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Chapter 1

Introduction to Electrostatics

Electrostatics is the study of time-independent distributions of charges and fields.

1.1 Coulomb’s Law

The foundation of electrostatics is Coulomb’s Law, together with the Superposition

Principle which we will discuss later.

Coulomb’s Law

The force F21 on a particle of charge q2 at r2 due to a particle of charge q1 at r1 is

given by

F21 = kq1q2
r̂21

|r2 − r1|2
, (1.1.1)

where

• r21 = r2 − r1

• r̂ is a unit vector in the direction of r.

Coulomb’s law is an experimental observation.
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In SI units :

• k = 1/4πε0 - the 4π is conventional.

• The charges q1, q2 are measured in Coulombs (C), and defined via the magnetic

effects of currents (1 C = 1 A×1 s, where 1 A is 1 ampere. Also, charge of the proton

is 1.602176487×10−19 coulomb).

• ε0, the Permittivity of Free Space is also a defined quantity:

ε0 = 8.854 187 817 · · · × 10−12 C2N−1m−2 . (1.1.2)

Thus, one electron produces a field of approximately 1.44×10−9 V/m at a distance of 1

meter.

There are two further observations that we can make:

• The forces on the two charges are equal and opposite, obeying Newton’s third law:

F12 = −F21.

• The force is repulsive (attractive) for like (unlike) charges.

Electric Field: The electric field E at r is defined as the force acting on a unit test charge

at that point. More strictly,

E(r) = lim
q→0

F(r)

q
, (1.1.3)

so that the electric field due to the test charge can be ignored.

1.2 The Superposition Principle and Extended Distri-

butions

In the above we have looked at the fields due to single, isolated point-like charges. In

this section, we will explore the second empirical ingredient necessary for our understanding
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of electrostatic fields, the linear superposition principle.

Linear Superposition Principle

The resultant force on a test particle due to several charges is the vector sum of

the forces due to the charges individually.

Example: We have N charges qi(i = 1, . . . , N), situated at the points ri. The force on a

test particle of charge q at the point r is given by

F(r) = kq
N∑
i=1

qi
r− ri
| r− ri |3

, (1.2.1)

where k = 1/4πε0 in SI units.

Thus the electrostatic field E(r) is

E(r) = k
N∑
i=1

qi
r− ri
| r− ri |3

. (1.2.2)

1.2.1 Extended Charge Distributions

We will now apply the linear superposition principle to a continuous distribution of charge.

Consider a continuous distribution of charge density (charge per unit volume) ρ(r′), confined

to a volume V .

V

r’

r

r - r’

∆V’

In order to use the superposition principle, we will divide the volume V into infinitesimal

volume elements ∆V ′, centered at r′. The charge occupying the volume element at r′ is

dq = ρ(r′)dV ′ . (1.2.3)

Therefore, the electrostatic field at the point r due to the element of charge dq at r′ is

∆E(r) = kρ(r′)
r− r′

| r− r′ |3
∆V ′ , (1.2.4)
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where we take ∆E(r) −→ 0 as r −→ ∞. We now use the principle of linear superposition

to write that the resultant field at r as a sum over the elements ∆V ′ in V

E(r) = k
∑
∆V ′

ρ(r′)
r− r′

| r− r′ |3
∆V ′ . (1.2.5)

In the limit that ∆V ′ becomes infinitesimal, we have

E(r) = k

∫
V

ρ(r′)
r− r′

| r− r′ |3
dV ′ . (1.2.6)

Much of the rest of this course is centered on methods for obtaining the electrostatic field,

and we begin with one of the simplest – Gauss’ Law.

1.3 Gauss’ Law

Suppose that the charge density ρ(r) is the sole source of the electrostatic field E(r). Gauss’

Law relates the flux of E out of a closed surface S bounding a volume V to the total charge

Q contained within V

Gauss’ Law states that: ∫
S

E · dS = 4πkQ =
Q

ε0
(in SI units) , (1.3.1)

where

• Q = total charge within S ,

• dS = outward normal to surface, having infinitesimal area dS .

Gauss’ Law provides a powerful way to compute the electrostatic field for the case where

there is spherical, or even cylindrical, symmetry. It will also form the starting point for our

derivation of Laplace’s equation later in the course.
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1.3.1 Geometrical Interpretation of Gauss’ Law

Consider a point charge q placed at the origin (not necessarily inside V ), and the electrostatic

flux across an area dS.

q

d Ω

dS

E

θ

Then we have

E · dS = kq
dS cos θ

r2
= kq

r2 dΩ

r2

= kq dΩ

where dΩ is the solid angle subtended by dS at the origin; r2dΩ is the projection of the

surface element dS onto the sphere of radius r, and dΩ is its projection onto the unit sphere.

Note that
∫
S
dΩ = 4π where S is a unit sphere, or any closed surface, enclosing the origin.

• If the charge q is outside the volume, then the total flux
∫
V

E · dS is zero; the contri-

butions from two elements of surface area produced by the intersection of a cone with

the surface cancel, see below.

q

dS

dS dS

Outside Inside

q

• If the charge q is inside the volume, the total flux
∫
V

E · dS = q/ε0.

Though this provides a simple and intuitive proof of Gauss’ Law, we will now proceed to a

more formal discussion.
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1.3.2 Gauss’ Law and Divergence Theorem

We will begin by analyzing the Gauss’ Law for a single, pointlike charge q at the origin.

Gauss’ Law for a Single Charge

Our starting point is once again Coulomb’s Law:

E(r) = kq
r

r3
. (1.3.2)

Lemma: For a single charge at the origin, ∇ · E = 0 for r 6= 0 .

Proof:

∇ ·
( r

r3

)
=

(
∇ 1

r3

)
· r + (∇ · r)

1

r3

= −
(

3 r

r5

)
· r +

3

r3
= 0 when r 6= 0 .

We used here

∂

∂x

1

(x2 + y2 + z2)3/2
= −3

2

2x

(x2 + y2 + z2)5/2
= −3

x

r5
etc. for y, z ⇒ ∇ 1

r3
= −3

r

r5

and

∇ · r =
∂

∂x
x+

∂

∂y
y +

∂

∂z
z = 3 .

Gauss’ Law for a point charge is:∫
S

E · dS =

{
4πkq if the surface S encloses the origin

0 otherwise
(1.3.3)

Proof:

Origin outside V :

E(r) is continuously differentiable, and ∇·E = 0 everywhere within V . From the divergence

theorem, ∫
S

E · dS =

∫
V

(∇ · E) dV = 0 if origin not within V . (1.3.4)

Origin inside V :

E(r) is undefined at r = 0. Therefore define V to be the region between the closed surfaces

S ′ and S, where S ′ is a small sphere of radius ε centered at the origin:
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Now in the region V , ∇ · E = 0. Therefore, by the divergence theorem,∫
V

∇ · E dV =

∫
S

E · dS +

∫
S′

E · dS = 0 (1.3.5)

Then on the sphere S ′ we have:

dS = −ε2 dΩ er , (1.3.6)

where the outward normal for S ′ points towards the origin. Therefore∫
S′

E · dS =

∫ (
kq

er

r2

∣∣∣
r=ε

)
· (−ε2dΩ er) = −4πkq (independent of ε) .

This calculation may be also done in a more detailed form, by introducing spherical polar

coordinates (r, θ, ψ), in which

dS = −ε2 dΩ er = −ε2 sin θ dθ dψ er , (1.3.7)

so that ∫
S′

E · dS =

∫ 2π

0

∫ π

0

(
kq

er

r2

∣∣∣
r=ε

)
· (−ε2 sin θ dθ dψ er)

= −4πkq (independent of ε) .

We now let ε→ 0, so that V → total volume within S, and we have∫
S

E · dS = 4πkq =
q

ε0
in SI units , (1.3.8)

so that the theorem is proved.

This construction may be also used to established the form of ∇ · (r/r3) for r = 0. Indeed,

our derivation amounts to ∫
Sε

er

r2
· dS = 4π (1.3.9)

for the surface of a sphere with an arbitrarily small radius ε. However, by divergence theorem∫
Sε

er

r2
· dS =

∫
Vε

∇ · er

r2
dV , (1.3.10)

where Vε is the volume surrounded by the arbitrarily small sphere. The fact that this volume

integral equals to the same ε-independent constant 4π means that

∇ · er

r2
= 4πδ3(r) . (1.3.11)
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If the point charge is at the point r1, then we have

E(r) = kq
r− r1
| r− r1 |3

. (1.3.12)

By changing variables to R = r− r1 it is easy to show

∫
S

E · dS =

{
4πkq = q/ε0 in SI units if r1 ∈ V
0 otherwise

(1.3.13)

One may also write

∇r ·
r− r1
| r− r1 |3

= 4πδ3(r− r1) . (1.3.14)

Gauss’ Law for Distribution of Point Charges

We can extend the proof of Gauss’ Law for a single charge distribution to a set of N point

charges {qi} at {ri} using the linear-superposition principle:

E(r) =
N∑
i=1

Ei(r) , (1.3.15)

where E(r) is the total electrostatic field at the point r, and Ei(r) is the electrostatic field

at the point r due to the charge qi at the point ri. Applying Gauss’ Law for point charges

proved above, we have∫
S

Ei · dS =

{
4πkqi = qi/ε0 in SI units if ri ∈ V
0 otherwise

(1.3.16)

Hence ∫
S

E · dS =
∑
i

∫
S

Ei · dS = 4πk
∑
i,ri∈V

qi

= 4πkQ =
Q

ε0
(in SI units)

where Q is the sum of the charges contained within the volume V .

Gauss’ Law for Continuous Distribution of Charge

This we prove by exact analogy with derivation of the electrostatic field for a continuous

distribution: we divide up the volume V into elements of volume ∆V ′, centered at r′, and
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obtain ∫
S

E · dS = 4πk
∑

∆V ′∈V

ρ(r′) ∆V ′

∆V ′→0−→ 4πk

∫
V

ρ(r′) dV ′ = 4πkQ,

where Q is the total charge contained within the volume V .

1.3.3 Applications of Gauss’ Law

Gauss’ Law provides a powerful method of determining the electrostatic field where we have

spherical or cylindrical symmetry.

Spherical Symmetry

Suppose we have a spherically symmetric distribution of charge ρ = ρ(r), where r = |r|.
Then the electrostatic field will depend only on r, and therefore must be in the radial

direction.

Choose a spherical surface S of radius r, centered on the center of the charge distribution.

Then we have that∫
S

E(r) · dS =

∫
S

E(r) er · dS =

∫
Ω

E(r) r2 dΩ = 4πE(r) r2. (1.3.17)

But by Gauss’ Law, we have ∫
S

E · dS = 4πkQ(r), (1.3.18)

where Q(r) =
∫
V
ρ(r′) dV is the total charge contained within the sphere of radius r.
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Thus we have

E(r) =
kQ(r)

r2
er =

Q(r)

4πε0r2
er in SI units. (1.3.19)

Note that outside a spherically symmetric charge distribution, the field is the same as if

we had a point-like charge Q(r) at the origin.

Example: Consider a thin spherical shell of charge Q. We can say immediately:

• Outside the shell, the electrostatic field is the same as that of the equivalent point

charge Q at its center:

E(r) =
kQ

r2
er (1.3.20)

• Inside the shell, the field is zero.

Cylindrical Symmetry

Suppose we have an infinitely long, cylindrically symmetric distribution of charge, with

the axis of symmetry along the z axis. Introduce cylindrical coordinates (ρ, ϕ, z).

Consider an element of length L, and radius ρ, containing a charge Q(ρ, L):

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
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������
������
������

S

E

z

ρ

0 L

The field will depend solely on ρ, and therefore must be in the eρ direction, E(r) = E(ρ)eρ.

Applying Gauss’ Law to the cylinder we have∫
S

E · dS = 4πkQ(ρ, L) (1.3.21)

Now on the “end-caps”, z = 0 and z = L, E · dS = 0, and therefore∫
S

E · dS =

∫
S

E(ρ)eρ · dS = E(ρ)

∫
S

dS = E(ρ)2πρL. (1.3.22)



Introduction to Electrostatics 13

Thus

E(ρ) =
2kQ(ρ, L)

ρL
=

2Q(ρ, L)

4πε0ρL
in SI units (1.3.23)

Example: Infinitely long, thin rod carrying charge λ per unit length. Thus, Q(ρ, L) = λL

and we have

E(ρ) =
λ

2πε0ρ
. (1.3.24)

We expect the treatment of the rod as infinitely long to be a good approximation for a rod

of finite length providing

w < ρ� l (1.3.25)

where w and l and the width and the length of the rod respectively.

1.3.4 Maxwell’s First Equation (ME1)

Our starting point is Gauss’ Law:∫
S

E · dS = 4πk

∫
V

ρ(r′) dV ′ (1.3.1)

where ρ(r′) is the charge density. By the divergence theorem, we have∫
S

E · dS =

∫
V

∇ · E dV ′, (1.3.2)

and thus ∫
V

{∇ · E− 4πkρ} dV ′ = 0. (1.3.3)

This applies for any volume V , and therefore the integrand itself must vanish:

∇ · E = 4πkρ =
ρ

ε0
. (1.3.4)

This is Maxwell’s First Equation (ME1). ME1 is essentially an expression of Gauss’ law

in differential form.
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1.4 The Scalar Potential

1.4.1 Maxwell’s Second Equation for Electrostatics

The mathematical basis for the Maxwell’s First Equation is given by the relation

∇ · er

r2
= 4πδ3(r) (1.4.1)

satisfied by the er/r
2 factor governing the coordinate dependence of the electric field gener-

ated by a unit point charge located at the origin.

Another important equation satisfied by this factor is

∇× er

r2
= 0 . (1.4.2)

Indeed (shifting r→ r− r′ for generality),

∇×
{

r− r′

| r− r′ |3

}
=∇

(
1

| r− r′ |3

)
× (r− r′) +

1

| r− r′ |3
∇× (r− r′)

=
−3(r− r′)

| r− r′ |5
× (r− r′) + 0 = 0 , (1.4.3)

since C×C = 0 for any vector C, and ∇× r = 0.

Thus, one has

∇× Eq(r) = 0 (1.4.4)

for a field Eq(r) of a point charge. Due to the linear superposition principle, one would have

∇× E(r) = 0 (1.4.5)

for electric field generated by any system of static charges, i.e., ∇ × E(r) = 0 for any

electrostatic field. This is Maxwell’s Second Equation (ME2) for electrostatics.

1.4.2 Introducing Scalar Potential

It can be shown that any vector field E(r) that is given by a gradient of a scalar function,

call it −Φ(r), has the property ∇× E(r) = 0. Indeed, consider a vector C ≡ ∇× (∇Φ(r)).

Its x-component is given by

Cx =
∂

∂y

(
∂Φ

∂z

)
− ∂

∂z

(
∂Φ

∂y

)
= 0 , (1.4.6)
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and similarly for two other components. Thus,

∇× (∇Φ(r)) = 0 . (1.4.7)

In other words, fields that can be written as E(r) = −∇Φ(r), satisfy ∇× E(r) = 0. But

it may also be shown that if a field E(r) satisfies ∇× E(r) = 0 then it can be written as

E(r) = −∇Φ(r), i.e., any electrostatic field E may be obtained from the scalar potential Φ.

ME1 has provided us with a differential equation to describe the electric field, E(r), but it

would be easier were we able to work with a scalar quantity. The scalar potential provides

a means of so doing.

Scalar Potential

• Given a vector field A(r), under what conditions can we write A as the gradient of

a scalar field Φ, viz. A(r) = −∇Φ(r), where the minus sign is conventional?

• What can we say about the uniqueness of Φ(r)?

Definition: A simply connected region R is a region where every closed curve in R can

be shrunk continuously to a point whilst remaining entirely in R.
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Examples:

The inside of a sphere is simply con-

nected

The region between two cylinders is

not simply connected: it’s doubly

connected

1.4.3 Theorems on Scalar Potentials

Let A(r) be a continuously differentiable vector field defined in a simply connected region

R. Then the following three statements are equivalent, i.e. any one implies the other

two:

1. ∇×A(r) = 0 for all points r ∈ R

2. (a)

∮
C

A(r′) · dr′ = 0, where C is any closed curve in R

(b) Φ(r) ≡ −
∫ r

r0
A(r′) · dr′ does not depend on the path between r0 and r.

3. A(r) can be written as the gradient of a scalar potential Φ(r)

A(r) = −∇Φ(r) with Φ(r) = −
∫ r

r0
A(r′) · dr′ (1.4.8)

where r0 is some arbitrary fixed point in R.

Proof that (1) implies (2):
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Let ∇×A(r) = 0 in R, and consider any two curves, C1 and C2 from the point r0 to the

point r in R. Introduce the closed curve C = C1 − C2, and let S be a surface spanning C.

Apply Stokes’ theorem: ∮
C

A(r′) · dr′ =

∫
S

∇×A · dS = 0 (1.4.9)

since ∇ ×A = 0 everywhere. Note that we use r′ as integration variable to distinguish it

from the end-points of C1 and C2, r0 and r.

Thus we have:

∇×A = 0⇒
∮
C

A(r′) · dr′ = 0 (1.4.10)

for any curve C in R, and the first part of the proof is done.

For the second part of the proof, we observe∫
C1

A(r′) · dr′ −
∫
C2

A(r′) · dr′ =

∮
C

A(r′) · dr′ = 0. (1.4.11)

Thus the scalar potential Φ(r) of the vector field A(r) defined by

Φ(r) = −
∫ r

r0
A(r′) · dr′ (1.4.12)

is independent of the path of integration joining r0 and r.

Proof that (2) implies (3)

Consider two neighbouring points r and r + dr. Define the scalar potential as before:

Φ(r) = −
∫ r

r0
A(r′) · dr′ (1.4.13)
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r

dr

r + dr 

r
0

Now define the quantity δΦ(r):

δΦ(r) = Φ(r + dr) − Φ(r)

=

{
−
∫ r+dr

r0
A(r′) · dr′ +

∫ r

r0
A(r′) · dr′

}
(by definition)

= −

{∫ r+dr

r0
A(r′) · dr′ +

∫ r0

r
A(r′) · dr′

}
(swapped limits on 2nd

∫
)

= −

{∫ r0

r
A(r′) · dr′ +

∫ r+dr

r0
A(r′) · dr′

}
(interchanged the integrals)

= −
∫ r+dr

r
A(r′) · dr′ (Combined the integrals using path-independence of integral)

= −

[∫ r+dr

r
A(r) · dr′

]
= −

[
A(r) · r′

]r+dr

r

(for infinitesimal dr)

= A(r) · {− (r + dr) + r}

So δΦ(r) = −A(r) · dr (1.4.14)

To perform the integral, we used path independence and integrated along the infinitesimal

straight line between r and r + dr along which A(r′) is constant up to effects of O(dr).

But, by Taylor’s theorem, we also have

δΦ(r) =
∑
i

∂Φ(r)

∂xi
dxi = ∇Φ(r) · dr (1.4.15)

Since equations (1.4.14) and (1.4.15) hold for an arbitrary infinitesimal dr, we have

A(r) = −∇Φ(r) . (1.4.16)

Thus we have shown that path independence implies the existence of a scalar potential

Φ for the vector field A.
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Proof that (3) implies (1)

A = −∇Φ ⇒ ∇×A = −∇× (∇Φ) ≡ 0 (1.4.17)

because, as we established earlier, ∇× (∇ Φ) is identically zero (i.e. it’s zero for any scalar

field Φ).

1.4.4 Terminology

Such a vector field is called

• Irrotational: ∇×A(r) = 0 ⇔
∮
C

A(r′) · dr′ = 0

Sometimes, the notation “curl A(r)” is used for ∇×A(r). Also, if you look in older

textbooks, you will sometimes see “rot” rather than “curl”.

• Conservative: e.g. if A = force, then Φ is potential energy and total energy is

conserved (see later).

• The field Φ(r) is the scalar potential for the vector field A(r).

1.4.5 Uniqueness

Φ(r) is uniquely determined up to a constant.

Proof:

Let Φ and Ψ be scalar potentials obtained by different choices of r0. Then

∇Φ − ∇Ψ = A − A = 0 . (1.4.18)

Therefore

∇ (Ψ − Φ) = 0 . (1.4.19)

Integration of this equation wrt any of x, y, or z gives

Ψ − Φ = constant . (1.4.20)

Therefore

Ψ = Φ + constant . (1.4.21)

The absolute value of a scalar potential has no meaning, only potential differences are

significant.
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1.4.6 Existence of Scalar Potential for Electrostatic Field

After the digression on subject of the scalar potentials, it is time to show that the electrostatic

field is, indeed, irrotational.

The central result of this chapter was the expression for the electrostatic field due to a

continuous charge distribution

E(r) = k

∫
V

ρ(r′)(r− r′)

| r− r′ |3
dV ′ . (1.4.22)

Thus we have

∇× E(r) =

∫
∇×

{
ρ(r′)(r− r′)

| r− r′ |3

}
dV ′

=

∫
V

ρ(r′)

{
∇
(

1

| r− r′ |3

)
× (r− r′) +

1

| r− r′ |3
∇× (r− r′)

}
dV ′

=

∫
ρ(r′)

{
−3(r− r′)

| r− r′ |5
× (r− r′) + 0

}
dV ′

= 0 , (1.4.23)

where the derivatives act only on the unprimed indices.

The electrostatic field E(r) can be written in terms of a scalar potential

E(r) = −∇Φ(r)

1.4.7 Methods for finding Scalar Potentials

We have shown that the scalar potential Φ(r) for an irrotational vector field A(r) can be

constructed via

Φ(r) = −
∫ r

r0
A(r′) · dr′ (1.4.24)

for some suitably chosen r0 and any path which joins r0 and r. Sensible choices for r0 are

often r0 = 0 or r0 =∞.

We have also shown that the line integral is independent of the path of integration between

the endpoints. Therefore, a convenient way of evaluating such integrals is to integrate along

a straight line between the points r0 and r. Choosing r0 = 0, we can write this integral in
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parametric form as follows:

r′ = λ r where {0 ≤ λ ≤ 1}

so dr′ = r dλ and therefore

Φ(r) = −
∫ λ=1

λ=0

A(λ r) · (r dλ)

Example:

Let A(r) = (a · r) a where a is a constant vector.

It is easy to show that ∇× ((a · r) a) = 0. Indeed,

(∇× ((a · r) a))x = ∂y(a · r)az − ∂z(a · r)ay = ayaz − azay = 0 , (1.4.25)

etc. Or, in vector form, using ∇(a · r) = a

∇× ((a · r) a) = a× a = 0 . (1.4.26)

Thus

Φ(r) = −
∫ r

0

A(r′) · dr′

= −
∫ r

0

(
(a · r′) a

)
· dr′

= −
∫ 1

0

(
(a · λ r) a

)
· (r dλ)

= − (a · r)2

∫ 1

0

λ dλ

= − 1

2
(a · r)2

Of course, this is all rather artifical. What we really want to do is to obtain Φ and A from

first principles.

1.4.8 Singular Fields

We have seen that, for the case of a point-charge at the origin, the electric field is singular

at r = 0. In such cases, it is not possible to obtain the corresponding scalar potential at

r by integration along a path from the origin. All is not lost – remember that the starting

point for our path is arbitrary, and often it is convenient to take it at infinity.
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Example: Electric field due to point charge at r = 0: E(r) = kqr/r3, so that E(r = 0) is

singular, and hence undefined. As in the proof of Gauss’ law, our region R must exclude an

infinitesimal sphere centered at r = 0.

Here we choose a path from r0 =∞, yielding

Φ(r) = −
∫ r

∞
E(r′) · dr′ = −

∫ 1

∞
E(λr) · dλ r

= −kq
∫ 1

∞

λ r · r
λ3r3

dλ = −kq
∫ 1

∞

dλ

λ2

r2

r3

= kq
1

r
. (1.4.27)

Thus we have the famous 1/r potential due to a point charge.

Since one electron produces a field of 1.438×10−9 V/m at a distance of 1 meter, the electro-

static potential energy of two electrons e2/(4πε0r) separated by 1 meter equals to 1.438×10−9

electonvolts.

The electric field of a point charge is given by E(r) = kq er/r
2, hence, one should have

∇
(

1

r

)
= −er

r2
, (1.4.28)

and

∇r

(
1

| r− r′ |

)
= − r− r′

| r− r′ |3
, (1.4.29)

which may be easily checked by a direct differentiation. Recalling Eq. (1.3.14),

∇r ·
r− r1
| r− r1 |3

= 4πδ3(r− r1) , (1.4.30)

we conclude that

∇2
r

(
1

| r− r′ |

)
= −4πδ3(r− r1) . (1.4.31)

Because of the linearity of the gradient operation, we can impose the linear superposition

principle on the potential, and hence obtain an expression for the potential due to an ex-

tended charge distribution:

Φ(r) = k

∫
V

ρ(r′)

| r− r′ |
dV ′ (1.4.32)
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1.4.9 Multiply-connected Regions

In this case, ∇×A = 0 does not imply the existence of a scalar potential function.

Example: Work using cylindrical coordinates (ρ, ϕ, z). A vector field A, with

Aρ = Az = 0, Aϕ =
a

ρ
(1.4.33)

where a is a constant, is defined outside an infinitesimal cylinder about the z-axis, where

Aϕ is singular. This region is doubly connected (cf. example above where we exclude an

infinitesimal sphere).

Then we have ∇×A = 0. Indeed,

∇×A =eρ

(
1

ρ

∂Az
∂ϕ
− ∂Aϕ

∂z

)
+ eϕ

(
∂Aρ
∂z
− ∂Az

∂ρ

)
+ ez

1

ρ

(
∂

∂ρ
(ρAϕ)− ∂Aρ

∂ϕ

)
= −eρ

∂Aϕ
∂z

+ eϕ · 0 + ez
1

ρ

∂

∂ρ
(ρAϕ)

= 0 + 0 + ez
1

ρ

∂

∂ρ
(a) = 0 . (1.4.34)

But, for a circular path C of radius ρ enclosing the z-axis, we have∮
C

A · dr =

∫ 2π

0

Aϕ ρ dϕ = 2πa 6= 0 . (1.4.35)

In this case, the “potential” would depend on the choice of path, and in particular the

winding number - the number of times that a path wraps around the z-axis.

Examples: Vortices in superconductors, Cosmic strings...

Note also, that the value of the integral does not depend on the radius ρ of the curve, i.e.,

it is the same for any circle. This also means that the integral equals 2πa for any curve

encircling the origin (one time).
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Another corollary is that if one takes a combined contour made of two circles C1 and C2

with radii ρ1, ρ2 passed in opposite directions, the line integral for the combined contour is

zero, which is consistent with the fact that ∇ ×A = 0 everywhere on the surface between

these two circles.
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1.4.10 Conservative Forces and Physical Interpretation of Poten-

ital

To see how the name conservative field arises, consider a vector field F(r) corresponding to

the only force acting on some test particle of mass m. The work done by the force in going

around a closed curve C is

W =

∮
C

F(r) · dr . (1.4.36)

For a conservative force, ∇× F = 0, the earlier theorems tell us:

• The total work done by the force in moving the particle around a closed curve is zero.

• We can write the force in terms of a scalar potential

F(r) = −∇U(r) , (1.4.37)

where the minus sign is conventional (see later).

We will now show that for a conservative force, the total energy is constant in time.

Proof

The particle moves under the influence of Newton’s Second Law:

mr̈ = F(r). (1.4.38)

Consider a small displacement dr taking time dt along the path followed by the particle.

Then we have

mr̈ · dr = F(r) · dr = −∇U(r) · dr. (1.4.39)

Integrating this expression along the path from rA at time t = tA to rB at time t = tB yields

m

∫ rB

rA
r̈ · dr = −

∫ rB

rA
∇U(r) · dr. (1.4.40)

We can simplify the left-hand side of equation (1.4.40) by writing dr = (dr/dt)dt = ṙdt to

obtain

m

∫ rB

rA
r̈ · dr = m

∫ tB

tA

r̈ · ṙ dt = m

∫ tB

tA

1

2

(
d

dt
ṙ2

)
dt =

1

2
m[v2

B − v2
A], (1.4.41)

where vA and vB are the magnitudes of the velocities at the points labelled by A and B

respectively. The limits of integration over t correspond to time moments when the particle

was at rA (time t = tA) and rB (time t = tB).
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To integrate the right-hand side of equation (1.4.40), we appeal to Taylor’s theorem to note

that

∇U(r) · dr =
∑
i

∂U

∂xi
dxi = dU (1.4.42)

is the change is U when we move from r to r + dr. Thus we have

−
∫ rB

rA
∇U(r) · dr = −

∫ rB

rA
dU = UA − UB (1.4.43)

where UA and UB are the values of the potential U at rA and rB, respectively.

Thus we have that
1

2
mv2

A + UA =
1

2
mv2

B + UB . (1.4.44)

• The first term on both sides we recognize as the kinetic energy

• The second term we identify as the potential energy

The Total Energy

E =
1

2
mv2 + U (1.4.45)

is conserved, i.e. constant in time.

We have seen that the existence of a scalar potential is associated with the irrotational or

conservative nature of a vector field. Where the vector field corresponds to a force, we have

a neat physical motivation for the name: a force is conservative if the work done in going

around a closed path is zero, and if a particle moves solely under the influence of that force,

then the energy is conserved.

Physical Interpretation of Φ(r)

In electrostatics, the force F acting on a charge q due to an electrostatic field E is F(r) =

qE(r). Now E(r) = −∇Φ(r) so that

F(r) = −∇(qΦ(r)). (1.4.46)

We have seen that the (conservative) force acting on a particle is minus the gradient of its

potential energy: F(r) = −∇U(r).

The potential energy U(r) of a charge q situated at r

in an electrostatic potential Φ(r) is

U(r) = qΦ(r). (1.4.47)
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1.4.11 Potential Energy of Charge Distribution

Consider two charges q1, q2 located at r1 and r2. Choosing the potential produced by a

particular charge qj as vanishing at infinity, i.e. in the form

Φj(r) =
qj

4πε0|r− rj|
, (1.4.48)

and using U = qΦ(r), we may write the potential energy due to electrostatic interaction of

two charges as q1Φ2(r1) or q2Φ1(r2), which gives the same result

U12 =
q1q2

4πε0|r1 − r2|
. (1.4.49)

Take now a system of N point charges qi located at ri, i = 1, . . . , N . For any pair of charges

qi, qj the potential energy Uij of their electrostatic interaction is given by

Uij =
qiqj

4πε0|ri − rj|
. (1.4.50)

Thus, we may write

U =
∑

all pairs i,j

Uij . (1.4.51)

Evidently j 6= i. Then

U =
1

2

1

4πε0

N∑
i=1

N∑
j=1,j 6=i

qiqj
|ri − rj|

, (1.4.52)

where the factor 1/2 compensates for the fact that doing independent summation over i and

j, we count each pair twice.

This result may be also obtained from the following construction. Note that for the case

where Φ vanishes at infinity, the potential energy U(r) is the work done, W , in bringing the

charge q from infinity to the point r. We will now consider the work done in assembling a

set of point charges qi at ri, i = 1, . . . , N .

We do this by bringing each charge i in turn, one at a time, to position ri, and then fixing

it in position. The work done in bringing charge i is

Wi =
qi

4πε0

i−1∑
j=1

qj
|ri − rj|

(1.4.53)

and thus the total work done in assembling the charges is

W =
1

4πε0

N∑
i=2

i−1∑
j=1

qiqj
|ri − rj|

= U , (1.4.54)
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where U is the potential energy of the system. In this sum we have j < i, so each pair is

counted only once. We can write this in a more symmetric form as

U =
1

8πε0

N∑
i=1

N∑
j=1,j 6=i

qiqj
|ri − rj|

, (1.4.55)

where we do not include the self-energy term, i = j. An extra factor 1/2 appears because

each pair is now counted twice.

We can generalize this to a continuous charge distribution in the usual way, viz

U =
1

8πε0

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
, (1.4.56)

and we now use Eq.(1.4.32) to write

U =
1

2

∫
ρ(r)Φ(r)dV , (1.4.57)

analogous to Eq.(1.4.47).

We can also interpret the potential energy in terms of the electric field, by using ME1

U =
ε0
2

∫
dV ∇ · E(r)Φ(r)

= −ε0
2

∫
dV E(r) · ∇Φ(r) (Integration by parts)

=
ε0
2

∫
dV |E|2. (1.4.58)

We now identify the integrand as the energy density

u(r) =
ε0
2
|E(r)|2. (1.4.59)

1.5 Laplace’s and Poisson’s Equation

We are now ready to derive a differential equation for the potential. Our starting point is

Maxwell’s First Equation (ME1), derived earlier:

∇ · E = 4πkρ =
ρ

ε0
. (1.5.1)

We now make use of the irrotational nature of E(r) to write E = −∇Φ(r). Thus ME1

becomes
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∇2Φ(r) = −4πkρ(r) = −ρ(r)/ε0 in SI units (1.5.2)

where ∇2Φ(r) ≡ ∇ · (∇Φ(r)) ≡
∑

i ∂
2Φ(r)/∂x2

i .

• This equation is Poisson’s Equation.

ρ(r) is the source for the electrostatic potential Φ(r).

• If we have that the source ρ(r) ≡ 0 everywhere, then this equation becomes

∇2Φ = 0. (1.5.3)

This is Laplace’s Equation.

These are two of the most important equations in physics. They, or close variants, occur in:

• Electromagnetism, as above

• Gravitation, with k → −G, ρ the mass density, and Φ the gravitational potential

• Fluid dynamics, for the irrotational flow of a fluid.

1.5.1 Uniqueness of Solutions of Laplace’s and Poisson’s Equation

Laplace’s and Poisson’s equations are linear, second order, partial differential equations ; to

determine a solution we have also to specify boundary conditions.

Example: One-dimensional problem

d2Φ(x)

dx2
= λ (1.5.4)

for x ∈ [0, L], where λ is a constant. This has solution

Φ(x) =
1

2
λx2 + Ax+B (1.5.5)

where A,B are constants. To determine these constants, we might specify the values of

Φ(x = 0) and Φ(x = L), i.e. the values on the boundary.

Consider the solution of Poisson’s Equation within a finite volume V , bounded by a closed

surface S. Boundary conditions are classified as:
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• Dirichlet boundary conditions, where we require

Φ(r) = f(r) on surface S, (1.5.6)

i.e. we specify the value of Φ(r) on the boundary.

Example: Electrostatic potential outside a conductor, with Φ specified on the bound-

aries.

• Neumann boundary conditions, where we require

n · ∇Φ(r) =
∂Φ

∂n
= g(r) on surface S, (1.5.7)

where n is a unit vector normal to the surface S, i.e. we specify the normal derivative

of Φ on the boundary.

Example: Electrostatic potential inside S, with

charge on S specified on the boundaries.

n . φ

∆

SV

normal

We will proceed to show that the solutions of Laplace’s and Poisson’s equations are unique,

up to a constant (Neumann), if subject to either of the above boundary conditions.

Green’s First Identity and Green’s Theorem

We begin with a couple of identities that will be useful both in this proof and later.

Let ψ1 and ψ2 be two continuously differentiable, arbitrary scalar fields defined in a volume

V bounded by a closed surface S. Introduce the vector field A(r) = ψ1∇ψ2.

From the divergence theorem, we have∫
V

∇ ·A dV =

∫
S

A · n dS , (1.5.8)

where n is the unit outward normal to the surface S.

We now apply the vector identity

∇ ·A = ψ1∇2ψ2 +∇ψ1 · ∇ψ2 , (1.5.9)



Introduction to Electrostatics 31

to obtain ∫
V

(
ψ1∇2ψ2 +∇ψ1 · ∇ψ2

)
dV =

∫
ψ1∇ψ2 · n dS . (1.5.10)

This is known as Green’s first identity.

If we write down Eq.(1.5.10) with ψ1 and ψ2 interchanged,∫
V

(
ψ2∇2ψ1 +∇ψ2 · ∇ψ1

)
dV =

∫
ψ2∇ψ1 · n dS , (1.5.11)

and take the difference of the two equations, we obtain∫
V

(
ψ1∇2ψ2 − ψ2∇2ψ1

)
dV =

∫
S

(ψ1∇ψ2 − ψ2∇ψ1) · n dS . (1.5.12)

This identity is Green’s Theorem.

1.5.2 Proof of Uniqueness of Solutions of Laplace’s and Poisson’s

Equations

We now proceed to the formal proof. Let Φ1(r) and Φ2(r) be solutions of Poisson’s equation

∇2Φi = −ρ/ε0 inside a volume V bounded by surface S, satisfying either:

1. Dirichlet boundary conditions

Φi(r) = f(r) for r on surface S ; (1.5.13)

2. Neumann boundary conditions

n · ∇Φi(r) = g(r) for r on surface S ; (1.5.14)

where f(r) and g(r) are continuous functions defined on the surface S.

Consider the function

ψ(r) = Φ1(r)− Φ2(r). (1.5.15)

Then ψ satisfies Laplace’s equation:

∇2ψ(r) = 0 in V (1.5.16)

with either

1. ψ(r) = 0 for r on surface S – Dirichlet.
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2. n · ∇ψ(r) = 0 for r on surface S – Neumann

We now apply Green’s first identity for the case ψ1 = ψ2 = ψ,∫
V

(
ψ∇2ψ +∇ψ · ∇ψ

)
dV =

∫
ψ∇ψ · n dS , (1.5.17)

and obtain ∫
V

|∇ψ|2 dV =

∫
V

(ψ∇2ψ + |∇ψ|2) dV (since ∇2ψ = 0 in V )

=

∫
S

ψ∇ψ · n dS (from Eq.(1.5.17))

= 0 , (1.5.18)

since either ψ(r) = 0 or ∇ψ · n = 0 on surface S. Now |∇ψ(r)|2 is positive definite, i.e.

|∇ψ(r)|2 ≥ 0 (1.5.19)

for all r ∈ V . Therefore, using equation (1.5.18), we have that ∇ψ(r) = 0 everywhere in V ,

and thus

ψ(r) = constant (1.5.20)

for all r ∈ V .

Thus we have

• Dirichlet Problem: ψ(r) is continuous at surface S, and ψ(r) = 0 on the surface.

Therefore ψ(r) = 0 everywhere, and solution is unique.

• Neumann Problem: ∇ψ(r) · n = 0 on the surface S, and the constant undetermined.

Solution is unique up to an additive constant.

Some observations on the proof:

• We can specify either Dirichlet or Neumann boundary conditions at each point on

the boundary, but not both. To specify both is inconsistest, since the solution is then

overdetermined.

• However, we can specify either Dirichlet or Neumann boundary conditions on differ-

ent parts of the surface.
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• The uniqueness property means we can use any method we wish to obtain the solution

– if it satisfies the correct boundary conditions, and is a solution of the equation, then

it is the correct solution. A good example: Method of Images, to be covered in the

next chapter.

1.5.3 Uniqueness Theorem in an Infinite Region

We need a slight refinement of the proof if the region is infinite, i.e. if S contains a “surface

at infinity”. If the potential is due to a localized charge distribution, then it contains a

part that falls off as (Q/r)/(4πε0) when r →∞, where Q is total charge of the distribution.

This part vanishes at infinity. But recall that the potential Φ is defined up to an additive

constant, so we can also add a constant term. So, a necessary condition for uniqueness is

that one should specify the value Φ∞ of Φ(r) at infinity. However, we should also specify

the rate at which Φ(r) approaches Φ∞ when r tends to infinity.

A sufficient condition for uniqueness of solutions of Poisson’s equation is that the potential

Φ(r) approaches Φ∞ as const/r. So, if we assume now that there are two solutions Φ1(r)

and Φ2(r), having the same Φ∞ , their difference ψ = Φ1 − Φ2 vanishes at least as O(1/r)

when r →∞.

Let us show that then the surface integral vanishes at infinity.

Consider a sphere, radius r, area S = 4πr2. Suppose

ψ = Φ1 − Φ2 = O(1/r) as r → ∞ , so that ∇ψ = O(1/r2) .

Then

∫
S

ψ∇ψ · dS = O(1/r)

which vanishes as r → ∞. Thus, the volume integral of |∇ψ|2 vanishes, hence ∇ψ = 0

and ψ(r) is constant in the whole space. Since this constant becomes zero at infinity, we

conclude that ψ(r) = 0 everywhere, i.e. the solution for Φ(r) is unique.

Sometimes a uniform field is specified at infinity. For example, if the uniform field E is in

the z direction, then

Φ(r) = K − E z (1.5.21)

where K is a constant. In this case, the uniqueness theorem holds because the ‘two’ solutions

must satisfy the boundary condition

Φ(r) + E z → K + O(1/r) (1.5.22)

as r → ∞.
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The next couple of chapters of this course will be concerned with solving such boundary-value

problems. We will conclude this chapter by discussing the boundary conditions to impose

on our solutions, and in particular the boundary conditions at a conductor.

1.6 Boundary Conditions at a Conductor

• In a conductor, electrons are able to move freely so as to set up a charge distribution.

• In the presence of an external electrostatic field, a charge distribution is generated

under the influence of this field, and itself gives rise to an electrostatic field.

• Once equilibrium is attained (about 10−18 secs. for a good conductor), there are no

current flows, and thus the electric field E is zero throughout the body of a conductor.

• If the electric field vanishes in a conductor, the potential must be constant. This

provides the defining property of a conductor, namely that the boundary of a conductor

is an equipotential surface.

On the boundary of a conductor, Φ(r) = const.

• Conventionally, we take Φ = 0 for a grounded conductor.

• The electric field at the surface of a conductor is normal to the surface; a tangential

field would give rise to a charge flow along the surface.

1.6.1 Surface Charge Density at a Conductor

Within a conductor, the electrostatic field E must be zero. However, the field is zero because

of an induced charge density sufficient to annul the external field.

Now ME1 tells us that ∇ ·E = ρ/ε0, where ρ is the charge density. Thus if E is zero within

the conductor, the charge density must be zero. So where does the induced charge density

reside?

The charge density is confined solely to the surface of the conductor

We can compute this surface charge density using Gauss’ Law.
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Area

E = 0

E

surface charge density

δΑ

Consider applying Gauss’ Law to the infinitesimal “pill-

box” of height δh and area δA, as shown. Within the

conductor, E = 0, and at the surface of the conductor

E is normal to the surface.

Therefore we have

E · n δA = δAσ/ε0 (1.6.1)

where σ is the surface charge density, and n is the outward normal to the surface of the

conductor.

Thus we have that the surface charge density is proportional to the discontinuity in the

normal electrostatic field at the conductor.

E · n = σ/ε0

Note: the surface charge density discussed here is different to a sheet of charge of density

σ per unit area discussed earlier in the course. The latter may best be viewed as a charge

distribution in an insulator, i.e. a fixed charge distribution. Unfortunately, the two terms

are often confused in the literature.

1.6.2 Capacitance and Potential Energy of Conductors

Consider now a set of N isolated conductors, with charge qi, i = 1 . . . N , and with no

external electric field. Then each conductor is an equipotential Φi, and the charges reside

on the surface of the conductor.

Thus the potential energy of this system is

U =
1

2

∫
dV ρ(r)Φ(r) =

∑
i

1

2
qi Φi. (1.6.2)

The potentials Φi and the charges qi are not independent. In particular, for a given set of

charges qi the potentials are determined by the solutions of the field equations. Because of

the linearity of the field equations, the relationship between the Φ’s and the q’s must be

linear, i.e.

Φi =
N∑
j=1

Pijqj, (1.6.3)
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which in matrix form may be written as

−→
Φ = P̂ ~q. (1.6.4)

We can invert this equation to obtain

qi =
N∑
j=1

CijΦj (1.6.5)

where, formally, Ĉ = P̂−1.

The diagonal elements of this matrix Cii are the capacitances, whilst the off-diagonal

elements Cij, i 6= j are the coefficients of induction. We can use Eq.(1.6.5) to write the

potential energy of a system of conductors in terms either of the potentials or charges alone:

U =
1

2

∑
ij

ΦiCijΦj =
1

2

∑
ij

qiC
−1
ij qj (1.6.6)


