HW assignment 8.

A sphere of radius p and mass m is constrained to roll without slipping on a lower half of the inner surface of the
hollow, stationary cylinder of inside radius R as shown in the figure below.
Find the Lagrangian for the sphere.

Solution

Let us choose the angle § and the coordinate z along the cylinder’s axis as generalized coordinates. Eq. (1.40) from
the lecture notes:
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First part is easy:
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To find w is a little bit more tricky. If the sphere moved an infinitesimal distance ds without slipping it turned on the
angle d¢ = %. There are two components in ds: ds, = dz in z direction and dsyp = Rdf in the x,y plane along the
cylinder. They are mutually orthogonal so
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and the magnitude angular velocity of the sphere is
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(the direction is irrelevant for our purpose since for the sphere I = I = I3 = %me and the kinetic energy in c.m.
frame is I“;Q).
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Thus, the kinetic energy is
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The potential energy is —mg(R — p) cos8 so
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