x 10716
’ ' m3 K4
1 | . ,
Equation of state P = gu = gaTl, energy equation U = uV = oV T
oU L .dr 4
— ) = 40VT® S = Cy— = —oVT’
(QT)V v - /0 YT 37
Helmholtz function F' = U -TS5 = -— %UVT4

Gibbs function G = F+ PV = — %UVT4 + %(IVT4 = ()



Surface tension




Two phases”: surface film and bulk liquid

0.15 — 'r
AT 1010
=
«)
=<
S 005k

. X | ol wibsh b "R
273 373 473 573 1. 673

Temperature (K)

Fig. 8-2 Surface tension o, ‘“‘latent heat” 4, and
surface energy per unit area U/A, for water, as a
function of temperature.

A = the heat supplied
per unit increase
of area at constant 1T’

surface tension o :
force per unit
length of boundary



Isothermal process : the heat flow into the film 0Q7 = AdAr

the work is 0OW = — odAr
and the increase in internal surface energy is

SUpr = 6Qr — Wy = (A +0)dAr = (g—i)T — Ato
ot (%), = 7(28), -#
By analogy ¢ ~ — P and A ~ V  we can write
() =27 (Ga)y =T = r=-Tqg

do U
U = AN+0)A = (U—Td—T)A = 1= o—T—



By analogy with heat capacity in PVT system, one can define

= (57)
ca = | =
A o1/ A
do do d’c do d*o
U= (o-Tgp)A = Ca = A[dT Lar dT] = — Al
| | . . d’o
= The specific capacity per unit area is c4 = — T_dT2

Helmholtz function and entropy

By analogy with U = F—T(i—?)v we can find U = F—T(%)A
U= (-Tg)A = F =04 5 o=

— _ Ado
_ AdT

— 2T

' . dF
The entropy of the filmis § = — (d—

L do
= § = T

A




Vapor pressure of a liquid drop

For the mechanical equilibrium

” i 2
£ N - Ping — Pext = 70

For thermodynamical equilibrium

p _— v (p . _
In p_() — RT (Pmt pO)
v [ . | 20}
rT [P —PoT 7,
RS In practice p—py < %7
e piig e R et p  _ 200" _ 200"
i i ln Po - r RT é T RT In %

e 4 The equilibrium is not stable:

T\( ip/‘ = p>P0xt

: . = drop would evaporate
Fig. 8-3 Surface tension pw vap

forces in a spherical

r = P = p< Py
drop. /‘ r \( r ext

= drop would grow



Thermodynamics of magnetism
Ist law : OW = PdV — HdM

For paramagnetic chrystals PdV < HdM = oW = —HdM

Magnetic potential energy E, = —HM
= totalenergy E = U+ E, = U—-HM

db = dU — HdM — MdH
TdS = dU + oW = dU — HdM

For PVT systems 7TdS = dH — VdP = FE is a”"magnetic enthalpy”

} = TdS = dE + MdH

Physics is different, but equations have the same form
= wecanreplace H - FE, V—»-M, P—H

QD

Analog of cp: ¢y = (g—?)?{, analog of cy : ¢y = (d_g)M
TdS — chT—T(g—”) dM,

M
0
TdS — cHdT+T( T)HdH

~

T'dS equations :

=

Q



We defined F* = E—-TS

dF* = dE —TdS — SdT .

TdS = dE + MdH } dF” = —5aT — Md#
OF* OF*

= (8T)7{ = =5 (B’H)T = - M

Statistical thermodynamics = F* = F*(T,H)

= the second eqn is the magnetic equation of state

Energy equation:

- . * - * OF™ OF™
U = B+HM = F*+TS+HM = F* -T(%) -#H(%),
= All properties of the magnetic system are defined by F*(T,H)

“Maxwell equation” = (S_Z)T - ((Z_A’J{) H

. . ./ oM
For a paramagnetic obeying Curie’s law (a_T)’H < 0

= the entropy decreases as the magnetic intensity increases



From Nernst theorem
oS T—0
o — 0
(3H) T o
= (%—%) =0
H
= Curie’s law M = C’o%

cannot hold at T"'= 0
= phase transition as 17" — 0

Adiabatic demagnetization

a — b: isothermal increase of H
= heat flows out

5Qr = TdSr = T(%—A:,{)HdHT

T, T, b— c: adiabatic decrease of H
0 = TdS = c3,dT T(f’—M) dH
Fig. 8-4 The temperature dependence cnat i or ),
of the entropy of a magnetic system at = dTs = 07;{ (%¥)Hd%8
A = 0 and at H# = .




It is possible to prove that if the
entropy is not 0 at T=0 for H=0,
the absolute zero of temperature
=% could be reached in a finite number
of processes in violation of the
unattainability statement of 3rd law

—T

Fig. 8-5 The unattainability of the
absolute zero of temperature by a
finite series of isothermal magnet-
izations and adiabatic demagnet-
izations.



Kinetic theory of ideal gases

Basic assumptions
e Any macroscopic volume of gas contains a very
large number of molecules.
e The molecules are approximately point particles.

e The interactions between molecules are only collisions
with other molecules and with walls.

e These collisions are elastic.

e In the absence of external forces the molecules are
distributed uniformly throughout the container.

e The directions of molecular velocities are distributed
uniformly.



Uniform distribution of directions of velocities

Fig. 9-1

rsinf) r
!
!

Polar coordinates.

/

sin 0 A¢
{

() — solid angle
AA = r’sinfAOAp =
AQ) = %;4 = sinfAOA@

The number of velocities
pointing in Af) is
AN = SAQ

= the number density of
molecules with velocities
pointing in A} is

Ang = 7-AQ

AN, = the number of

molecules with speeds
between v and v + Av



o

Molecular flux

AN
= — total number of molecules arriving at the surtace

AAAL

If the surface is inside: two fluxes - flux in and flux out.
If the surface is on the boundary, incoming flux and reflected flux.

Space — saving notation :
fdv molecule = molecule with direction of velocity between

0,0 +df and ¢, ® + dp and speed between v, v + dv



< the cylinder
with axis in

6, ¢ direction
and length vAt

The number of

6 v molecules
that arrive at the
surface during At
— the number of
molecules in

the cylinder

Fig. 9-2 Only the 6¢v-molecules in the cylinder will arrive at the
area AA during a time Az,



\

The number density of 8¢dv molecules is Aﬁ’“ sin 0dOdo

the volume of slant cylinder is AV = (AAcosf)(vAt)

/

the number of ¢v molecules in the cylinder is
ANggy = 1=An,sinfcosIAOAPAAAT =
= the flux of 6¢pv molecules is

ADgy, = z=An,sinbcosAOAQ

For all azimuthal angles A®y, = 27A®Pgy, = 5An,sinfcostAl
/2
= for all angles 8 and ¢ Ad®, = ADgy, = gAnv




r sin 0

% A—L T

-

—

Dr\lnr nr\r\r{‘lln') too

rsin 0 Ag

7
’
S

\\-\

r AU

L2l N

N

The molecules arriving at
the area in the 08¢ direction
are those coming from the
small cone whose base is

AA on the spherical surface

A(I)gqsv -
Anv sin 6 cos 0 AOAP
cos 0 Anv dQ

Ao, 1
= SAeY = z-Any,cosb

The greatest number of
molecules arrives from
the cone centered at
the normal



Equation of state of an ideal gas

Change of momentum :

Ap = 2mwvcost

Flux of 8v molecules

ADy, = A;"’U sin 0 cos O A6

Pressure due to 8v molecules
APy, = AdDy,2muvcost
= muv?An,, sin 6 cos® 0AH

Pressure due to all
molecules with speed v

A(I)gv = m§12 Anv

Fig. 9-3 Change in velocity in an elastic collision.

This formula is also correct for any surface inside the gas



— 1 1 1
, 5 _ 2 _ 2 _ 4 2
Mean square speed : v*4 = N E vt = E v°AN, = - E v AN,

- 1
ZUQAnU = nv? = P = gnmvz

— kT
Comparing to equation of an ideal gas PV = NEKT we get v? = ——
m
1 — 3
—mv? = —kT < mean kinetic energy of a molecule is proportional to T

2 2



Collisions with a moving wall

u<<v =
the loss of kinetic energy of molecule
2 2
C = 0" g Lwcos Z—Zu) = 2mou cos

= Loss of molecular kinetic energy per
unit area per unit time due to fv collisions
= muv?An, sin 0 cos A0

= Total loss of molecular kinetic

energy per unit area per unit time
1

— gmuv_Q = Pu

Rate at which mechanical

work is done on the piston

= Fu = PAu

— rate of decrease of
molecular kinetic energy

AANUIAIIIIIIIIIIRIIIRN

Z
Z
7
Z
Z
Z
Z
Z
Z
cz
Z
Z
Z
=
=n
Z
Z
Z
zZ
Z
Z

Tzzzzzzzz77

Fig. 9-4 Collisions with
a moving wall.



Equipartition of energy

Consider mixture of ideal gases

Experimental fact (Dalton’s law):
total pressure is the sum of partial pressures.

pV = N1KT, pV= NykT, ... p; = partial pressure
1 — 1 —
From previous lecture : p1V = gNlmlvf, poV = gNgmgvg,
1 — 3 1 — 3
= -—mqvi = —kT, -movs = —kT,...
2 2 2 2

In a mixture mean kinetic energies of molecules of each gas are the same

2 — 2 2 2 2 — 22 — 2 — v2
v Uy U +v; = vz =, =g 3 % LT for each
= d f freedom
_ _ _ egree 0
= %mvg = %mvfj = %mvg = %kT
1
If energy is a quadratic function of variables = EkT for each degree of freedom

N
Total energy of N molecules with f degrees of freedom = EN kKT = JQCnRT



Classical theory of specific heat capacity

The internal energy of an ideal gas U = gN kKT = gnRT
f ou f
= *RT = ¢, = (=) = iR
YT ° oT/)v — 2, 5
Monoatomic gas ¢, = —-R, cp = ¢, + R = -R, v = L — ~ 1.6
2 2 Cy 3

I,=1,>1, = eflectively two

rotational degrees of freedom

Two vibrational degrees of freedom :
Eyin = F(velocity) and
' Ebor = F(separation)

= for a diatomic molecule

— 9 — 9 ~
Fig. 9-5 A dumbbell molecule. CP = 2R’ 7= 7 T 1.29



Heat capacities of monoatomic and diatomic gases near room T

Alr

1.66
1.64
1.67
1.69
1.67

1.40

1.40
1.40
1.42
1.43
1.36

1.29

1.33

1.30

1.40

2.50

cp/R

2.50
2.51
2.49
2.50

3.47
L B.Y
3.50
3.50
3.39
4.07
4.47
4.41

430

3.50

E 0y
¢,/ R
R
1.506 991
1.52 975
1.507 1.005
1.48 1.01
1.50 1.00
2.47 1.00
2.52 1.01
2.51 1.00
2.50 1.00
2.52 1.07
3.00 1.07
3.47 1.00
3.32 1.10
330 . |.:.1.00
- 2.50 | 1.00

Monoatomic :

Cv — 3 Cp _ 2

R 2° R 2

v = %f} ~ 1.67

Diatomic :

Cy 7 cp _ 9

R~ 20 R — 2
— &2 ~ 1.929

The pressure depends
on the translational
kinetic energy

Uy, = SNET

S 2Utr

= P = 3%
— %utr — %RT



Problem 9-10: ideal gas in two dimensions

Al

< the rhombus
with axis in

0 direction

and length vAt

The number of
v molecules
arriving at Al
during At =

— the number of
molecules in

the rhombus



The number density of v molecules is A”’“ do N
the area of rhombus is AA = (Al cos «9)(UAt)

the number of v molecules in the rhombus is
ANy, = 5-An,cos0AOAIAL =

=  the “flux’’ of v molecules is

Ady, = 5= An, cos 0 Al

~ /2
for all angles 6 A®, = / APy, df = EAnv
—7r /2 T

- 1
= the total luxis ® = — VAN,
cs &= Ly

1 1
Average velocity : v = Zv = NZ?}AnU



Change of momentum :

Ap = 2mwvcosb

Flgx of fv molecules
Ady, = 5-An,cosfAH

“Pressure’”’ due to v molecules
APy, = Ady,2muvcosb

= ™ Ap, cos? A0

“Pressure’’ due to all
molecules with speed v

AP, = ™ Ap,

= P —mZ’UzAnv

Fig. 9-3 Change in velocity in an elastic collision.

|
[

—nmv2
2



Intermolecular forces. Transport phenomena

F

<- Typical
Intermolecular forces




Van der Waals equation of state

Ll If we take into account "available”
volume for molecules

P(V —nb) = nRT
= P(v—0b) = RT

\\\_L/// Unavailable volume
| = % X %de
~—d— = b = ZNund

4(volume of molecules)

Fig.10-2 The radius
of the sphere of exclu-
sion equals the molec-
ular diameter d.



Van der Waals correction

Assume rapidly decreasing attractive force between the
molecules and assume the nearest-neighbor interaction

:‘.: 0‘ ® T-‘: o’ :‘. :,‘

The force of attraction is proportional to number of molecules per
unit volume in outer layer and to the density in the next-to-outer layer

2 2
. N
The pressure % will be reduced by a(%) = an? = aUQA = -3
where a = N4« is some constant

> P={L-% o (P+%)w-b) = RT




Collision cross section & mean free path

O

O o

Fig. 10-3 Molecular free paths.



Ax A Npyllet . target area
4 Nyullet  total area
target area of
a single molecule
o = md?

o : microscopic collision

cross section
L of one molecule

Total target area

Otot — TLO'L2ACC

(n = density)

no : macroscopic collision
cross section

Fig. 10-4 A thin layer of gas of 1.1 0104 iq 7.2
“target” molecules being bombarded AN

% ’ = == = noAx
by “bullet” molecules. N



Mean free path

Each of AN collisions scatters molecule out of the beam
= AN can be interpreted as decrease in the number N

AN _ dN
For very large NV A
= survial equation : % — —noN = N = Nye "%

Mean free path (I) = the average distance traveled by a group
of Ny molecules before they make their first collision

) AN,

[
Ny

>C 1 1
— na/ re " dr = — = | = —
0

Mean free path does not depend on speed of molecules



Example: d >~ 2 x 1071%m?, n ~ 3 x 10*°m—3
= no = nnd® ~ 4x10°m™!
— mean free path | = = ~ 2.5x 10" "m

no

Average intermolecular separation ~ 3 x 107?m < mean free path

If one takes into account motion of target” molecules:
3 1

All molecules have the same speed = [ = —— (Clausius)
1 1 4 no
Maxwell velocity distribution = [ =
V2 no

Collision frequency z
In time At the molecule travels vAt along the zigzag path

= average number of collisions = 22! = frequency z = 2
, 1 1
Mean free time 7 = — = ——
2 nov
Example : 2 ~ 5.5 x 109 collisions
for oxygen at room temperature T = % ~ 1.8 x 107 1%



Motion of electrons in a conductor
Electrons are much smaller than ions
= center — to — center distance is g rather than d

= electronic mean free path is [, f—a
where n = density and o = cross section of ions
N/N,

The survival equation in
terms of mean free path

N = ]\[()G_nij
Noe—:c/l

|

|
¢ ——————x/I
1

Fig. 10-5 Graph of the survival
equation.



Ohm’s law

The acceleration ¢ = £ = €&
™m ™m

= average drift velocity between collisions u = % =

Drift velocity is much smaller than average thermal speed




I'he current density J = the current per unit of cross sectional area

The current density J (current per unit of cross sectional area
is a product of of the number density n. of electrons,
their charge e and drift velocity w

2
_ _ nee’le
J = Ne€U = 500

Since I = JAand V = FEL we get Ohm’s law

2
- Ne€ le - K - 277’L’UL
I = 2muv L VA < I = R R = nee?l. A




Gas viscosity

Lgzggzzzzzz;2z2z247—= F
7 F
o

[ o

L

Fig. 10-6 Viscous flow between a stationary
lower plate and a moving upper plate.

The molecules in the layer of the gas have a forward velocity
component u which increases uniformly with the distance y
above the lower plate
F du

The coefficient of wviscosity of the gas n is defined by 1= 77@

du

] = the velocity gradient
dy



To find the net

momentum G |

in the direction of the flow
carried across the surface
(per unit time and per

unit area) we need to find
the average height ¢ at
which a molecule made its
last collision before crossing

The average ¥y is found

by multiplying [ cosf by the
Fig. 10-7 The last mean free path flux A.‘I).O» summing over all ¢
before the molecule crosses the surface and diving by the total flux ®

started a distance y = [ cos 0 from the
surface.



ADg, = FAn,sinbdcostAH =
APy, = %ZvAnv sin @ cos A0 = gnsinﬁcosﬁAH
¢ = i@n = A(%)@ — 2sinfcosA0 =
y = ZZCOSHA(%)@ > QZfOW/2d«9 sinf cos® § = %l = Y zgl
R 3 dy
_ g 2du
R 3 dy
F

Fig. 10-6 Viscous flow between a stationary
lower plate and a moving upper plate.



The momentum in the direction of the flow carried
across the surface per unit time and per unit area

Gl = m(uo + %l%) X (total flux &) = %nm@ (uo + %li—;)

Similarly,

Gt = inm@(uo — %lfl—;)

= the net rate of transport of momentum per unit area is

G =G|]-Gt = %nm@l%

By Newton’s 2nd law G is a viscous force per unit area so

_ Fjdu __ 1 — mou
n = %/ Q= snmul P
mu
= n = 3— Note that n depends only on T
o)

From statistical thermodynamics v = \/ fr’“—,,f
— n = 1 8k vVm'T

3 [y o




700 -
aX)»—-
o' From statistical
3 om statistica
3 .
g thermodynamics :
< -
i _ 1 /8k/mT
n 3 T O
300
X0) =
| AR (SR PR 2T AR R | sl
10 15 X 25 30 35

JT (KY3)

Fig. 10-8 The viscosity of helium, argon, and
neon is almost a linear function of /.



Table 10-1 Values of the mean free path and molecular diameter of
some gases determined from viscosity measurements. The values of
[ and d in this table were calculated using Eq. (10-13) for /.

From statistical thermodynamics :

Y

1
3

1 (15°C) [(15°C, 1 atm) d
Gas (Nsm™) (m) (m)
He 194 x 10°° 18.6 x 108 2.18 x 10720
Ne 31.0 13.2 2.60
A 22.0 6.66 3.64
H, 8.71 11.8 2.74
N, 17.3 6.28 3.76
0, 20.0 6.79 3.60
CO, 14.5 4.19 4.60
NH, 9.7 4.51 4.44
CH, 10.8 5.16 4.14

8k V/mT

T

g




Thermal conductivity )

| T2
O Heat flow per unit
3/ D e T, area per unit time
——————————————————————— H = -9
T1
Average kinetic energy per molecule at a distance
%l above the surface is ¢;T = ¢} (To + %l‘é—fyp)

= the energy transported downward is

co(To+319,) x flux = H| = %ci(To+319))

nov 2 dT
Similarly, the energy transposted upward is H{1T = IC: (TO — gld—
Y
. . 1 _ .. dT
- the net rate of transport per unit areais H = HT-H] = -— —m)cvld—
Y

= the thermal conductivity is A = %n@c;'jl =



The ratio of thermal conductivity to viscosity is (M = atomic weight)

)\_c,jj_cv_cv(:))\M_l
n m  mNsg M nc,

For real gases

A0°C) | M L OE) Co IM
Gas | Um s 1K) | (kgkilomole™) | (Nsm 2) | (J kilomole™ K™) | #¢,
He 0.141 4.003 18.6 x 10~ 12.5 x 10° 2.43
Ne 0464 20.18 29.7 12.7 2.48
A 163 39.95 # g 135 12.5 2.45
H, 168 2.016 8.41 20.1 2.06
N, 241 28.02 16.6 20.9 1.95
(), 245 32.00 19.2 21.0 1.94
(0, 145 44.01 13.7 28.8 1.62
NH., 218 17.03 9.2 27.6 1.46
CH, 305 16.03 10.3 27.4 1.73
Al 241 29. 17.2 20.9 1.94




Diffusion

////////////// Y,

For simplicity, consider self-diffusion:
two gases are the same, but one of them
somehow tagged (e.g. radioactive isotope)

2
?
é
%

7
Z
7
7
7
é
7
%

n*(y) = number density
of tagged molecules

The flux of tagged molecules is
[ = — D&
Y
D = coefficient of self — diffusion

Fig. 10-9 A vessel con-
taining two different
gases separated by a par-
tition.



Again, we assume that each molecule makes its last collision before
crossing at a perpendicular distance (2/3)l from the surface.

Above the surface n* = ng 321 dc?*
_ Y .
. _ 2
= the downward flux is I'|] = %(ng + £ ”?“J )
Similarly, the upward fluxis I't = In*(y) = ¥(nf — —ld”’y )
| _
= the coeflicient of diffusionis D = —vl = v
3 3INo

where n is a total number of molecules per unit volume



1 — VM
Snmvl P
1. x—7 __ vC,
sne,vl = 2
1 — T
STLUZ 3no

Summary

mau = flow momentum of a molecule

O*
~
]

kinetic energy of a molecule

concentration of tagged molecules

< coeflicient of viscosity

< coefficient of thermal conductivity

+— coeflicient of self — diffusion



From quantum mechanics

In non — relativistic quantum mechanics a particle is described by
complex wave function W(t,r) satisfying Schrodinger equation
L OV(t,T) h?

_ 20 (4 . .
ih o — va U(t,r)+ V(t,r)V(t,r)

V(t,7) = potential energy
2 = 2 - 2 .
V2 = 88; | aa; | 88;2 @ VQ\IJ(tf) _ 92ut,F) | 8P(t,T) | 9TW(t,7)

ox? | oTE | 0z2

2k

h = 4 — 1.0545718 x 10342155
27 sec

U(t,71*AV = probability
to find the particle in the volume AV = AzAyAz

Stationary state with energy F: W(t,7) = 6_%Et\11(7:’)
2

h
= - 2—V2\IJ(F) + V(x)¥(r) = EY(r) stationary Schrodinger equation
m



Particle in a box in one dimension

V 1 — dim Schrodinger equation :
2 9% (x
POYE L y(z)W(z) = EV(x)

For a particle in the box
V) = 0 if0<ax<L,
) = oo otherwise
_ K2 0%°T(x
] U(0) = ¥(L) = 0

/

0 L

Mathematically, it is the equation describing standing waves
Solution : W, (x) = \/gsm =, fo U, (z)|*de = 1

2 232
E, = WZTZL@ — energy levels n = integer number

=> Energy is quantized



Classical analog: standing waves

| T
n=1: sin—
L
2T
= 2 In ——
n Sin 7
3mx
-~ 3 . M
n Sin 7

Fig. 11-1 Three of the possible station-
ary waves in a stretched string fixed at
both ends.



A standing wave is a superposition of left-moving and right-moving waves

Uo(tw) = o (e s i)
(
2
™
pn = —— — quantized momenta, FE, = P
L 2m

Particle iIn a box in three dimensions

V(ir)y = 0 if L>ux,y,2>0, V=00 otherwise

3
. 2\ 22 e TMNyY = TNLZ
Eln t,7) = (4)2 sin T22L gin ~22 gin ™
n= (Mg, Ny, Ny)
e TN, TNy TN, ., _— Py __ T 2 2 2
Pr = ( L » L ° L )’ En  2m 2mlL? (nfE _|_ny _|_nZ)

Energy levels are degenerate, e.g. E1 23 = Ej 39 etc.



(0 oty lkn . B ooieatl®) 7o 18 g, =

dlaifadon b b Aodeapbiugl s tlaal #7478  degeneracy
4r-
. et L® L‘,"“:.‘"\.-‘:“ N] —
| g o
" occupation
ool lo] |o}@a=aANy= number
(2 e ——————————
':o:] g, = | (Nondegenerate), N, = §
CI*—- - ZNJ — N
2.¢iN; = E

Fig. 11-2 A schematic representation of a set of
energy levels ¢;, their degeneracies g; and their occupa-
tion numbers N,.
m*h? 2 2 2
b = O0+4Xx2°+3x3°+2x4
o2\ )




Statistical Thermodynamics
Macrostates and microstates

Macrostate of this assembly: (5,4,3,2)

€

(1) (2) (3) (4) (5) Microstate of
e g the assembly for
. « 7 indistinguishable
particles :
- * ~ J . N

5 particles in state (1)1;
two particles in state(1)s
g apar and one particle in each

. » - . /
of (2)2 and (3)2;
§ one particle in each of
t+2) 91 = 1 (Nondegenerate), N, = § states (1), (3)s, and (4);

one particle in each of
states (3)4 and (5)4

For distinguishable particles, to describe the microstate one
has to specify particle of which sort is in each state.



Thermodynamic probability

Postulate of statistical thermodynamics:
All possible microstates of an isolated assembly are equally probable

Two ways to interpret:

1. Take t — oo and call At the time which system is in one of
its microstates, then At is the same for all microstates.

2. Take N' — oo replicas of a given assembly. At any time, let
AN be the number of replicas in which the system is in a
given microstate, then AN is the same for all microstates.

The number of equally probable microstates that correspond to a given
macrostate k is called the thermodynamic probability YV, of a macrostate k

Thermodynamic probability of the assembly () = Z Wy
k

The goal of statistical theory is to find the
occupation number N; of level 7 =

= average number of particles at the level



Let N;i be the occupation number of level j in the macrostate k
then the group average value of the occupation number of level 5 is

v Wi AN
N7 = N 2k NigWk AN = Ei]:%];\kj\/ = 5 2k NipWh

N = total number of replicas, AN = number of replicas in a macrostate

Next, let us find

N ; = the time average of the occupation number of level 3
Tt 1 > NiagWie At 1
Nj = 3 26 NjpgWeAt = =550~ = G 2 NixWs
t — 0o, At = the time which system spends in a macrostate
-9 ot _ o
= Nj — Nj = N,

The formula for N ; depends on the type of statistics
(Bose — Einstein, Fermi — Dirac, or Maxwell — Boltzmann)



State (1) (2) (3).

Fig. 11-3 The pos-
sible distributions of
two indistinguish-
able particles among
three energy states,
with no restriction
on the number of
particles in each
state.

Bose-Einstein statistics

w(g;, Nj) the number
of different distributions
of N; indistinguishable
particles between g,
degeneratete states

For g; = 3 and N; = 2
w(gi, Nj) =w(3,2) =6



(1) (2 (3

Forg=3 and N =4

w(3,4) = 1+ + w(2,2)
+ w(2,3)4+w(2,4)
In general
w(g,N) = 1+
_H’U(g o 17 2)

+w(g —1,3)+w(g — 1,4)
+...+w(g—1,N)

Solution of this recursive relation

N—1)!
w(gaN) — ((g;__l)v]if)v

convention : 0! =1



The number of microstates of N, particles at level j 1s
(95 N;) =

(95 —1)!N;!
TR A e B For example, the number of
: , %3 No-2 microstates In a macrostate
‘ (5,4,3,2) is
¢ - - o LS O3 4 Ny =3 W(1,5)W(3,4)W(4,3)W(5,2)
PR ® ® 3 1‘ \': 4
AES | In general, the number of
**| g, = 1 (Nondegenerate), N, = $ microstates 1n a macrostate
ke k = (Nl,NQ,..Nj...) 1S
Wi = 11w
Fig. 11-2 A schematic representation of a set of L H (gj—l-Nj—l)!
energy levels ¢;, their degeneracies g; and their occupa- o J (g;—1)!N;!

tion numbers N,.
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Fig. 11-4 The eleven possible macrostates of an assembly of 6 particles obeying
Bose-Einstein statistics. The energy levels are equally spaced and have a
degeneracy g; = 3 ineach level. The total energy of the system is U = 6e. The
thermodynamic probability of each macrostate is given at the bottom and the
average occupation number of each level is printed on the right of the diagram.
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State (1) (2) (3)

Fig. 11-5 The pos-
sible distributions
of two indistinguish-
able particles among
three energy states,
with no more than
one particle in each
state.

Fermi-Dirac statistics

For g; = 3 and N; = 2
w(g;, Nj) =w(3,2) =3



(1) (2 (3 (4) (5

° For g=5and N =3
. o o lw(b,3) = + w(3,2)+ 1
1= 06+3+1 = 10
[ _ [ _ [ _
® o |© | In general
® ® ® w(g, N)
o ° o —
® ® ® __w<g_27N_]‘)
T w(g_ng_ 1)
®* | ® Il 4. H+w(N—2,N-1)+1
[ | ®
o || o ® | Solution of this recursive relation
I
w(g,N) = =

The number of microstates of N; particles at level 7 > N,

1S w(gj, N])

_ (g5)!
(g —N;)INy!




The number of microstates of N, particles at level j > N,

. )!
is w(gj, Nj) = <gj—(gjj)>!Nj!

For example, the number of microstates in a macrostate
(1,2,3,2) is  w(1,Dw(3,2)w(4,3)w(b,?2)

In general, the number of microstates in a macrostate is

. o g;!
Wi = 1w = 1l g=~ymn
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Fig. 11-6 The five possible macrostates of an 1.73 =

assembly of 6 particles obeying Fermi-Dirac = 2X2H2Ttox 34273
statistics. The energy levels are equally spaced

and have a degeneracy of g; = 3 each. The

total energy of the system is U = 6e. The

thermodynamic probability of each macrostate

is given at the bottom, and the average occupa-

tion number of each level is printed on the

right of the diagram.




State (1) (2) (3)
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Fig. 11-7 The pos-
sible arrangements
of two distinguish-
able particlesaand b
among three energy
states, with no re-
striction on the
number of particles
per state.

Maxwell-Boltzmann statistics

Particle a can be placed in one of three slots,
particle b can be placed in one of three slots

=  w(3,2) =9
N.

In general, w; = g,
Due to possibility of interchange

of particles between levels, or

interchange between states at the same level

g,
W= NI, %

Indeed, the total number of ways
in which N particles can be distributed
among the levels, with N; particles at level 1

Ny particles at level 2 etc. is
N! NI
NiIN2T.. = TIN5




k= 1 2 3 4 5 6 7 8 9 10 11 N; N=6

J
€j/e =6 ° 0013 U = 6e¢
5 ’ 0.065 Q = 1386 x 3°
3 e N Bl 0.455
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Fig. 11-8 The eleven possible macrostates of an assembly of 6 particles obeying
Maxwell-Boltzmann statistics. The energy levels are equally spaced and have a
degeneracy of g; = 3 each. The total energy of the system is U = 6e. The thermo-
dynamic probability of each macrostate is given at the bottom, and the average
occupation number of each level is printed on the right of the diagram.

35 4
18><35:6!><§><3, 90><35:6!><%><3><3, ete

0.910 = iz x (904360 +3 x 60+ 2 x 270 +90) etc.



Statistical interpretation of entropy

Consider two independent systems :
S142 = S1+ 052, 142 = 1 X
= f(1Q2) = f(Q1) + f(§2)

Solution of equation f(zy) = f(x)+ f(y)
Of (xy) _ de(Z)

ox ?
Z=xY

On the other hand, 2202y} — d(z) = A d)
Similarly

Of(xzy) __ . df(z Of(zy) _  df(y) df (y) _ ,.df(z)

fgyy) = T d(z> . ayy = dyy ~ dyy = T
= xdzg;ﬂ) = yd";gf) = const = f(x) = const xInx

= S = kln{)

Later: k£ = kg

Z2=xY

Z=xY

R

Na






Bose-Einstein distribution function

Average occupation numbers for a system with large number of particles
Is given by distribution function

To find it, compare two systems :
1. System “1” with number of particles N and energy U and
2. System “2” with number of particles N’ = N —n and energy U’ = U — ne,

System “2” is system “1” with n particles removed from
level » with energy €, and all other levels kept intact :

N! 2" N, N/ = N,—n

r
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Fig. 11-9 (a) The possible macrostates of an assembly of 6 particles obeying
B-E statistics when U = 6e. (b) The possible macrostates when one particle
i1s removed from level 2 of the assembly of part (a). The thermodynamic
probability of each macrostate is given at the bottom and the average occupa-

U'=0¢
) =1532
.‘Ij=}

level r=2
</of system *

N =5
U = 4¢
Q) = 348
.‘IJ‘:}

tion number of each level is printed on the right of the diagram.

System 2”:
n=1 particle is
removed from

1”

U’ U — 2¢ Ae

The probability W,
of a macrostate k
in system “1” is

_ (9;+Njr—1)!
We = I, ety

and in system “2"

/
/ (gj+Njk_1)!

ris a label

For consistency, we adopt

()= & (_11)! = 0




W (gj_l_Ng/'k_l)!Njk! _ N,k _ / /
Wi Hj (9;+Njr—DINZ L gr+NJ, = NepgWr = (g"“_l_Nrk) rk

Sum over all macrostates : >, NeypWk = ¢, > W, +> . N W,

2k NewWi = N2, 2 W = 5 2 NyW = Ny
= e — £
N/ +gr Q

In macroscopic systems N; > 1 so the removal of
one particle will make a small change in /N,

N, O’ N, - Q' /
= 4o = a © In Nt = In‘s = In{) —1In{)
— N. _ S-S _ AS
S kgln) = In Noao i -

TAS = AU — uAN =

for our two states AU = —¢,, AN =-1 = AS = ==




Since level “r” was arbitrary, for any level j

Nj . p€
ln NJ—|—g3 __ kBT
9;+N; 95 _ €j— I
= 7 +1 = exp LT
V. — g;
= N; =

€;—
exp ( ijT )—1
Bose — Einstein distribution function



Fermi-Dirac distribution function

AL 2 3 4 5B N, N=6 k= 1 . 4 5 Ny, No=5
po] S A e By
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p— i + 4%~A . - F——-«» — - T + AT 4]
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Fig. 11-10 (a) The possible macrostates of an assembly of 6 particles obeying F-D
statistics when U = 6e. (b) The possible macrostates when one particle is removed from
level 2 of the assembly of part (a). The thermodynamic probability of each macrostate is
given at the bottom and the average occupation number of each level is printed on the

right of the diagram.

Same setup : system “2” is system “1” with one particle removed from
level r = 2 with energy €, = 2¢ (and all other levels kept intact) :

N, ‘2" N, N, = N,—1, U =U—2=4e



The probability Wy of a macrostate k
in system “1”

N /
Wk p— H gg-' ; W?“k — (gJ_NJk)'NJk' — N’Pk
in system 342(/€j_Njk)'Njk°7 = Wi = (95 =N MNje! - gr =D
Yy = NrkWTk — (g’l“_ ’I"k') rk

/ _ g;!

Sum over all macrostates :

Do NeeWe = 90 3 Wi = 22 NaWyy = QN = @ (g — Ny)
Q/

N, _
:> gr_N{n - Q

In macroscopic systems N; > 1 so the removal of
one particle will make a small change in /V;

N.  _ @ N. r_ _ AS
= TN T & In pay il In€)' —InQ) = 2=
Since level “r” was arbitrary, for any level j
Nj N gj_Nj 95 - €5 —
n g;i—N; kT = N N, — OXPILT
= N i = 6‘;}5’_ " Fermi — Dirac distribution function




Classical distribution function

In many systems N; < g; = g.]ﬁv, ~ = exp i
J J J
= N i = gjexp (L,;;,_GZZ) — (Classical distribution function.



Maxwell-Bo
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Fig. 11-12 (a) The possible macrostates of an assembly of 6 particles obeying M-I
statistics when U = 6e¢. (b) The possible macrostates when one particle is removed
from level 2 of the assembly of part (a). The thermodynamic probability of each
macrostate is given at the bottom and the average occupation number of each lovel

is printed on the right of the diagram.

ltzmann distribution function

Same setup :
system “2” is system “1”
with one particle
removed from level r = 2
with energy €, = 2¢ :

N, ‘2" N,
N/, Ny — 1,
U =U — 2¢ = 4e¢

The probability W;
of a macrostate k&

in system “1” is
Ny
95

Wi N, AT

and in system “2”

N/
J

/ 9,
NI, Jijfjf.!

Wi



14%4 N’ g; 7 Nj! N, /
B = j . — gk < NpypWe = Ng'r rk

For any level 5 the sum over all macrostates gives

21 NjpWe = Ngj 2 j/'k:_

V. — QO N, _ %
= QN_j — Ngjﬂj S Ny T O

Nj o I _ AS _ e~y
= In Ng, = lnﬂj In) = e = T




Comparison of distribution functions

5 Nj _ gj

' exp(ej_u)'a
g, kT )
3_._

Classical a = 0: classical

F.D Temperature is fixed

Fig.11-11 Graphs of the Bose-Einstein, Fermi-
Dirac, and classical distribution functions.



Partition function

_ p €J

Maxwell-Boltzmann distribution function is Nj — NekBT g; e kBT

Sum over all levels gives

ZNj = N = NekgTZgje_’fBjT
J ' €

] R
Partition function : [ = Z gje *BT
J

In terms of partition function MB distribution looks like
Nj = g, %e_ ké?T, 7 = e FBT

Compare to classical distribution

B ej |97 e.j

p _ N
N; = eFsTg;e 5T = Zij = N = ekBT ngje kpT

It we define Z by Z = Ne *&T

N; = g; %e 5T —  same formula as for MB distribution



Consider system of indistinguishable particles obeying the classical
statistics and suppose that energy levels € j depend on one extensive
variable X and do not depend on the corresponding intensive variable Y

& (X)

Partition function:  Z(X,T,N) = }_ .gje” *rT

Chemical potential (per particle): pu = kKT (InZ —InN) = (g—ﬁ) .
T,
OF )

—~ (oFr = —kT(InZ—-InN
(8N>T,X (In o) » = F = — NET(InZ—-InN +1)

/

_ OF . OlnZ
The entropy S = (8T>N,X_ NKT(252)  +Nk(inZ —InN +1)

—
. - o 2( 0lnZ

The internal energy U = F + 1S = NEKT ( 5T )X

= S = 24 Nk(lnZ—-InN +1)

Y = — (%) = NkTaanE(g{’T’N) = ®(X,T,N) < equation of state

= Thermodynamical properties are completely defined by Z(X,T, N)



Gibbs function G = uyN = — NET(InZ —InN)

Recall ¢ = U-TS+YX = F+YX =YX = G-F

G = uN = —NET(InZ—1nN)

F = —NEKT(InZ —1nN + 1) o YA = Gl = AT

/

For the P — V system Y X = NEKT means PV = NEKT

= The constant £ in the equation S = kIn{) is k£ =kp = ]\%



Monoatomic ideal gas

System: N identical indistinguishable molecules each of mass m.
Except for very low temperatures, such system can be described by

classical statistics
e; (X)
Partition function:  Z(X,T,N) = } .g;je” T
*h?n? : :
€; = AR for particles in the box of volume V
2mV 3

2

_x2n? o2y -3 S
= Z(V7T7N) — S:j;:nj g;€ 2kt 5 Y 37 njz(nwvnyan)

For large volume and large number of particles
we can replace the sum by the integral
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Fig. 12-1 Quantum states in n-space.



f(ny) f(n))

.k n,
n; Njs 1

Fig. 12-2 The partition function Z is
equal to the total area under the step
function, and is very nearly equal to the
area under the continuous curve.




7 — V(ka>3/2

21 h?

8X 8V
o ZVIN) — 1L o p = N — nBT . py — pRT
The internal energy U = NkTQ(aénTZ)V = 2NKT
éU:%nRTiCV:%nR@cv:%R
The entropy

S = %—I—Nk(an—lnN—l—l) — Nk[ +ln¥ +31nmkh7;}
=

s = cnT+ RV + R|3In % —InN+ 5

Sacker — Tetrode equation for the absolute entropy of monoatomic gas



