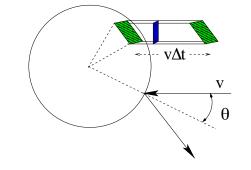
Problem 10-14 solution

Number of particles in the volume $\Delta V = v \Delta t \Delta A \cos \theta$ is $(n \Delta V) \Rightarrow$ the number of particles incident of the patch of spherical surface ΔA is

$$n\Delta V = nv\Delta A\cos\theta\Delta t$$

$$\Delta \mathbf{V} = \mathbf{v} \Delta \mathbf{t} \, \Delta \mathbf{A} = \mathbf{v} \Delta \mathbf{t} \, \Delta \mathbf{A} \cos \theta = \mathbf{v} \Delta \mathbf{t} \, \mathbf{r}^2 \Delta \, \Omega \, \cos \theta$$



The change of z-component of momentum of particle incident at angle θ is $\Delta p_z = mv(1 + \cos 2\theta)$ so the total change of momentum of particles incident at ΔA is

$$\Delta p_z = nmv^2 \Delta t \Delta A \cos \theta (1 + \cos 2\theta)$$

Since $\Delta A = r^2 \sin \theta \Delta \theta \Delta \phi$ the change of momentum of all particles colliding with the satellite is

$$\int_{0}^{\pi/2} \sin\theta d\theta \int_{0}^{2\pi} d\phi \ nmv^2 \Delta tr^2 (1 + \cos 2\theta) \cos\theta = \Delta t \ 2\pi mnv^2 \int_{0}^{\pi/2} \sin\theta \cos\theta (1 + \cos 2\theta) d\theta \tag{1}$$

an therefore the force is

$$F_z = \frac{\Delta p_z}{\Delta t} = 2\pi mnv^2 \int_0^{\pi/2} \sin\theta \cos\theta (1 + \cos 2\theta) d\theta = \pi mnv^2$$

Check for number of particles colliding with the satellite in a time Δt : integral (1) without $\Delta p_z = mv(1 + \cos 2\theta)$

$$nv\Delta tr^2 \int_0^{\pi/2} \sin\theta\cos\theta d\theta \int_0^{2\pi} d\phi = n\pi r^2 \Delta t$$

which is cross section πr^2 times length $v\Delta t$ (without $\cos\theta$ one would get two times more).

Problem 10-21 solution

The problem is very similar to that of Sect. 10-6. The flow of the number of particles is given by Eq. (10-28)

$$\Gamma = -\frac{1}{3}\bar{v}l\frac{dn}{dy}$$

so the flow of the mass is

$$m\Gamma = \frac{m}{3}\bar{v}l\frac{dn}{dy}$$

We need to re-express the equation for in terms of P rather than n. Since P = nkT we get $\frac{dn}{dy} = \frac{1}{kT} \frac{dP}{dy}$ and therefore

$$m\Gamma = \frac{m\bar{v}l}{3kT}\frac{dP}{dy}$$

so the coefficient is $\frac{m\bar{v}l}{3kT}$.