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HW assignment 8.

A sphere of radius ρ and mass m is constrained to roll without slipping on a lower half of the inner surface of the
hollow, stationary cylinder of inside radius R as shown in the figure below.

Find the Lagrangian for the sphere.
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Solution
Let us choose the angle θ and the coordinate z along the cylinder’s axis as generalized coordinates. Eq. (1.40) from

the lecture notes:
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First part is easy:
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To find ω is a little bit more tricky. If the sphere moved an infinitesimal distance ds without slipping it turned on the

angle dφ = ds
ρ . There are two components in ~ds: dsz = dz in z direction and dsθ = Rdθ in the x, y plane along the

cylinder. They are mutually orthogonal so
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and the magnitude angular velocity of the sphere is
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(the direction is irrelevant for our purpose since for the sphere I1 = I2 = I3 = 2
5mρ

2 and the kinetic energy in c.m.

frame is Iω2

2 ).
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Thus, the kinetic energy is
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The potential energy is −mg(R− ρ) cos θ so
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