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Chapter 3

Boundary-value Problems in

Curvilinear Coordinates

In the previous chapter, we saw how we could look for factorizable solutions to Laplace’s

Equation in Cartesian coordinates, and then construct the solution for more general bound-

ary values using the completeness property of such factorized solutions. In this chapter we

will employ analogous methods in spherical polar and cylindrical coordinate systems. In

practice, the coordinate system that is appropriate depends on the symmetry or geometry

of the problem.

3.1 Laplace’s Equation in Spherical Polar Coordinates

We will denote our coordinates by (r, θ, ϕ), in terms of which Laplace’s equation assumes

the form

∇2Φ(r, θ, ϕ) =
1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
. (3.1.1)

We will now seek factorizable solutions of the form

Φ(r, θ, ϕ) =
U(r)

r
P (θ)Q(ϕ) , (3.1.2)

where the factor of 1/r is conventional. Substituting this into Laplace’s equation, we have

P (θ)Q(ϕ)
1

r2

d

dr

[
r2

(
− 1

r2
U(r) +

1

r

dU(r)

dr

)]
+

U(r)Q(ϕ)

r

1

r2 sin θ

d

dθ

(
sin θ

dP (θ)

dθ

)
+
U(r)P (θ)

r

1

r2 sin2 θ

d2Q(ϕ)

dϕ2
= 0 ,
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yielding

PQ

r

d2U

dr2
+

UQ

r3 sin θ

d

dθ

(
sin θ

dP

dθ

)
+

UP

r3 sin2 θ

d2Q

dϕ2
= 0 , (3.1.3)

which we may write as

1

Q

d2Q

dϕ2
+ r2 sin2 θ

[
1

U

d2U

dr2
+

1

r2 sin θ

1

P

d

dθ

(
sin θ

dP

dθ

)]
= 0 . (3.1.4)

The first term is a function of ϕ alone, and the remaining term is a function of (r, θ) only.

Thus they must be separately constant, and we may write

1

Q

d2Q

dϕ2
= −m2 , (3.1.5)

where m is a constant. Eq.(3.1.5) has solution

Q = e±imϕ . (3.1.6)

We now observe that the solution must be periodic, with period 2π, in the azimuthal variable

ϕ. Thus m must be a real integer number. Hence we may write Eq.(3.1.4) as

r2

U

d2U

dr2
+

1

sin θ

1

P

d

dθ

(
sin θ

dP

dθ

)
− m2

sin2 θ
= 0 . (3.1.7)

We now observe that the first term is purely a function of r, whilst the remaining terms are

purely a function of θ. Thus we may write

r2

U

d2U

dr2
= l(l + 1) , (3.1.8)

where l is a constant – we will see the reason for expressing the constant in this way later.

To solve this equation, we will take a trial solution

U(r) = rα, (3.1.9)

yielding

α(α− 1) = l(l + 1) (3.1.10)

with solutions α = l + 1,−l. Thus we have

U(r) = Arl+1 +Br−l , (3.1.11)
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or

U(r)

r
= Arl +Br−l−1 . (3.1.12)

As we will see later on, l is integer. Thus, taking l ≥ 0, we get for the r-dependent factor

U(r)/r all nonnegative integer powers of r from the rl term and all negative integer powers of

r from the r−l−1 term. Alternatively, taking a negative integer l = −L−1 (with nonnegative

integer L ≥ 0) we have rl → r−L−1 and r−l−1 → rL, and we get again all integer powers of

r as possible solutions. Hence, for definiteness, we may take l ≥ 0.

The equation for the polar coordinate θ now assumes the form

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
P = 0 . (3.1.13)

It is convenient to introduce the variable x = cos θ, with −1 ≤ x ≤ 1. Then

1

sin θ

d

dθ
= − d

dx
(3.1.14)

and

sin θ
d

dθ
= −(1− x2)

d

dx
. (3.1.15)

Thus we have

d

dx

[
(1− x2)

dP

dx

]
+

[
l(l + 1)− m2

1− x2

]
P = 0 . (3.1.16)

This is the Generalized Legendre Equation, and is, once again, an equation of Sturm-

Liouville type, with p(x) = 1− x2, q(x) = −m2/(1− x2), λ = l(l + 1), and r(x) = 1.

We will now seek solutions of this equation, first for the case m = 0, where the equation is

known as the Ordinary Legendre Equation

d

dx

[
(1− x2)

dP

dx

]
+ l(l + 1)P = 0 . (3.1.17)
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We begin by noting that the solutions must be both continuous and single-valued in the

region −1 ≤ x ≤ 1, corresponding to 0 ≤ θ ≤ π. We will obtain the solutions through series

substitution, i.e. by trying a solution of the form

P =
∞∑
n=0

cnx
γ+n , (3.1.18)

from which

dP

dx
=

∞∑
n=0

cn(γ + n)xγ+n−1

(1− x2)
dP

dx
=

∞∑
n=0

cn(γ + n)xγ+n−1 −
∞∑
n=0

cn(γ + n)xγ+n+1 ,

d

dx

[
(1− x2)

dP

dx

]
=

∞∑
n=0

cn(γ + n)(γ + n− 1)xγ+n−2 −
∞∑
n=0

cn(γ + n)(γ + n+ 1)xγ+n .

Thus Legendre’s equation becomes

∞∑
n=0

cn(γ + n)(γ + n− 1)xγ+n−2 +
∞∑
n=0

cn [l(l + 1)− (γ + n)(γ + n+ 1)]xγ+n = 0 . (3.1.19)

The first sum here contains two terms, xγ−2 and xγ−1 (corresponding to n = 0 and n = 1,

respectively) which are absent in the second sum. Writing them separately and shifting

n→ n+ 2 for the remaining terms of the first sum, we have

xγ−2c0γ(γ − 1) + xγ−1c1(γ + 1)γ +
∞∑
n=0

cn(γ + n+ 1)(γ + n+ 2)xγ+n

+
∞∑
n=0

cn [l(l + 1)− (γ + n)(γ + n+ 1)]xγ+n = 0 .

(3.1.20)

As this equation must be valid ∀x ∈ [−1, 1], we can equate the coefficients of the powers of

x to zero. The lowest power of x is xγ−2, and we use this equation, the indicial equation,

to determine γ. Thus

• xγ−2:

c0γ(γ − 1) = 0 =⇒ γ = 0 or γ = 1 (3.1.21)

• xγ−1:

c1(γ + 1)γ = 0 =⇒

{
γ = 0 : c1 undetermined

γ = 1 : c1 = 0
(3.1.22)
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• xγ+n, n ≥ 0 :

cn+2 =
(γ + n)(γ + n+ 1)− l(l + 1)

(γ + n+ 1)(γ + n+ 2)
cn . (3.1.23)

Thus, specifying c0, we get c2, c4, etc. from the recurrence relation. Note that the resulting

power series involves only even powers of x for γ = 0 and only odd powers of x for γ = 1. In

case of γ = 0, we may also specify c1, and the recurrence relation will generate c3, c5, etc.,

i.e. a series involving odd powers of x. Thus, we can generate a series with odd powers of x

in two ways.

First, we may take γ = 1 and start from c0. This gives a series c0x+ c2x
3 + . . ., with

c2 =
γ(γ + 1)− l(l + 1)

(γ + 1)(γ + 2)
c0 →

2− l(l + 1)

2 · 3
c0 . (3.1.24)

Second, we may take γ = 0 and start from c1. This gives a series c1x+ c3x
3 + . . ., with

c3 =
(γ + 1)(γ + 2)− l(l + 1)

(γ + 2)(γ + 3)
c1 →

2− l(l + 1)

2 · 3
c1 . (3.1.25)

So, it looks like the two ways give us the same series, up to an overall factor determined by

the coefficient of x1.

Now we notice that the coefficient cn accompanies the power term xn+γ. Hence, denoting

k ≡ n+ γ, we may write

Pl(x) =
∑

k=γ,γ+2,γ+4,...

pkx
k (3.1.26)

(pk = ck−γ) with summation over even or odd k (depending on γ) and the common recurrence

relation

p
(l)
k+2 =

k(k + 1)− l(l + 1)

(k + 1)(k + 2)
p

(l)
k =

(k − l)(k + l + 1)

(k + 1)(k + 2)
p

(l)
k . (3.1.27)

In particular,

p
(l)
2 =

(0− l)(l + 1)

1 · 2
p

(l)
0 , p

(l)
3 =

(1− l)(l + 2)

2 · 3
p

(l)
1 , (3.1.28)

p
(l)
4 =

(2− l)(l + 3)

3 · 4
p

(l)
2 , p

(l)
5 =

(3− l)(l + 4)

4 · 5
p

(l)
4 , (3.1.29)

etc., which gives p
(2)
2 /p

(2)
0 = −3, p

(3)
3 /p

(3)
1 = −5/3 .

We have already noted that the solution must be valid for x ∈ [−1, 1], and in particular at

the end points x = ±1. Thus the series must be finite at x = ±1. To explore the convergence

properties, we note that

pk+2/pk −→ 1 as k −→∞ , (3.1.30)
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and thus the series resembles a geometrical expansion
∑
x2k. This series diverges at x = ±1

unless the series terminates, i.e. unless pk+2 = 0 for some k. Thus our requirement for

convergence is

k(k + 1)− l(l + 1) = 0 for some k , (3.1.31)

or

(k − l)(k + l + 1) = 0 for some k , (3.1.32)

which holds for k = l if l is nonnegative, and for k = −l − 1 if l is negative. In the latter

case, we write it as l = −L− 1, and get k = −l− 1 = L ≥ 0 as a solution. Thus, as we have

discussed already, we may take nonnegative l without a loss of generality.

Since k is an integer number, the Legendre series (3.1.26) becomes a polynomial only if l is

an integer number. Then p
(l)
l+2 = 0 · p(l)

l = 0, i.e., the highest power of x is xl. We call the

corresponding solutions

Pl(x) =
l∑

k=γ,γ+2,γ+4,...

pkx
k (3.1.33)

the Legendre Polynomials. The overall factor in the definition of Pl(x) is fixed by the

requirement Pl(1) = 1. Using the recurrence relations (3.1.27) and imposing this condition,

we find the first few Legendre Polynomials to be

P0(x) = 1 ,

P1(x) = x ,

P2(x) =
1

2
(3x2 − 1) ,

P3(x) =
1

2
(5x3 − 3x) .

3.1.1 Rodriques’ Formula and Generating Function

We can write the Legendre polynomials in a more memorable form through Rodrigues’

Formula:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (3.1.34)

Another useful way of determining the Legendre polynomials is through the generating

function

g(t, x) ≡ (1− 2xt+ t2)−1/2 =
∞∑
l=0

Pl(x) tl , |t| < 1 . (3.1.35)
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Figure 3.1: Legendre polynomials for l = 0, 1, 2, 3, 4 (left) and l = 5, 6, 7 (right).

One can use the generating function approach to get Legendre polynomials in Mathematica.

In particular, the command

Series[1/Sqrt[1− 2tx + t2], {t, 0, 10}]
gives the first 11 Legendre polynomials Pl(x) as factors accompanying tl in

1 + xt+
1

2

(
3x2 − 1

)
t2 +

1

2
x
(
5x2 − 3

)
t3 +

1

8

(
35x4 − 30x2 + 3

)
t4

+
1

8
x
(
63x4 − 70x2 + 15

)
t5 +

1

16

(
231x6 − 315x4 + 105x2 − 5

)
t6

+
1

16
x
(
429x6 − 693x4 + 315x2 − 35

)
t7

+
1

128

(
6435x8 − 12012x6 + 6930x4 − 1260x2 + 35

)
t8

+
1

128
x
(
12155x8 − 25740x6 + 18018x4 − 4620x2 + 315

)
t9

+
1

256

(
46189x10 − 109395x8 + 90090x6 − 30030x4 + 3465x2 − 63

)
t10 +O

(
t11
)

(3.1.36)

The first 8 Legendre polynomials are shown in Fig. 3.1. One can see that for large l, in the

middle region, they are getting closer and closer to periodic oscillating functions jumping,

however, to their ±1 values at the end-points. In fact, we can check analytically that the

generating function produces correct normalization of the Legendre polynomials for x = 1.

We have

g(t, x = 1) = (1− 2t+ t2)−1/2 =
1

1− t
=
∞∑
l=0

tl , (3.1.37)

hence Pl(1) = 1 for all l. Similarly, for x = −1, we have

g(t, x = −1) = (1 + 2t+ t2)−1/2 =
1

1 + t
=
∞∑
l=0

(−1)l tl , (3.1.38)
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hence Pl(−1) = (−1)l for all l.

3.1.2 Orthogonality and Normalization of Legendre Polynomials

We recall that the Legendre equation is of Sturm-Liouville type, with p(x) = 1 − x2 and

r(x) = 1. Since p(x) vanishes for x = ±1, the solutions of the Legendre equation satisfy the

boundary conditions [
p(x)

(
ψ∗λ
dψλ′

dx
− ψλ′

dψ∗λ
dx

)]b
a

= 0. (3.1.39)

required by the orthogonality theorem, which states in this case that

[l(l − 1)− l′(l′ + 1)]

∫ 1

−1

dxPl(x)Pl′(x) = 0 =⇒
∫ 1

−1

dxPl(x)Pl′(x) = 0, l 6= l′, (3.1.40)

i.e. the Legendre polynomials are orthogonal with the simplest possible weight r(x) = 1.

To determine their normalization, we can use either Rodrigues’ formula, or the generating

function; we use the latter. From Eq.(3.1.35), we have∫ 1

−1

dx [g(t, x)]2 =

∫ 1

−1

dx
1

1− 2xt+ t2
=

{
− 1

2t
ln(1− 2xt+ t2)

}1

−1

=− 1

2t
ln

(1− t)2

(1 + t)2
= 2

∞∑
l=0

t2l

2l + 1
,

where we have used the series expansion of ln(1 + t). However, we also have∫ 1

−1

dx [g(t, x)]2 =
∞∑

l,l′=0

∫
dxPl(x)Pl′(x)tl+l

′
=
∞∑
l=0

t2l
∫ 1

−1

dxPl(x)2 .

On the last step we used orthogonality of Legendre polynomials, i.e. the fact that only the

l′ = l term is nonzero in the sum over l′. Equating the coefficients in these two expansions

yields

2
∞∑
l=0

t2l

2l + 1
=

∞∑
l=0

t2l
∫ 1

−1

dxPl(x)2

and finally

∫ 1

−1

dxPl(x)Pl(x) =
2

2l + 1
. (3.1.41)



Boundary-value Problems in Curvilinear Coordinates 87

We can also combine the orthogonality property and normalization of the Legendre poyno-

mials into one relation

∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δll′ . (3.1.42)

3.1.3 Recurrence Relations

Rodrigues’ formula provides a means to obtain various recurrence relations between the

Legendre Polynomials, for example:

(l + 1)Pl+1(x)− (2l + 1)xPl(x) + lPl−1(x) = 0

d

dx
Pl+1(x)− xdPl(x)

dx
− (l + 1)Pl(x) = 0

(x2 − 1)
dPl(x)

dx
− lxPl(x) + lPl−1(x) = 0

d

dx
Pl+1(x)− d

dx
Pl−1(x)dx− (2l + 1)Pl(x) = 0.

Such recurrence relations would allow us to evaluate many of the integrals that will be

encountered in the problems.

3.1.4 Completeness

Since the Legendre Polynomials form a complete set, we may write any function f(x),

x ∈ [−1, 1] as

f(x) =
∞∑
l=0

AlPl(x). (3.1.43)

We obtain the coefficients using the orthogonality relations∫ 1

−1

dx f(x)Pl(x) =
∞∑
l′=0

Al

∫ 1

−1

dxPl(x)Pl′(x)

= Al
2

2l + 1
,

whence

Al =
2l + 1

2

∫ 1

−1

dx f(x)Pl(x) . (3.1.44)
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Figure 3.2: Approximation of sin(πx) by one and two Legendre polynomials.

Examples of Legendre expansion

To give an illustration of the expansion in Legendre polynomials, let us consider the function

f(x) = sin(πx). It is an odd function of x, hence only l =odd contribute. We have

Al =
2l + 1

2

∫ 1

−1

dx sin(πx)Pl(x) , (3.1.45)

or

A1 =
3

2

∫ 1

−1

dx x sin(πx) =
3

2
× 2

π
=

3

π
(3.1.46)

and

A3 =
7

2

∫ 1

−1

dx
1

2

(
5x3 − 3x

)
sin(πx) =

7

2
× 2

π3
(π2 − 15) = − 7

π3
(15− π2) . (3.1.47)

The first term 3x/π of the Legendre expansion

sin(πx) =
3

π
P1(x)− 7

π3
(15− π2)P3(x) + . . . (3.1.48)

looks rather remote from the expanded function (see Fig. 3.2). However, after adding the

l = 3 term, we get an approximation that reproduces sin(πx) very closely.



Boundary-value Problems in Curvilinear Coordinates 89

Figure 3.3: Approximation of cos(πx) by one, two and three Legendre polynomials.

For comparison, let us also construct the Legendre expansion for the function f(x) = cos(πx).

It is an even function of x, hence only l =even contribute. Now we have

Al =
2l + 1

2

∫ 1

−1

dx cos(πx)Pl(x) , (3.1.49)

or

A0 =
1

2

∫ 1

−1

dx cos(πx) =
1

2
× 0 = 0 . (3.1.50)

The explanation of this outcome is simple: we integrate cos(πx) over its full periodicity

region, as a result, the integral vanishes. For the next two coefficients we have

A2 =
5

2

∫ 1

−1

dx
5

2

(
3x2 − 1

)
cos(πx) =

5

2
×
(
− 6

π2

)
= −15

π2
(3.1.51)

and

A4 =
9

2

∫ 1

−1

dx
1

8

(
35x4 − 30x2 + 3

)
cos(πx) =

9

2
× 10

π4
(21− 2π2) =

45

π4
(21− 2π2) . (3.1.52)

The first term of the Legendre expansion

cos(πx) = 0− 15

π2
P2(x) +

45

π4
(21− 2π2)P4(x) + . . . (3.1.53)

equals zero now, and is very remote from the expanded function (see Fig. 3.3). The second

term − 15
π2 P2(x), however, is rather close to it, and after adding the third term we get the

approximation curve which is almost indistinguishable from the curve for cos(πx).
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Legendre expansion of antisymmetric step function

Consider the step-function f(x) defined by

f(x) =

{
1 , 0 < x ≤ 1

−1 , −1 ≤ x < 0
(3.1.54)

Then we have

Al =
2l + 1

2

∫ 1

−1

dxf(x)Pl(x)

=
2l + 1

2

{∫ 1

0

dxPl(x)−
∫ 0

−1

dxPl(x)

}
=

2l + 1

2

∫ 1

0

dx {Pl(x)− Pl(−x)}.

Thus we see that Al is non-zero only for l odd:

Al =

{
(2l + 1)

∫ 1

0
dxPl(x) : l odd

0 : l even
(3.1.55)

Now by the last of our recurrence relations

Al =

∫ 1

0

dx

{
d

dx
Pl+1(x)− d

dx
Pl−1(x)

}
= Pl+1(1)− Pl+1(0)− Pl−1(1) + Pl−1(0)

= Pl−1(0)− Pl+1(0)

where we have used the normalization condition Pl(1) = 1. But we have (from Rodrigues’s

formula, with a little work)

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (3.1.56)

For even l

Pl(0) =
1

2ll!

dl

dxl
(−1)l/2 xl

l!

((l/2)!)2

∣∣∣∣
x=0

=
1

2l
(−1)l/2

l!

((l/2)!)2
(3.1.57)

Pl(0) =

{
1
2l

(−1)l/2 l!
((l/2)!)2

: l even

0 : l odd
. (3.1.58)

Thus P0(0) = 1, P2(0) = − 1
22

2!
(1!)2

= −1
2
,

P4(0) = − 1

24

4!

(2!)2
P2(0) =

1

2

3 · 4
22

= −3

4
P2(0) =

3

8
,
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Figure 3.4: Approximation of step function by one, two and three Legendre polynomials.

P6(0) = − 1

22

6 · 5
32

P4(0) = −5

6
P4(0) = − 5

16
, etc.

Since Pl−1(0) − Pl+1(0), we have A1 = P0(0) − P2(0) = 3
2
, A3 = P2(0) − P4(0) = −7

8
,

A5 = P4(0)− P6(0) = −11
16

, etc.

Finally, we obtain

f(x) =
3

2
P1(x)− 7

8
P3(x) +

11

16
P5(x) + . . . (3.1.59)

3.2 Boundary-Value Problems

with Azimuthal Symmetry

We may now write our general solution for the boundary-value problem in spherical coordi-

nates with azimuthal symmetry, i.e. no ϕ dependence, as

Φ(r, θ) =
∞∑
l=0

(
Alr

l +Blr
−l−1

)
Pl(cos θ), (3.2.1)

where the coefficients Al and Bl are determined from the boundary conditions.
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Example:

Consider the case of a sphere, of radius a, with no charge inside but potential V (θ) specified

on the surface.

Since there are no charges inside the sphere, the potential Φ inside must be regular every-

where. Thus Bl = 0 ∀l, and we may write the solution as

Φ(r, θ) =
∞∑
l=0

Alr
lPl(cos θ) . (3.2.2)

Imposing the boundary conditions at r = a yields

V (θ) =
∞∑
l=0

Al a
lPl(cos θ), (3.2.3)

so that, using the normalization condition on the Legendre polynomials, we have

Al =
2l + 1

2al

∫ π

0

dθ sin θ V (θ)Pl(cos θ). (3.2.4)

Suppose now that we require the solution outside the sphere. Then the solution must be

finite as r →∞, and thus

Φ(r, θ) =
∞∑
l=0

Blr
−l−1Pl(cos θ) (3.2.5)

with

V (θ) =
∞∑
l=0

Bla
−l−1Pl(cos θ), (3.2.6)

so that

Bl =
2l + 1

2
al+1

∫ π

0

dθ sin θ V (θ)Pl(cos θ). (3.2.7)

Let us now go back to the problem in Section 2.4.2:

V (θ) =

{
V : 0 ≤ θ ≤ π/2

−V : π/2 ≤ θ ≤ π
(3.2.8)

Then we have

Bl =
2l + 1

2
al+1V

{∫ π/2

0

Pl(cos θ) sin θdθ −
∫ π

−π/2
Pl(cos θ) sin θdθ

}

=
2l + 1

2
al+1V

{∫ 1

0

dxPl(x)−
∫ 0

−1

dxPl(x)

}
=

2l + 1

2
al+1V

{∫ 1

−1

dxf(x)Pl(x)

}



Boundary-value Problems in Curvilinear Coordinates 93

where

f(x) =

{
1 0 < x ≤ 1

−1 −1 ≤ x < 0
(3.2.9)

This is just the expression we evaluated in Section 3.1.4, and thus we have:

Bl =

{
V al+1(−1

2
)
l−1
2

(l−2)!!(2l+1)

2( l+1
2 )!

l odd

0 l even
(3.2.10)

so that

Φ(r, θ) = V

{
3

2

a2

r2
P1(cos θ)− 7

8

a4

r4
P3(cos θ) +

11

16

a6

r6
P5(cos θ) + . . .

}
. (3.2.11)

Recall that in Section 2.4.2 we obtained

Φ(r, θ, ϕ) =
3V a2

2r2

{
cos θ − 7a2

12r2

(
5

2
cos3 θ − 3

2
cos θ

)
+O

(
a4

r4

)}
= V

{
3

2

a2

r2
P1(cos θ)− 7

8

a4

r4
P3(cos θ) + . . .

}
,

which is precisely the first two terms in the expansion of Eq.(3.2.11).

The crucial observation in such problems is that the series expansion

Φ(r, θ) =
∑
l

(
Al r

l +Bl r
−l−1

)
Pl(cos θ) (3.2.12)

is unique. Thus it is possible to determine the coefficients Al and Bl from a knowledge of

the solution in some limited domain. As an illustration, we recall that we obtained a closed

solution to the above problem above the north pole, i.e. at θ = 0:

Φ(z = r, θ = 0) = V

{
1− r2 − a2

r
√
r2 + a2

}
. (3.2.13)

We can use the Taylor expansion to express this as a series in a/r. It may be obtained by

Mathematica, if one looks for a Series expansion of the function

f(x) = 1− 1− x2

√
1 + x2

. (3.2.14)

The result is

f(x) = 1− 1− x2

√
1 + x2

=
3

2
x2 − 7

8
x4 +

11

16
x6 − 75

128
x8 +

133

256
x10 + . . . . (3.2.15)
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The same result may be obtained analytically using the binomial expansion:

Φ(z = r, θ = 0) = V

{
1− (1− a2/r2)

∞∑
j=0

Γ(1
2
)

Γ(j + 1)Γ(1
2
− j)

(a
r

)2j
}
. (3.2.16)

If we use the property

Γ(z)Γ(1− z) =
π

sin πz
(3.2.17)

and note that Γ(1/2) =
√
π, we obtain, after a little manipulation (exercise),

Φ(r, θ = 0) =
V√
π

∞∑
j=1

(−1)j−1 (2j − 1
2
)Γ(j − 1

2
)

j!

(a
r

)2j

. (3.2.18)

We now compare this series solution with Eq.(3.2.12), evaluated at θ = 0, and observe that

only terms with l = 2j − 1 enter, and that

B2j−1 =
V√
π

(−1)j−1 (2j − 1
2
)Γ(j − 1

2
)

j!
a2j. (3.2.19)

Let us try the first couple of terms

j = 1 : B1 = V√
π
(−1)0 (3/2)Γ(1/2)

1!
a2 = 3V a2/2

j = 2 : B3 = V√
π
(−1)1 (5/2)Γ(3/2)

2!
a4 = −7

8
V a4,

(3.2.20)

and once again we reproduce the expression Eq.(3.2.11).

3.2.1 Expansion of 1
|x−x′|

We conclude this section by looking at the expansion of this critical quantity that occurs

in the construction of the Green’s function. We begin by observing that the result can

depend only on r, r′ and γ, the angle between x and x′. We may thus simplify the problem

by choosing the azimuthal direction (z axis) along the x′ axis. The problem then displays

manifest azimuthal symmetry, and we may write

1

|x− x′|
=
∞∑
l=0

[
Al(r

′)rl +Bl(r
′)r−l−1

]
Pl(cos γ) (3.2.21)

We now consider the case where x lies parallel to x′, when cos γ = 1. Then the l.h.s. of

Eq.(3.2.21) becomes

1

|x− x′|
=

1

|r − r′|
. (3.2.22)
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There are two cases:

r > r′ :
1

|r − r′|
=

1

r − r′
=

1

r

∞∑
l=0

(
r′

r

)l
=
∞∑
l=0

r′l

rl+1

r < r′ :
1

|r − r′|
=

1

r′ − r
=

1

r′

∞∑
l=0

( r
r′

)l
=
∞∑
l=0

rl

(r′)l+1

Let us introduce r> = max(r, r′) and r< = min(r, r′). Then we may write

1

|r − r′|
=
∞∑
l=0

rl<
rl+1
>

(3.2.23)

and, comparing with Eq.(3.2.21), we have

1

|x− x′|
=
∞∑
l=0

rl<
rl+1
>

Pl(cos γ) (3.2.24)

3.3 Solution of the Generalized Legendre Equation

Let us now consider the case where we no longer assume azimuthal symmetry. Then we are

concerned with solutions of the Generalized Legendre Equation,

d

dx

[
(1− x2)

dP (x)

dx

]
+

[
l(l + 1)− m2

1− x2

]
P (x) = 0. (3.3.1)

We can obtain a series solution in an analogous way to that of the ordinary Legendre equation.

For solutions to be finite at x = ±1, corresponding to θ = 0, π, we require that l must be a

positive integer or zero, and that m takes the values

m = −l,−l + 1, . . . , l − 1, l. (3.3.2)

Recall that we already know that m must be an integer by the requirement that the azimuthal

function Q(ϕ) be single-valued.

For the case where m is positive, we can write the solutions Pm
l (x) as

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x) (3.3.3)

or for both positive and negative m by adopting Rodrigues’ formula:

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l. (3.3.4)
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Note that Eq.(3.3.1) depends only on m2. Thus we have that P−ml (x) must be proportional

to Pm
l (x), and in fact

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (x). (3.3.5)

Eq. (3.3.1) is an equation of Sturm-Liouville class, with eigenvalues l(l + 1). We can apply

the orthogonality theorem at fixed m, and we have∫ 1

−1

dxPm
l′ (x)Pm

l (x) =
2

2l + 1

(l +m)!

(l −m)!
δll′ . (3.3.6)

3.4 Spherical Harmonics

We began by looking at separable solutions in spherical polar coordinates, and writing

Φ(r, θ, ϕ) =
1

r
U(r)P (θ)Q(ϕ). (3.4.1)

Then we derived the equation

PQ

r

d2U

dr2
+

UQ

r3 sin θ

d

dθ

(
sin θ

dP

dθ

)
+

UP

r3 sin2 θ

d2Q

dϕ2
= 0 , (3.4.2)

which may be also written as

r2

U

d2U

dr2
+

1

PQ

[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

1

sin2 θ

d2

dϕ2

]
PQ = 0 , (3.4.3)

Since U(r) satisfies Eq. (3.1.8)

r2

U

d2U

dr2
= l(l + 1) , (3.4.4)

the angular part Y (θ, ϕ) ≡ P (θ)Q(ϕ) satisfies

−
[

1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

1

sin2 θ

d2

dϕ2

]
Y ≡ −∇2

ΩY = l(l + 1)Y . (3.4.5)

Thus, it is convenient to combine the angular functions into solutions on the unit sphere:

Ylm(θ, ϕ) =

√
(l −m)!(2l + 1)

4π(l +m)!
Pm
l (cos θ)eimϕ . (3.4.6)

The spherical harmonics (3.4.6) satisfy the equation

−∇2
ΩYlm(θ, ϕ) = l(l + 1)Ylm(θ, ϕ) (3.4.7)
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or, in explicit form[
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2

]
Ylm(θ, ϕ) = l(l + 1)Ylm(θ, ϕ) . (3.4.8)

(A person familiar with quantum mechanics may recognize the expression in square brackets

on lhs of this equation as a square of operator of anglular momentum L2.)

Using the relation between P−ml (cos θ) and Pm
l (cos θ) we have

Yl,−m(θ, ϕ) = (−1)mY ∗lm(θ, ϕ) (3.4.9)

and the normalization condition is∫ 2π

0

dϕ

∫ π

0

Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ) sin θ dθ = δll′δmm′ , (3.4.10)

i.e. ∫
dΩYlm(θ, ϕ)Y ∗l′m′(θ, ϕ) = δmm′δll′ . (3.4.11)

For the case m = 0, the solution clearly reduces to the Legendre polynomial, up to some

normalization:

Yl0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ) . (3.4.12)

3.4.1 Completeness

Any arbitrary function g(θ, ϕ) defined on 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π may be expressed in terms

of Ylm:

g(θ, ϕ) =
∞∑
l=0

l∑
m=−l

AlmYlm(θ, ϕ) , (3.4.13)

where

Alm =

∫ π

0

dθ sin θ

∫ 2π

0

g(θ, ϕ)Y ∗lm(θ, ϕ) dϕ

=

∫
dΩY ∗lm(θ, ϕ)g(θ, ϕ) .

3.4.2 General Solution

We can now write the general solution of the Laplace boundary value problem as

Φ(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

[
Almr

l +Blmr
−l−1

]
Ylm(θ, ϕ) . (3.4.14)
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3.4.3 Addition Theorem for Spherical Harmonics

Consider two vectors x,x′, with coordinates (r, θ, ϕ) and (r′, θ′, ϕ′) respectively. Let γ be

the angle between x and x′, so that

cos γ =
x · x′

|x||x′|
= cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) . (3.4.15)

Then we have

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) . (3.4.16)

This is proved in Jackson, but is more easily proved using group theory. Note that we can

rewrite this in the form

Pl(cos γ) = Pl(cos θ)Pl(cos θ′) + 2
l∑

m=1

(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (cos θ′) cosm(ϕ− ϕ′) (3.4.17)

Example

An important application is to the expansion of 1
|x−x| , discussed in section 3.2.1:

1

|x− x′|
=
∞∑
l=0

rl<
rl+1
>

Pl(cos γ). (3.4.18)

Using the addition theorem, we can rewrite this as

1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ). (3.4.19)

Superficially, this looks like a much more complicated expression, since we have introduced

an additional sum over m. But it is now a sum over terms that factorize into a function of

(θ, ϕ) and a function of (θ′, ϕ′), and thus much more useful.

3.5 Expansion of Green Function

in Spherical Polar Coordinates

The solutions found by separation of variables constituted complete sets of orthogonal func-

tions satisfying the appropriate boundary conditions. This means that any function, and in

particular the Green function, satisfying the same boundary conditions can be expanded as

a series of these orthogonal functions.
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3.5.1 Reminder: Green Functions

Green’s theorem tells us that the potential Φ(x) related to the charge density ρ(x′) by

∇′2Φ(x′) = −ρ(x′)/ε0. (3.5.1)

can be written as

Φ(x) =
1

4πε0

∫
V

d3x′G(x,x′)ρ(x′)

+
1

4π

∫
S=∂V

dS ′
{
G(x,x′)

∂Φ(x′)

∂n′
− Φ(x′)

∂G(x,x′)

∂n′

}
(3.5.2)

The function G(x,x′) is said to be a Green function for the problem, it is a function

satisfying

∇′2G(x,x′) = −4πδ(3)(x− x′). (3.5.3)

In general, it has the form

G(x,x′) =
1

|x− x′|
+ F (x,x′), (3.5.4)

where F (x,x′) is a solution of Laplace’s equation

∇′2F (x,x′) = 0. (3.5.5)

The utility of this representation is that we can choose G(x,x′) so that the surface integral

depends only on the prescribed boundary values of Φ (Dirichlet) or ∂Φ/∂n′ (Neumann).

In Dirichlet problem, the value of Φ(x′) is specified on the surface, and therefore it is natural

to impose that the Green function GD(x,x′) satisfy

GD(x,x′) = 0 for x′ on S, (3.5.6)

and thus

Φ(x) =
1

4πε0

∫
V

d3x′GD(x,x′)ρ(x′)− 1

4π

∫
S

dS ′Φ(x′)
∂GD(x,x′)

∂n′

≡ Φρ(x) + ΦS(x) . (3.5.7)

Thus the surface integral only involves Φ(x′), and not the unknown ∂Φ(x′)/∂n′.

Recall that GD(x,x′) corresponds to the potential at point x of a point charge located at

x′, subject to the condition that the potential vanishes on the surface S. Thus, the first

term, Φρ(x), corresponds to the potential of the charge distribution ρ(x′) in the presence of

a grounded conducting surface S.
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3.5.2 Green function for the Sphere in Spherical Harmonics

We have already seen that expansion of 1/|x − x′| may be written in terms of spherical

harmonics, viz.

1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ). (3.5.8)

Suppose we wish to construct the Dirichlet Green function for the outside of a sphere of

radius a. To get G(x,x′) = 0 for x′ on the sphere, we use the method of images, and obtain

G(x,x′) =
1

|x′ − x|
− a

r|x′ − xa2/r2|

= 4π
∞∑
l=0

l∑
m=−l

1

2l + 1
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ)

{
rl<
rl+1
>

− a

r

(a2/r)l

r′l+1

}
,

where we note that, for the image charge, r> = r′, r< = a2/r, since the image charge is

always inside the sphere. Then we have

G(x,x′) = 4π
∞∑
l=0

l∑
m=−l

1

2l + 1
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ)

{
rl<
rl+1
>

− 1

a

(
a2

rr′

)l+1
}

. (3.5.9)

We have thus accomplished our goal of expressing the Green function as an expansion over

orthogonal functions. There are some important observations we can make by looking at the

radial part

{
rl<
rl+1
>

− 1

a

(
a2

rr′

)l+1
}

=


1

r′l+1

[
rl − a2l+1

rl+1

]
r < r′

1
rl+1

[
r′l − a2l+1

r′l+1

]
r > r′

. (3.5.10)

• The radial part manifestly vanishes at r = a and r′ = a.

• It is symmetric under r ↔ r′.

• The solution is a linear combination of the solutions of Laplace’s equation, regarded

as a function of r′ for fixed r, but a different linear combination for r′ > r and r′ < r.

We will see how this property arises below.
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3.5.3 General construction of Green function in spherical coordi-

nates

In spherical polars, the Green function satisfies

∇′2G(x,x′) = −4π

r′2
δ(r − r′)δ(ϕ− ϕ′)δ(cos θ − cos θ′), (3.5.11)

where

∇′2 =
1

r′2
∂

∂r′

(
r′2

∂

∂r′

)
+

1

r′2 sin θ′
∂

∂θ′

(
sin θ′

∂

∂θ′

)
+

1

r′2 sin2 θ′
∂2

∂ϕ′2
, (3.5.12)

or using the ∇′Ω
2 notation

∇′2 =
1

r′2

[
∂

∂r′

(
r′2

∂

∂r′

)
+∇′Ω

2

]
, (3.5.13)

where

∇Ω
2 ≡ 1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

1

sin2 θ

d2

dϕ2
. (3.5.14)

We will consider the case where we require the Green function over the full angular range

0 ≤ θ′ ≤ π, 0 ≤ ϕ′ ≤ 2π. Thus we can expand the Green function, as a function of the

primed variables with the unprimed variables fixed, in spherical harmonics:

G(x,x′) =
∑
l′,m′

Fl′m′(r, θ, ϕ; r′)Yl′m′(θ
′, ϕ′). (3.5.15)

Substituting this into the inhomogeneous equation we have

1

r′2

∑
l′,m′

{
∂

∂r′

[
r′2
∂Fl′m′

∂r′

]
Y ∗l′m′(θ

′, ϕ′) + Fl′m′∇′Ω
2
Y ∗l′m′(θ

′, ϕ′)

}
= −4π

r′2
δ(r − r′)δ(ϕ− ϕ′)δ(cos θ − cos θ′). (3.5.16)

Now the spherical harmonics are solutions of Laplace’s equation on the unit sphere, and,

from Eq.(3.1.4), satisfy

∇′Ω
2
Y ∗l′m′(θ

′, ϕ′) + l′(l′ + 1)Y ∗l′m′(θ
′, ϕ′) = 0. (3.5.17)

Thus our Green function equation becomes (after canceling 1/r′2)∑
l′m′

{
∂

∂r′

[
r′2
∂Fl′m′

∂r′

]
− Fl′m′l′(l′ + 1)

}
Y ∗l′m′(θ

′, ϕ′)

= −4πδ(r − r′)δ(ϕ− ϕ′)δ(cos θ − cos θ′). (3.5.18)
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We now multiply by Ylm(θ′, ϕ′), and use the orthogonality properties of the spherical har-

monics:

∂

∂r′

[
r′2
∂Flm
∂r′

]
− Flm

r′2
l(l + 1)

= −4π

∫
dΩ′ Ylm(θ′, ϕ′)δ(r − r′)δ(ϕ− ϕ′)δ(cos θ − cos θ′)

= −4π Ylm(θ, ϕ)δ(r − r′). (3.5.19)

Thus, the angular dependence of Flm is given by Ylm(θ, ϕ), and we may write

Flm(r, θ, ϕ; r′) = gl(r, r
′)Ylm(θ, ϕ) (3.5.20)

where gl(r, r
′) satisfies

d

dr′

(
r′

2 d

dr′
gl(r, r

′)

)
− l(l + 1)gl(r, r

′) = −4πδ(r − r′). (3.5.21)

This is just the radial part of Laplace’s equation. To proceed further, we must specifiy

boundary conditions.

3.5.4 Green Function for the Sturm-Liouville Equation

We wish to determine the Green function to the equation

d

dx′

[
p(x′)

dg(x, x′)

dx′

]
+ q(x′)g(x, x′) = −4πδ(x− x′), (3.5.22)

defined on the interval x′ ∈ [a, b], with homogeneous boundary conditions at a and b. Note

that we regard x as some arbitrary, fixed parameter.

The Green function must possess the following properties:

1. For x′ 6= x, g(x, x′) satisfies the homogeneous equation, i.e. the Sturm-Liouville equa-

tion with no source on the r.h.s..

2. g(x, x′) satisfies the homogeneous boundary condition at x′ = a and x′ = b, e.g.

g(x, a) = 0 and g(x, b) = 0.

3. g(x, x′) must be continuous at x′ = x. This is subtle; otherwise dg/dx′ would contain a

δ-function, and d2g/dx′2 would contain the derivative of a δ-function at x′ = x, which

is more singular than the r.h.s. of the equation.
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To see what happens at x′ = x, we integrate the equation from x− ε to x+ ε:∫ x+ε

x−ε
dx′

{
d

dx′

[
p(x′)

dg(x, x′)

dx′

]
+ q(x′)g(x, x′)

}
= −4π

∫ x+ε

x−ε
dx′ δ(x− x′), (3.5.23)

leading to [
p(x′)

dg(x, x′)

dx′

]x+ε

x−ε
+

∫ x+ε

x−ε
dx′ q(x′)g(x, x′) = −4π. (3.5.24)

Both q(x′) and g(x, x′) are finite (and even continuous) at x′ = x, and therefore we have

lim
ε→0

∫ x+ε

x−ε
dx′ q(x′)g(x, x′) = 0, (3.5.25)

and we may write

lim
ε→0

[
p(x′)

dg(x, x′)

dx′

]x+ε

x−ε
= −4π. (3.5.26)

The function p(x′) is also continuous at x′ = x, and thus

p(x) lim
ε→0

{
dg(x, x′ = x+ ε)

dx′
− dg(x, x′ = x− ε)

dx′

}
= −4π , (3.5.27)

which we write as

δ

[
dg(x, x′)

dx′

]
x′=x

= − 4π

p(x)
, (3.5.28)

i.e. there is a discontinuity in the slope of the Green function of magnitude 4π/p(x) at x′ = x.

a x b

Discontinuity in

       slope

Thus we will write our Green function as

• a ≤ x′ ≤ x:

g(x, x′) = C1(x)y1(x′), (3.5.29)

where y1(x′) is a solution of the homogeneous equation satisfying the appropriate

boundary condition at x′ = a.
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• x ≤ x′ ≤ b:

g(x, x′) = C2(x)y2(x′) (3.5.30)

where y2(x′) is a solution of the homogeneous equation satisfying the appropriate

boundary condition at x′ = b.

We now impose the conditions on the Green function at x′ = x

• g(x, x′) continuous at x′ = x:

C1(x)y1(x)− C2(x)y2(x) = 0 (3.5.31)

• Discontinuity in slope is −4π/p(x):

C2(x)y′2(x)− C1(x)y′1(x) = − 4π

p(x)
(3.5.32)

From Eq.(3.5.31), we have

C2(x) =
C1(x)y1(x)

y2(x)
. (3.5.33)

Substituting into Eq.(3.5.32), we find

C1(x)y1(x)y′2(x)

y2(x)
− C1(x)y′1(x) = − 4π

p(x)

⇒ C1(x) = − 4π

p(x)

y2(x)

W [y1(x), y2(x)]
,

⇒ C2(x) = − 4π

p(x)

y1(x)

W [y1(x), y2(x)]
,

where the W is the Wronskian (named after a Polish-French mathematician J. Wroński),

W [y1(x), y2(x)] = y1(x)y′2(x)− y2(x)y′1(x). (3.5.34)

Note that this method only works if y1 and y2 are linearly independent, since otherwise the

Wronskian vanishes.

Thus our general form for the Green function is

g(x, x′) =


− 4π

p(x)

y2(x)y1(x′)

W [y1(x), y2(x)]
, a ≤ x′ ≤ x ;

− 4π

p(x)

y1(x)y2(x′)

W [y1(x), y2(x)]
, x ≤ x′ ≤ b .

(3.5.35)



Boundary-value Problems in Curvilinear Coordinates 105

So, the Green function in the regions x′ < x and x′ > x is given by two different, linearly

independent solutions of the homogeneous equation.

One can show that the combination p(x)W [y1(x), y2(x)] in fact does not depend on x, if

y1(x), y2(x) are two independent solutions of the Sturm-Liouville equation

d

dx
[p(x)y′(x)] + q(x)y(x) = 0 . (3.5.36)

Indeed, let us write this equation for y1(x) and multiply it by y2(x),

y2(x)

[
d

dx
[p(x)y′1(x)] + q(x)y1(x)

]
= 0 , (3.5.37)

and then write the equation for y2(x) and multiply it by y1(x),

y1(x)

[
d

dx
[p(x)y′2(x)] + q(x)y2(x)

]
= 0 . (3.5.38)

The difference of these two expressions gives

y2(x)
d

dx
[p(x)y′1(x)]− y1(x)

d

dx
[p(x)y′2(x)] = 0 . (3.5.39)

Integrating this equation over x from some fixed point c in the interval [a, b] to some point

z inside the same interval gives, after using integration by parts,[
y2(x)p(x)y′1(x)− y1(x)p(x)y′2(x)

]z
c
−
∫ z

c

[y′2(x)p(x)y′1(x)− y′1(x)p(x)y′2(x)]dx = 0 .

(3.5.40)

Since the integrand of the x-integral above vanishes, we have

y2(z)p(z)y′1(z)− y1(z)p(z)y′2(z) = y2(c)p(c)y′1(c)− y1(c)p(c)y′2(c) , (3.5.41)

or

−p(z)W [y1(z), y2(z)] = −p(c)W [y1(c), y2(c)] , (3.5.42)

i.e., the combination p(z)W [y1(z), y2(z)] is a constant independent of z. As a result, we may

write g(x, x′) as

g(x, x′) =

 C y2(x)y1(x′) , a ≤ x′ ≤ x ;

C y1(x)y2(x′) , x ≤ x′ ≤ b .
(3.5.43)

where C ≡ −4π/{p(x)W [y1(x), y2(x)]} is a constant. Even more compact form is

g(x, x′) = C y1(x<) y2(x>) , (3.5.44)

where x< (x>) is smaller (larger) of x, x′.
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3.5.5 Dirichlet Green Function between Spheres at r = a and r = b

We require gl(r, r
′) subject to the boundary conditions gl(r, a) = gl(r, b) = 0.

1. a ≤ r′ ≤ r: The solution y1(r′) of the homogeneous equation must satisfy y1(a) = 0.

Now the general solution is of the form

y1(r′) = A1r
′l +B1r

′−l−1, (3.5.45)

and thus we have

A1a
l +B1a

−l−1 = 0 ⇒ B1 = −A1a
2l+1 (3.5.46)

yielding

y1(r′) = A1

[
r′l − a2l+1

r′l+1

]
. (3.5.47)

2. r ≤ r′ ≤ b: Then the solution y2(r′) of the homogeneous equation must satisfy

y2(b) = 0, and thus we have

A2b
l +B2b

−l−1 = 0 ⇒ A2 = −B2b
−2l−1 (3.5.48)

yielding

y2(r′) = B2

[
1

r′l+1
− r′l

b2l+1

]
(3.5.49)

We now construct the Wronskian

W [y1(r), y2(r)] = y1(r)y′2(r)− y2(r)y′1(r) (3.5.50)

= A1

[
rl − a2l+1

rl+1

]
B2

[
−(l + 1)

1

rl+2
− l r

l−1

b2l+1

]
(3.5.51)

−B2

[
1

rl+1
− rl

b2l+1

]
A1

[
lrl−1 + (l + 1)

a2l+1

rl+2

]
(3.5.52)

= −A1B2
2l + 1

r2

[
1− a2l+1

b2l+1

]
. (3.5.53)

One can see that r2l−1 and 1/r2l+3 terms canceled, and only 1/r2 terms remained. Noting that

p(r) = r2, we observe that, once again, the product of p(r) and Wronskian W [y1(r), y2(r)]



Boundary-value Problems in Curvilinear Coordinates 107

is independent of the evaluation point, and we have general solution

gl(r, r
′) =



−4π

A1

(
r′l − a2l+1

r′l+1

)
B2

(
1

rl+1
− rl

b2l+1

)
−A1B2(2l + 1)

(
1− a2l+1

b2l+1

) ; a ≤ r′ ≤ r ≤ b

−4π

A1

(
rl − a2l+1

rl+1

)
B2

(
1

r′l+1
− r′l

b2l+1

)
−A1B2(2l + 1)

(
1− a2l+1

b2l+1

) ; a ≤ r ≤ r′ ≤ b

, (3.5.54)

which we may write in the more compact form

gl(r, r
′) =

4π

2l + 1

(
1− a2l+1

b2l+1

)−1(
rl< −

a2l+1

rl+1
<

)(
1

rl+1
>

− rl>
b2l+1

)
, (3.5.55)

and hence

G(x,x′) =
∑
l,m

gl(r, r
′)Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ). (3.5.56)

Note that it is also possible to recover this result using the method of images, but in this

case an infinite number of image charges are required.

Example:

Consider the potential inside a grounded,

conducting sphere of radius b, due to a uni-

form ring of charge of radius a < b, and to-

tal charge Q, lying in the plane through the

equator, and centered at the center of the

sphere.

a

b

We can obtain the Green function by taking the a→ 0 limit of Eq.(3.5.56):

G(x,x′) =
∞∑
l=0

l∑
m=−l

4π

2l + 1
rl<

(
1

rl+1
>

− rl>
b2l+1

)
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) . (3.5.57)

The potential is then given by

Φ(x) =
1

4πε0

∫ ′
V

d3x′G(x,x′)ρ(x′)− 1

4π

∫
S=∂V

dS ′Φ(x′)
∂G(x,x′)

∂n′

≡ Φρ(x) + ΦS(x) . (3.5.58)
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In our case, the surface integral ΦS(x) vanishes, because the potential vanishes there.

However, it is instructive to calculate this contribution for a situation when the potential on

this spherical surface is given by some nontrivial function V (θ′, ϕ′). We can write it as an

expansion over spherical harmonics:

V (θ′, ϕ′) =
∞∑
l=0

l∑
m=−l

VlmYlm(θ′, ϕ′) . (3.5.59)

The coefficients Vlm can be obtained using the orthogonality relation for spherical harmonics

(3.4.11),

Vlm =

∫ π

0

dθ′ sin θ′
∫ 2π

0

V (θ′, ϕ′)Y ∗lm(θ′, ϕ′)

=

∫
dΩ′ Y ∗lm(θ′, ϕ′)V (θ′, ϕ′) .

To calculate the derivative ∂G(x,x′)/∂n′ of the Green function on the surface S (i.e., for

r′ = b, when r′ takes the largest possible value), we should take r< = r and r> = r′ in Eq.

(3.5.57):

G(x,x′)|r′→b =
∞∑
l=0

l∑
m=−l

4π

2l + 1
rl

(
1

r′l+1
− r′l

b2l+1

)
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) . (3.5.60)

Then

− 1

4π

∂G(x,x′)

∂n′

∣∣∣∣
S

= − 1

4π

∂G(x,x′)

∂r′

∣∣∣∣
r′=b

=
∞∑
l=0

l∑
m=−l

rl

bl+2
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) . (3.5.61)

Using dS ′ = b2dΩ′ and the orthogonality of spherical harmonics, we obtain

ΦS(x) ≡ − 1

4π

∫
S=∂V

dS ′Φ(x′)
∂G(x,x′)

∂n′
=
∞∑
l=0

l∑
m=−l

rl

bl
Vlm Ylm(θ, ϕ) . (3.5.62)

We see that, for r = b, the potential ΦS(x) is given by V (θ, ϕ). For r < b, the Ylm(θ, ϕ)

spherical component of ΦS(x) is accompanied by the (r/b)l factor, i.e., to get the poten-

tial one should expand V (θ, ϕ) in spherical harmonics and attach the (r/b)l factor to each

Ylm(θ, ϕ). The result for ΦS(x) depends only on the boundary conditions function V (θ, ϕ):

it is universal for any charge distribution inside S.

Let us now return to our original problem of finding potential of a uniformly charged ring

inside a grounded sphere. The (linear) charge density in this case is given by

ρ(x′) =
Q

2πa2
δ(r′ − a)δ(cos θ′) . (3.5.63)
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Exercise: verify that the total charge is indeed Q.

Thus the potential is

Φ(x) =
1

4πε0

∫
dϕ′d(cos θ′)dr′ r′2

Q

2πa2
δ(r′ − a)δ(cos θ′)

× 4π
∞∑
l=0

l∑
m=−l

1

2l + 1
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) rl<

{
1

rl+1
>

− rl>
b2l+1

}
.

In this case we have azimuthal symmetry, and the only non-vanishing integrals arise from

the terms with m = 0, for which

Yl0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ). (3.5.64)

Thus we have

Φ(x) =
1

4πε0

∫
dr′r′2

Q

a2
δ(r′ − a)

∞∑
l=0

Pl(0)Pl(cos θ) rl<

{
1

rl+1
>

− rl>
b2l+1

}
=

Q

4πε0

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
r2n
<

{
1

r2n+1
>

− r2n
>

b4n+1

}
P2n(cos θ) ,

where we have used

P2n+1(0) = 0

P2n(0) =
(−1)n(2n− 1)!!

2nn!
.

Here, r< = min(r, a), r> = max(r, a); hence, the radial dependence is given by r2n(1/a2n+1 − a2n/b4n+1)

for r < a and by a2n(1/r2n+1 − r2n/b4n+1) for a < r < b.

It is instructive to write this result as a function of ratios r/b, r/a and a/b:

Φ(x) =
Q

4πε0a

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
P2n(cos θ) (3.5.65)

×
[(r
a

)2n
{

1−
(a
b

)4n+1
}
θ(0 ≤ r ≤ a) +

(a
r

)2n+1
{

1−
(r
b

)4n+1
}
θ(a ≤ r ≤ b)

]
.

The first terms of the expansion are given by

Φ(x) =

[
Q

4πε0

]{[(
1

a
− 1

b

)
θ(0 ≤ r ≤ a) +

a

r

{
1− r

b

}
θ(a ≤ r ≤ b)

]
− 1

2a
P2(cos θ)

[(r
a

)2
{

1−
(a
b

)5
}
θ(0 ≤ r ≤ a) +

(a
r

)3
{

1−
(r
b

)5
}
θ(a ≤ r ≤ b)

]
+

3

8a
P4(cos θ)

[(r
a

)4
{

1−
(a
b

)9
}
θ(0 ≤ r ≤ a) +

(a
r

)5
{

1−
(r
b

)9
}
θ(a ≤ r ≤ b)

]
+ . . .

}
.
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Let us examine this result.

At the origin, i.e. for r = 0, only the n = 0 works, and we have Φ(r = 0) = (Q/4πε0)[1/a−
1/b]. Here, the Q/4πε0a term is generated by the ring: total charge Q, all located distance

a from the origin. The induced charge on the sphere should be −Q, since there is no field

outside the sphere. This charge (all located distance b from the origin) produces potential

−Q/4πε0b at the origin.

Returning to the general case of r 6= 0, we note that in the absence of the sphere, i.e. for

b =∞, we have

Φ(x)|b=∞ =
Q

4πε0a

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
P2n(cos θ)

×
[(r
a

)2n

θ(0 ≤ r ≤ a) +
(a
r

)2n+1

θ(a ≤ r ≤ ∞)

]
. (3.5.66)

Naturally, this potential is non-zero for r = b. Our experience with image charges suggests

that to get the total zero potential on the sphere of radius b, we should add, for any in-

finitesimal charge δq on the a-ring, an image charge of size −(b/a)δq located distance b2/a

from the origin. Thus, we need to consider the potential of a ring located at distance b2/a

from the origin in the same plane as the original ring, and with total charge −Qb/a. This

potential is obtained by changing a → b2/a and Q → −Qb/a in the equation above, which

gives

Φimage(x) = − Qb/a

4πε0(b2/a)

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
P2n(cos θ)

×

[(
r

b2/a

)2n

θ(0 ≤ r ≤ b2/a) +

(
b2/a

r

)2n+1

θ(b2/a ≤ r ≤ ∞)

]
.

Since the image ring is outside the b-sphere, i.e. r < b2/a, working inside the sphere we deal

with the first contribution

Φimage(x)|r≤b = − Q

4πε0b

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
P2n(cos θ)

(ar
b2

)2n

only. It may be rewritten as a sum of a < r and r > a terms (each of which comes from the

same functional form (ar/b2)2n/b = (r/a)2n(a/b)4n+1/a = (a/r)2n+1(r/b)4n+1):

Φimage(x)|r≤b = − Q

4πε0a

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
P2n(cos θ) (3.5.67)

×
[(r
a

)2n (a
b

)4n+1

θ(0 ≤ r ≤ a) +
(a
r

)2n+1 (r
b

)4n+1

θ(a ≤ r ≤ b)

]
.
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Figure 3.5: Potential Φ(r, θ) (in units of Q/4πε0b) calculated as a sum of Legendre polyno-

mials P2n up to n = 100 in case of a = b/2 as a function of the radial variable r/b for the

values of the polar angle θ corresponding to cos θ = 0, 0.1, 0.2, 0.3, 0.5, 0.6, 1 .

One can see that the sum of the potential of the ring (3.5.66) and its image (3.5.67) produces

the potential (3.5.65) of the ring inside a grounded sphere.

It is also interesting to study the r-dependence at different angles. Take, for example,

a = b/2. Then, at the origin we have Φ(r = 0) = Q/4πε0b for all angles. For r = b, the

potential vanishes for all angles. The ring is located at r = a and θ = π/2. One can see

that for θ = 90◦ the potential curve has a cusp for r = a. When one slightly deviates from

the ring plane, the potential still reflects the existence of the ring at r = a. However, when

θ < 75◦ the curves show no bumps in the r ∼ a region.

In fact, the potential of the disk in the absence of the sphere may be easily obtained directly.

First, consider the potential on the z-axis. Then all the points on the ring are located at a

distance
√
a2 + z2 from the point z on the z-axis, i.e.

Φ|b=∞(z) =
Q

4πε0
√
a2 + z2

. (3.5.68)

Using Taylor expansion

(1 + α)−1/2 =
∞∑
n=0

(−1)n(2n− 1)!!

2nn!
αn (3.5.69)
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valid for |α| < 1, we obtain

Φ|b=∞(z) =
Q

4πε0a

∞∑
n=0

(−1)n(2n− 1)!!

2nn!

[(z
a

)2n

θ(0 ≤ z ≤ a) +
(a
z

)2n+1

θ(a ≤ z ≤ ∞)

]
.

(3.5.70)

As we know, to get solution outside the z-axis, we should change z → r and add the Legendre

polynomial P2n(cos θ) corresponding to r2n and 1/r2n+1 powers. This gives Eq. (3.5.66) .

However, the number of problems solvable by the method of images is very limited, while

the Green function method allows one to calculate (at least numerically) for any charge

distribution inside a sphere, if the potential on the sphere is given.

3.6 Laplace’s Equation in Cylindrical

Polar Coordinates

We will denote the coordinates by (s, ϕ, z)

z

ρ

θ

x

y

z

In terms of these coordinates, Laplace’s equation assumes the form

∇2Φ(s, ϕ, z) =
1

s

∂

∂s

(
s
∂Φ

∂s

)
+

1

s2

∂2Φ

∂ϕ2
+
∂2Φ

∂z2
= 0. (3.6.1)

As before, we look for separable solutions of the form

Φ(s, ϕ, z) = R(s)T (ϕ)Z(z), (3.6.2)

so that Laplace’s equation becomes

TZ
1

s

d

ds

(
s
dR

ds

)
+RZ

1

s2

d2T

dϕ2
+RT

d2Z

dz2
= 0, (3.6.3)
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which we may rewrite as

1

sR

d

ds

(
s
dR

ds

)
+

1

s2T

d2T

dϕ2
+

1

Z

d2Z

dz2
= 0. (3.6.4)

The third term is a function of z alone, whilst the others are a function of s and ϕ alone.

Thus we may write

1

Z

d2Z

dz2
= k2 (3.6.5)

where k is a (not necessarily real) constant, with solution

Z(z) = e±kz. (3.6.6)

Thus we may now rewrite Laplace’s equation as

s

R

d

ds

(
s
dR

ds

)
+

1

T

d2T

dϕ2
+ k2s2 = 0, (3.6.7)

and so for the angular term we have

1

T

d2T

dϕ2
= −ν2 (3.6.8)

with solution

T (ϕ) = e±iνϕ. (3.6.9)

For the solution to be single valued at ϕ = 0 and 2π, ν must be an integer.

Finally, the radial equation is

s

R

d

ds

(
s
dR

ds

)
− ν2 + k2s2 = 0. (3.6.10)

We can eliminate the constant k by the substitution x = ks, yielding

x

R

d

dx

(
x
dR

dx

)
− ν2 + x2 = 0 (3.6.11)

which we write as

d2R

dx2
+

1

x

dR

dx
+

(
1− ν2

x2

)
R = 0 (3.6.12)
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This is the Bessel Equation.

As in the case of the Legendre equation, we find a solution by series substitution

R(x) =
∞∑
n=0

cnx
γ+n : c0 6= 0 (3.6.13)

Aside: why do we have to introduce the power xγ, rather than just looking for a solution

in terms of a Taylor expansion about x = 0? The reason is that there is a regular singular

point at x = 0, i.e. the coefficients of R′′ and R′ in the Bessel equation written as

x2d
2R

dx2
+ x

dR

dx
+
(
x2 − ν2

)
R = 0 (3.6.14)

vanish for x = 0, and therefore the solution can have a singularity there. In the case of the

Legendre equation, there are regular singular points at x = ±1.

From Eq.(3.6.13), we have

dR

dx
=

∞∑
n=0

cn(γ + n)xγ+n−1

d2R

dx2
=

∞∑
n=0

cn(γ + n)(γ + n− 1)xγ+n−2,

and substituting into the Bessel equation we have
∞∑
n=0

cn(γ + n)(γ + n− 1)xγ+n−2 +
∞∑
n=0

cn(γ + n)xγ+n−2 +
∞∑
n=0

cnx
γ+n − ν2

∞∑
n=0

cnx
γ+n−2 = 0 ,

(3.6.15)

or
∞∑
n=0

cn[(γ + n)2 − ν2]xγ+n−2 +
∞∑
n=0

cnx
γ+n = 0 . (3.6.16)

The lowest power of x is xγ−2, and equating the coefficients of this to zero gives the indicial

equation which determines γ.

• xγ−2 :

c0[γ2 − ν2] = 0⇒ γ = ±ν, since c0 6= 0. (3.6.17)

• xγ−1 :

0 = c1[(γ + 1)2 − ν2]

= c1(γ2 + 2γ + 1− ν2)

= c1(2γ + 1) since γ2 = ν2

⇒ c1 = 0 since ν is an integer.
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To proceed further, we rewrite Eq. (3.6.16) as

∞∑
n=−2

cn+2[(γ + n+ 2)2 − ν2]xγ+n +
∞∑
n=0

cnx
γ+n = 0 . (3.6.18)

• xn+γ, n ≥ 0 :

cn+2[(γ + n+ 2)2 − ν2] + cn = 0

⇒ cn+2[(γ + n+ 2)2 − ν2] = −cn

Using in the last line ν2 = γ2, we have

cn+2[(γ + n+ 2)2 − γ2] = −cn

or

cn+2 = − cn
(n+ 2)(n+ 2 + 2γ)

.

As in the case of Legendre’s equation, the recurrence relation connects either odd or even

values of n. However, we have seen that c1 = 0. Thus cn = 0 for all odd n. Therefore, let us

make the substitution n = 2j, and write the recurrence relation as

c2j+2 =− c2j

4(j + 1)(j + 1 + γ)
, j = 0, 1, 2, . . .

c2j+1 = 0 .

Rewriting

c2j = − c2j−2

4j(j + γ)
, j = 1, 2, . . . ,

we can now iterate this recurrence relation to obtain

c2j =

(
−1

4

)j
c0

[j(j − 1) . . . 1] [(j + γ)(j − 1 + γ) . . . (1 + γ)]

= (−1)j
(

1

2

)2j
γ!

j!(γ + j)!
c0 = (−1)j

(
1

2

)2j
Γ(γ + 1)

Γ(j + 1)Γ(γ + j + 1)
c0. (3.6.19)

We switched to the Gamma-function notations since γ is not necessarily positive. The

Gamma-function representation allows also to define Bessel functions for non-integer γ. For

further convenience, we choose

c0 =
1

2γΓ(γ + 1)
, (3.6.20)
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so that the solutions may be written as

Jν(x) =
(x

2

)ν ∞∑
j=0

(−1)j

Γ(j + 1)Γ(ν + j + 1)

(x
2

)2j

(3.6.21)

J−ν(x) =
(x

2

)−ν ∞∑
j=0

(−1)j

Γ(j + 1)Γ(j − ν + 1)

(x
2

)2j

. (3.6.22)

These are the Bessel Functions of the first kind of order ±ν. Particular examples:

J0(x) =
∞∑
j=0

(−1)j

(j!)2

(
x2

4

)j
, (3.6.23)

J1(x) =
x

2

∞∑
j=0

(−1)j

j!(j + 1)!

(
x2

4

)j
. (3.6.24)

It is easy to see that J ′0(x) = −J1(x), i.e.. maxima or minima of J0(x) are located at zeros

of J1(x). Also, (xJ1(x))′ = xJ0(x). These are particular examples of recurrence relations

between Bessel functions.

Let us now list some general observations about Bessel functions:

• The series producing Bessel functions converge for all finite x

• If ν is not an integer, the solutions are linearly independent.

• If ν is an integer, they are linearly dependent, and in particular

J−m(x) = (−1)mJm(x). (3.6.25)

Proof: This is a consequence of the properties of the gamma function Γ(z), which has

singularities for z = 0 and for z a negative integer - recall the earlier relation

Γ(z)Γ(1− z) =
π

sin πz
. (3.6.26)

We have

J−m(x) =
(x

2

)−m ∞∑
j=0

(−1)j

Γ(j + 1)Γ(j −m+ 1)

(x
2

)2j

. (3.6.27)

Now Γ(j −m+ 1) −→ ∞ as argument approaches 0 or a negative integer. Thus only
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those terms in the sum for which j −m+ 1 ≥ 1 contribute, and we can write

J−m(x) =
(x

2

)−m ∞∑
j=m

(−1)j

Γ(j + 1)Γ(j −m+ 1)

(x
2

)2j

=
(x

2

)−m (x
2

)2m
∞∑
l=0

(−1)l+m

Γ(l + 1)Γ(l +m+ 1)

(x
2

)2l

=
(x

2

)m
(−1)m

∞∑
l=0

(−1)l

Γ(l + 1)Γ(l +m+ 1)

(x
2

)2l

= (−1)mJm(x)

Because of the linear dependence of J−m(x) on Jm(x), we introduce a second, linearly inde-

pendent function

Nν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
(3.6.28)

known as the Neumann Function or the Bessel Function of the second kind. Con-

ventionally, we choose as our linearly independent functions Jν(x) and Nν(x) even if ν is not

an integer.

Bessel Function of the Third Kind

These are just another pair of linearly independent solutions of the Bessel equation:

H(1)
ν (x) = Jν(x) + iNν(x) ,

H(2)
ν (x) = Jν(x)− iNν(x) .

These are also known as Hankel Functions. Their utility is that they have a more straight-

forward integral representation than Jν(x) and Nν(x).

3.6.1 Recurrence Relations

The sets of solutions of the Bessel equation are collectively known as cylinder functions,

and satisfy recurrence relations in the same manner as the Legendre polynomials, e.g.

Ων−1(x) + Ων+1(x) =
2ν

x
Ων(x)

Ων−1(x)− Ων+1(x) = 2
dΩν(x)

dx
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3.6.2 Limiting Behaviour of Solutions

In the limit x� 1, we have

Jν(x) → 1

Γ(ν + 1)

(x
2

)ν
Nν(x) →

{
2
π

[
ln
(
x
2

)
+ γE + . . .

]
ν = 0

−Γ(ν)
π

(
2
x

)ν
ν 6= 0

where ν is real and non-negative, and γE = 0.5772 . . . is the Euler-Mascheroni constant.

Note that, when constructing solutions of the boundary-value problem, only Jν(x) is regular

as x→ 0.

In the limit x� 1, ν, we have

Jν(x) →
√

2

πx
cos
(
x− νπ

2
− π

4

)
Nν(x) →

√
2

πx
sin
(
x− νπ

2
− π

4

)
. (3.6.29)

The transition between these limiting forms occurs at x ∼ ν.

3.6.3 Roots of the Bessel functions

From the limiting forms (3.6.29), we see that each Bessel function has an infinite number of

roots, which we denote xνn, n = 1, 2, 3, . . . where

Jν(xνn) = 0, for n = 1, 2, 3, . . . . (3.6.30)

In particular, we have

ν = 0 : x0n = 2.405, 5.520, 8.654, . . .

ν = 1 : x1n = 3.832, 7.016, 10.173, . . .

ν = 2 : x2n = 5.136, 8.417, 11.620, . . .

3.6.4 Ortogonality of the Bessel Functions

The roots of the Bessel function Jν(x) are crucial when we consider its orthogonality prop-

erties, which take a rather unexpected form. We introduce the functions

√
sJν(xνns/a), n = 1, 2, 3, . . . (3.6.31)

and will now show that, for fixed ν ≥ 0, these functions, identified by n, form an orthogonal

set on 0 ≤ s ≤ a.
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Proof

Recall the Bessel equation:

x
d

dx

(
x
dR

dx

)
+ (x2 − ν2)R = 0 . (3.6.32)

Let us make the change of variable x→ xνns/a. Then

s
d

ds

(
s
dJν(xνns/a)

ds

)
+ (xνns/a)2 − ν2)Jν(xνns/a) = 0 , (3.6.33)

or

1

s

d

ds

[
s
d

ds
Jν(xνns/a)

]
+

(
x2
νn

a2
− ν2

s2

)
Jν(xνns/a) = 0 . (3.6.34)

We now rewrite this as

d

ds

[
s
dJν
ds

]
− ν2

s
Jν = −x

2
νn

a2
sJν . (3.6.35)

This is the Sturm-Liouville equation, with

p(x) = s,

q(x) = −ν2/s,

r(x) = s,

λ = x2
νn/a

2.

Thus we have

(x2
νn − x2

νn′)

∫ a

0

ds sJν(xνn′s/a)Jν(xνns/a) = 0 (3.6.36)

providing[
s

{
Jν(xνn′s/a)

d

ds
Jν(xνns/a)− Jν(xνns/a)

d

ds
Jν(xνn′s/a)

}]a
0

= 0. (3.6.37)

At the upper limit, s = a, this expression vanishes since xνn and xνn′ are roots of the Bessel

function, and at the lower limit, s = 0, the expression vanishes because of the factor of s.

Thus we have ∫ a

0

ds sJν

(xνns
a

)
Jν

(xνn′s
a

)
= 0, n 6= n′ (3.6.38)

The integral can be evaluated for n′ = n, with the result

∫ a

0

ds sJν

(xνns
a

)
Jν

(xνn′s
a

)
=
a2

2
[Jν+1(xνn)]2 δnn′ . (3.6.39)
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3.6.5 Completeness

We now assume that the Bessel functions satisfy the completeness relation, and therefore we

can expand any function on 0 ≤ s ≤ a as

f(s) =
∞∑
n=1

AνnJν(xνns/a) (3.6.40)

where

Aνn =
2

a2J2
ν+1(xνn)

∫ a

0

ds sf(s)Jν

(xνns
a

)
. (3.6.41)

This is a Fourier-Bessel series. This expansion is particularly useful for the case where

f(a) = 0, e.g. the Dirichlet problem, since each term in the expansion satisfies the boundary

conditions. An alternative set of basis functions is provided by

√
sJν

(yνns
a

)
, (3.6.42)

where the yνn are the roots of dJν/dx = 0, because this set still satisfies the condition of

Eq.(3.6.37). This choice is often more appropriate for the Neumann problem.

3.6.6 Modified Bessel Functions

Note that if we have chosen a separation constant such that the solution in the z-variable

was

Z(z) = e±ikz, (3.6.43)

then the equation for R(s) would have been

d2R

ds2
+

1

s

dR

ds
−
(
k2 +

ν2

s2

)
R = 0, (3.6.44)

which, after our usual substitution x = ks, becomes

d2R

dx2
+

1

x

d2R

dx
−
(

1 +
ν2

x2

)
R = 0. (3.6.45)

with solutions

Iν(x) = i−νJν(ix),

Kν(x) =
π

2
iν+1H(1)

ν (ix).

These, like Iν and Nν , are real functions of a real variable x, with limiting forms:
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x� 1

Iν(x) → 1

Γ(ν + 1)

(x
2

)ν
Kν(x) →

{
−
[
ln
(
x
2

)
+ γE + . . .

]
ν = 0

Γ(ν)
2

(
2
x

)ν
ν 6= 0

x� 1, ν

Iν(x) → 1√
2πx

ex
[
1 +O

(
1

x

)]
Kν(x) →

√
π

2x
e−x

[
1 +O

(
1

x

)]
.

Note again that only Iν(x) is regular as x→ 0.

3.7 Boundary-value Problems

in Cylindrical Coordinates

Consider the solution of the boundary-value problem in a cylinder of radius a, and length

L, subject to the boundary conditions

Φ(s, ϕ, 0) = 0

Φ(a, ϕ, z) = 0; 0 ≤ z ≤ L

Φ(s, ϕ, L) = V (s, ϕ)

φ = 0

φ = 0

φ = V (ρ,θ)

La

x

y

z
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We look for separable solutions of the form

Φ(s, ϕ, z) = R(s)T (ϕ)Z(z). (3.7.1)

The angular factor has the form

Tm(ϕ) = A sinmϕ+B cosmϕ (3.7.2)

where m is an integer greater than or equal to zero. The z factor is of the form

Z(z) = sinh kz (3.7.3)

where k is the separation constant, and we have imposed the boundary condition Z(0) = 0.

Finally, the radial component is of the form

Rm(s) = CmJm(ks) +DmNm(ks). (3.7.4)

Since there are no charges in the region s ≤ a, the solution must be regular there, and in

particular must be finite at s = 0. Thus we have Dm = 0. Furthermore, R must vanish at

s = a, and thus

Jm(ka) = 0 (3.7.5)

and hence the values of k are

kmn = xmn/a, n = 1, 2, 3, . . . (3.7.6)

where xmn is the n-th root of Jm(x) = 0. Thus our general solution may be written

Φ(s, ϕ, z) =
∞∑
n=1

B0n

2
J0(k0ns) sinh(k0nz)

+
∞∑
m=1

∞∑
n=1

Jm(kmns) sinh(kmnz) [Amn sinmϕ+Bmn cosmϕ]. (3.7.7)

We now impose the boundary condition at z = L:

V (s, ϕ) =
∞∑
n=1

B0n

2
J0(k0ns) sinh(k0nL)

+
∞∑
m=1

∞∑
n=1

Jm(kmns) sinh(kmnL) [Amn sinmϕ+Bmn cosmϕ].
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This is a Fourier series in ϕ and a Fourier-Bessel series in s. We apply the orthogonality

conditions, e.g., for Amn:∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm′(km′n′s) sinm′ϕ =

∞∑
m=0

∞∑
n=1

sinh(kmnL)

{∫ a

0

ds sJm(kmns)Jm′(km′n′s)

}
×
{
Amn

∫ 2π

0

dϕ sinmϕ sinm′ϕ+Bmn

∫ 2π

0

dϕ cosmϕ sinm′ϕ

}
=

∞∑
m=0

∞∑
n=1

sinh(kmnL)Amn

{
a2

2
[Jm+1(xmn)]2δnn′

}
{πδmm′}

and thus

Amn =
2

πa2 sinh(kmnL)[Jm+1(xmn)]2

∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm(kmns) sinmϕ

Bmn =
2

πa2 sinh(kmnL)[Jm+1(xmn)]2

∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm(kmns) cosmϕ

This form of the Fourier-Bessel seires is appropriate for problems confined to a finite region

of s. Suppose, however, that we are interested in the solution for all 0 ≤ s ≤ ∞.

Example

Determine Φ(s, ϕ, z) for the upper half-space z ≥ 0, with Φ(s, ϕ, 0) = V (s, ϕ), and Φ finite

as z →∞. Then the separable solutions are of the form

e−kz[A sinmϕ+B cosmϕ]Jm(ks) , (3.7.8)

but there is now no restriction on the value of k other than it be positive (to ensure that Φ

is finite as z →∞). Thus the sum over discrete values of k becomes an integral over k, and

our general solution is

Φ(s, ϕ, z) =

∫ ∞
0

dk e−kz
B0(k)

2
J0(ks) (3.7.9)

+
∞∑
m=1

∫ ∞
0

dk e−kz {Am(k) sinmϕ+Bm(k) cosmϕ)} Jm(ks).

We still have a Fourier series in ϕ, but the Fourier-Bessel series has evolved to a Bessel

transform.
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Imposing the boundary conditions at z = 0, we have

V (s, ϕ) =

∫ ∞
0

dk
B0(k)

2
J0(ks) (3.7.10)

+
∞∑
m=1

∫ ∞
0

dk {Am(k) sinmϕ+Bm(k) cosmϕ} Jm(ks) (3.7.11)

and we can invert the Fourier series to obtain

1

π

∫ 2π

0

dϕ′ V (s, ϕ) sinmϕ′ =

∫ ∞
0

dk Am(k)Jm(ks)

1

π

∫ 2π

0

dϕ′ V (s, ϕ) cosmϕ′ =

∫ ∞
0

dk Bm(k)Jm(ks) . (3.7.12)

The integral of some function A(k) with a Bessel function Jm(ks)

Hm(s) =

∫ ∞
0

dk A(k)Jm(ks) (3.7.13)

is called the Hankel transforms Hm(s). We can invert it using the completeness relation∫ ∞
0

ds sJm(ks)Jm(k′s) =
1

k
δ(k′ − k) . (3.7.14)

Using it, one has

A(k) = k

∫ ∞
0

ds sJm(ks)Hm(s) . (3.7.15)

In our case, applying (3.7.14) to the first line of Eq.(3.7.12), we have

1

π

∫ ∞
0

ds′ s′
∫ 2π

0

dϕ′ V (s′, ϕ′) sinmϕ′Jm(ks′) =

∫ ∞
0

ds′ s′
∫ ∞

0

dk′Am(k′)Jm(k′s′)Jm(ks′)

=

∫ ∞
0

dk′Am(k′)
1

k
δ(k − k′)

=
1

k
Am(k),

and thus we have

Am(k) =
k

π

∫ ∞
0

ds′ s′
∫ 2π

0

dϕV (s′, ϕ′) sinmϕ′Jm(ks′)

Bm(k) =
k

π

∫ ∞
0

ds′ s′
∫ 2π

0

dϕ′ V (s′, ϕ′) cosmϕ′Jm(ks′)
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Substituting these coefficients into the expression (3.7.10) for Φ(s, ϕ, z), we have

Φ(s, ϕ, z) =

∫ ∞
0

s′ ds′
∫ 2π

0

dϕ′ V (s′, ϕ′)
1

π

∫ ∞
0

k dk e−kz
{

1

2
J0(ks′)J0(ks)

+
∞∑
m=1

cosm(ϕ− ϕ′)Jm(ks′)Jm(ks)

}
. (3.7.16)

Rewriting this result as

Φ(s, ϕ, z) =

∫ ∞
0

s′ ds′
∫ 2π

0

dϕ′ B(s′, ϕ′; s, ϕ, z) V (s′, ϕ′) (3.7.17)

where

B(s′, ϕ′; s, ϕ, z) =
1

π

∫ ∞
0

k dk e−kz

{
1

2
J0(ks′)J0(ks) +

∞∑
m=1

cosm(ϕ− ϕ′)Jm(ks′)Jm(ks)

}
,

(3.7.18)

and treating B(s′, ϕ′; s, ϕ, z) as

B(s′, ϕ′; s, ϕ, z) =
∂

∂z′
G(s′, ϕ′, z′; s, ϕ, z)

∣∣∣∣
z′=0

, (3.7.19)

(recall that ∂/∂n′ = −∂/∂z′ for the z′ > 0 region) where

G(s′, ϕ′, z′; s, ϕ, z) =
1

π

∫ ∞
0

dk e−k(z−z′)

{
1

2
J0(ks′)J0(ks) +

∞∑
m=1

cosm(ϕ− ϕ′)Jm(ks′)Jm(ks)

}
,

(3.7.20)

we realize that we have obtained a Green function type representation of the solution of our

problem.

3.7.1 General Solution of Green Function in Cylindrical Polars

So, let us find the Green function in cylindrical coordinates using a general method based

on solving the equation

∇′2G(x,x′) = −4πδ(x− x′) . (3.7.21)

As boundary conditions, let us take the simplest case of zero potential at infinity, i.e., we

will find Green function in unbounded space.
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To express the r.h.s. in terms of cylindrical coordinates, we recall that

δ[g(x)] =
∑
i

1

|g′(xi)|
δ(xi) (3.7.22)

where xi are the roots of g(x) = 0. Thus, in three dimensions, we have

δ(x− x′) =

∣∣∣∣∂(x, y, z)

∂(s, ϕ, z)

∣∣∣∣−1

δ(s− s′)δ(ϕ− ϕ′)δ(z − z′) =
1

s′
δ(s− s′)δ(ϕ− ϕ′)δ(z − z′).

(3.7.23)

Hence the Green function satisfies

∇′2G(x− x′) = −4π

s′
δ(s− s′)δ(ϕ− ϕ′)δ(z − z′) (3.7.24)

where

∇′2 =
1

s′
∂

∂s′

(
s′
∂

∂s′

)
+

1

s′2
∂2

∂ϕ′2
+

∂2

∂z′2
. (3.7.25)

Note that in the following we will treat the unprimed indices as fixed parameters.

We will now specialise to the case where we wish to obtain the Green function in a volume

V encompassing the full angular range 0 ≤ ϕ ≤ 2π. Then any solution can be expressed as

a Fourier series in ϕ′,

G(x,x′) = G(s, ϕ, z; s′, ϕ′, z′) =
∞∑

m′=−∞

Fm′(s, ϕ, z; s′, z′)e−im
′ϕ′ . (3.7.26)

Substituting this into Eq.(3.7.24), we have

∞∑
m′=−∞

e−im
′ϕ′
{

1

s′
∂

∂s′

[
s′
∂

∂s′
Fm′(s, ϕ, z; s′, z′)

]
−m′2 1

s′2
Fm′(s, ϕ, z; s′, z′)

+
∂2

∂z′2
Fm′(s, ϕ, z; s′, z′)

}
= −4π

s′
δ(s− s′)δ(ϕ− ϕ′)δ(z − z′).

We now use the orthogonality properties of the exp imϕ to obtain

∞∑
m′=−∞

∫ 2π

0

dϕ′ ei(m−m
′)ϕ′
{

1

s′
∂

∂s′

[
s′
∂

∂s′
Fm′(s, ϕ, z; s′, z′)

]
−m′2 1

s′2
Fm′(s, ϕ, z; s′, z′)

+
∂2

∂z′2
Fm′(s, ϕ, z; s′, z′)

}
= −4π

s′
δ(s− s′)δ(z − z′)

∫ 2π

0

dϕ′eimϕ
′
δ(ϕ− ϕ′),

yielding

1

s′
∂

∂s′

[
s′
∂Fm
∂s′

]
− m2

s′2
Fm +

∂2Fm
∂z′2

= − 2

s′
δ(s− s′)δ(z − z′)eimϕ. (3.7.27)
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Thus we have explicitly exhibited the ϕ dependence, and can write

Fm(s, ϕ, z; s′, z′) = fm(s, z; s′, z′)eimϕ, (3.7.28)

where fm obeys the P.D.E.

1

s′
∂

∂s′

[
s′
∂fm
∂m′

]
− m2

s′2
fm +

∂2fm
∂z′2

= − 2

s′
δ(s− s′)δ(z − z′). (3.7.29)

Thus from our original P.D.E. in three variables we now have a two-variable P.D.E..

To proceed further, we must say something about the boundary conditions, or at the very

least specify the volume V . We will assume that is covers −∞ ≤ z ≤ ∞, and then write fm

in the Fourier representation

fm(s, z; s′, z′) =
1

2π

∫ ∞
−∞

dk′e−ik
′z′ f̃m(s, z; s′, k′).

Substituting this representation into Eq.(3.7.29), we have

1

2π

∫ ∞
∞

dk′ e−ik
′z′
{

1

s′
∂

∂s′

[
s′
∂fm
∂s′

]
− m2

s′2
fm − k′2fm

}
= − 2

s′
δ(s− s′)δ(z − z′) . (3.7.30)

Now, we multiply both sides with exp ikz′ and integrate them over z′. Using the orthogonality

properties of the exp ikz exponentials gives

1

s′
∂

∂s′

[
s′
∂f̃m
∂s′

]
− m2

s′2
f̃m − k2f̃m = − 2

s′
δ(s− s′)eikz , (3.7.31)

where f̃m = f̃m(s, z; s′, k). We have now exhibited the z dependence of the function, and

may write

f̃m(s, z; s′, k) =
1

2π
eikzgm(s, s′; k), (3.7.32)

giving

1

s′
∂

∂s′

[
s′
∂gm
∂s′

]
−
(
m2

s′2
+ k2

)
gm = −4π

s′
δ(s− s′). (3.7.33)

This is just a one-dimensional Green function equation, which we may write in a more

familiar form by substituting

x = |k|s
x′ = |k|s′,
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yielding

∂

∂x′

[
x′
∂gm(x, x′)

∂x′

]
− x′

(
1 +

m2

x′2

)
gm(x, x′) = −4πδ(x− x′). (3.7.34)

This is just the modified Bessel equation, with inhomogeneous source. As we noted earlier,

the modified Bessel equation (like the Legendre equation) is of Sturm-Liouville type:

d

dx′

[
p(x′)

dg(x, x′)

dx′

]
+ q(x′)g(x, x′) = −4πδ(x− x′) (3.7.35)

with

p(x′) = x′

q(x′) = −x′
(

1 +
m2

x′2

)
.

Thus we have finally reduced the problem to the solution of the Green function for the

Sturm-Liouville equation.

3.7.2 Green Function for Modified Bessel Equation

Thus we have to analyze the modified Bessel equation with δ-function source

d

dx′

[
x′
dg(x, x′)

dx′

]
− x′

[
1 +

m2

x′2

]
g(x, x′) = −4πδ(x− x′). (3.7.36)

A pair of linearly independent solutions is provided by the modified Bessel functions Im(x′)

and Km(x′). Let us now consider the case where we require the solution over all space, i.e.

x′ ∈ [0,∞]. The solution must be finite at x = 0, and thus

y1(x′) = Im(x′). (3.7.37)

If we further require that the solution be finite as x′ →∞, then we have

y2(x′) = Km(x′), (3.7.38)

which we can see from the limiting behaviour quoted earlier. In this case, the Wronskian is

(see Jackson)

W [Im(x), Km(x)] = −1

x
(3.7.39)
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(note that p(x) = x in this case, hence p(x)W [Im(x), Km(x)] = −1 = const, in agreement

with the general result discussed above) and thus our general solution for the Green function

is

gm(x, x′) =


−4π

x

Km(x)Im(x′)

−1/x
0 ≤ x′ ≤ x

−4π

x

Km(x′)Im(x)

−1/x
x ≤ x′ ≤ ∞

, (3.7.40)

which we may express as

gm(x, x′) = 4πIm(x<)Km(x>) (3.7.41)

where x< = min(x, x′) and x> = max(x, x′).

Reconstruction of the Full Green Function

We reconstruct the full Green function in four steps:

1.

f̃m(s, z; s′, k) = gm(s, s′; k)eikz/2π

= 2Im(|k|s<)Km(|k|s>)eikz (3.7.42)

2.

fm(s, z; s′, z′) =
1

2π

∫ ∞
−∞

dk e−ikz
′
f̃m(s, z; s′, k)

=
1

π

∫ ∞
−∞

dk eik(z−z′)Im(|k|s<)Km(|k|s>) (3.7.43)

3.

Fm(s, ϕ, z; s′, z′) = fm(s, z; s′, z′)eimϕ (3.7.44)

4. G(x,x′) =
1

π

∞∑
m=−∞

eim(ϕ−ϕ′)
∫ ∞
−∞

dk eik(z−z′)Im(|k|s<)Km(|k|s>). (3.7.45)

Since we have evaluated the Green function with boundary conditions at infinity, this last

expression is just the expansion of |x− x′|−1 in cylindrical polar coordinates.
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Example

Consider the solution of the boundary-value problem in a cylinder of radius a, and length

L, subject to the boundary conditions

Φ(s, ϕ, 0) = 0

Φ(s, ϕ, L) = 0

Φ(a, ϕ, z) = V (ϕ, z); 0 ≤ z ≤ L

x

y

z

L

� = 0

� = 0

V (', z)

We look for separable solutions of the form

Φ(s, ϕ, z) = R(s)T (ϕ)Z(z). (3.7.46)

The angular factor has the form

Tm(ϕ) = A sinmϕ+B cosmϕ (3.7.47)

where m is an integer greater than or equal to zero. Since the potential vanishes both for

z = 0 and z = L, it makes sense to take the z factor in a sine form

Z(z) = sin(kz) (3.7.48)

where k is the separation constant, and we have imposed the boundary condition Z(0) = 0.

Imposing the boundary condition Z(L) = 0, we conclude that k should be given by

kn = n
π

L
, n = 1, 2, 3, . . . . (3.7.49)

Then, for the radial component R(s) we will have the modified Bessel equation

1

s

∂

∂s

[
s
∂Rm(s, k)

∂s

]
−
(
m2

s2
+ k2

)
Rm(s, k) = 0 , (3.7.50)
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and thus

Rm(s, k) = CmIm(ks) +DmKm(ks). (3.7.51)

Since there are no charges in the region s ≤ a, the solution must be regular there, and in

particular must be finite at s = 0. Thus we have Dm = 0. As a result, our general solution

may be written as

Φ(s, ϕ, z) =
∞∑
n=1

B0n

2
I0(kns) sin(knz)

+
∞∑
m=1

∞∑
n=1

Im(kns) sin(knz) [Amn sinmϕ+Bmn cosmϕ]. (3.7.52)

We now impose the boundary condition at s = a:

V (ϕ, z) =
∞∑
n=1

Bn

2
J0(kna) sin(knz)

+
∞∑
m=1

∞∑
n=1

Im(kna) sin(knz) [Amn sinmϕ+Bmn cosmϕ].

This is a Fourier series in both ϕ and z. We apply the orthogonality conditions, e.g., for

Amn: ∫ L

0

dz

∫ 2π

0

dϕV (ϕ, z) sin(m′ϕ) sin(n′πz/L) =∫ L

0

dz

∫ 2π

0

dϕ sin(m′ϕ) sin(n′πz/L)

[
∞∑
m=1

∞∑
n=1

Im(nπa/L) sin(nπz/L) [Amn sinmϕ+Bmn cosmϕ]

]

=
L

2
π

∞∑
m=1

∞∑
n=1

Im(nπa/L)Amn {δnn′} {πδmm′}

=
L

2
πIm′(n

′πa/L)Am′n′

and thus

Amn =
2

πLIm(nπa/L)

∫ L

0

dz

∫ 2π

0

dϕV (ϕ, z) sin(mϕ) sin(nπz/L)

Bmn =
2

πLIm(nπa/L)

∫ L

0

dz

∫ 2π

0

dϕV (ϕ, z) cos(mϕ) sin(nπz/L)
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The solution of the boundary-value problem is given by

Φ(s, ϕ, z) =
1

πL

∞∑
n=1

I0(nπs/L)

I0(nπa/L)
sin(nπz/L)

×
∫ L

0

dz′
∫ 2π

0

dϕ′ V (ϕ′, z′) sin(nπz′/L)

+
2

πL

∞∑
m=1

∞∑
n=1

Im(nπs/L)

Im(nπa/L)
sin(nπz/L)

×
∫ L

0

dz′
∫ 2π

0

dϕ′ V (ϕ′, z′) sin(nπz′/L) cosm(ϕ− ϕ′)

3.8 Expansion of Green Function

in terms of Eigenfunctions

A closely related method to those discussed above is the expansion of the Green function in

terms of the eigenfunctions of some related problem. Consider the solution of

∇2ϕ(x) + [f(x) + λ]ϕ(x) = 0, (3.8.1)

in a volume V bounded by a surface S, subject to ϕ satisfying certain homogeneous bound-

ary conditions for x ∈ S. In general, consistent solutions can be obtained only for certain

(possibly continuous) values of λ, which we will denote λn, the eigenvalues. The corre-

sponding solutions, the eigenfunctions, we will denote ϕn(x). The eigenvalue equation is

then

∇2ϕn + [f(x) + λn]ϕn = 0. (3.8.2)

The eigenfunctions form a complete, orthogonal set of functions (the proof of orthogonality

follows that for the Sturm-Liouville equation), and we will assume that they are normalized:∫
d3xϕ∗mϕn = δmn. (3.8.3)

Then any function satisfying the same homogeneous boundary conditions may be expanded

as a series in the eigenfunctions. Consider in particular a Green function, satisfying

∇′2G(x,x′) + [f(x′) + λ]G(x,x′) = −4πδ(x− x′) (3.8.4)

where λ is, in general, not an eigenvalue. The corresponding eigenfunction expansion is

G(x,x′) =
∑
n

an(x)ϕn(x′), (3.8.5)
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and, inserting in Eq.(3.8.4), we obtain∑
n

an(x){∇′2ϕn(x′) + f(x′)ϕn(x′) + λϕn(x′)} = −4πδ(x− x′). (3.8.6)

We now use that ϕn is an eigenfunction of Eq.(3.8.2) with eigenvalue λn, and obtain∑
n

an(x)[λ− λn]ϕn(x′) = −4πδ(x− x′). (3.8.7)

Using the orthonormal property of the eigenfunctions, we obtain

an(x) = 4π
ϕ∗n(x)

λn − λ
(3.8.8)

and hence

G(x,x′) = 4π
∑
n

ϕ∗n(x)ϕn(x′)

λn − λ

This is often referred to as the spectral representation of the Green function.

Example: Green function in free space

Let us now specialise to Poisson’s equation, i.e. we set f(x) = 0 and λ = 0 in Eq.(3.8.4).

We will begin by considering the solution in free space, for which the most closely related

eigenvalue equation is the wave equation

(∇2 + k2)ϕk(x) = 0 (3.8.9)

where k2 is the (continuous) eigenvalue, and the corresponding normalized eigenfunction is

ϕk(x) =

(
1

2π

)3/2

eik·x, (3.8.10)

with normalization ∫
d3xϕ∗

k′
(x)ϕk(x) = δ(k− k′). (3.8.11)

Then the expression for the Green function is

G(x,x′) = 4π

∫
d3k

eik·(x
′−x)

k2

(
1

2π

)3

(3.8.12)

which we observe may be written as

1

|x− x′|
=

1

2π2

∫
d3k

eik·(x
′−x)

k2
. (3.8.13)
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Example: Dirichlet Green function inside a rectangular box

We define the surface of the box to be the planes x = 0, a, y = 0, b, and z = 0, c. The most

closely related eigenvalue problem is

∇2ϕ+ k2
lmnϕlmn = 0, (3.8.14)

where the eigenvalues and normalized eigenfunctions are

k2
lmn = π2

(
l2

a2
+
m2

b2
+
n2

c2

)
ϕlmn(x) =

√
8

abc
sin

lπx

a
sin

mπy

b
sin

nπz

c
.

Thus we can immediately write down the Green function as

G(x,x′) =
32

πabc

∑
l,m,n

sin
lπx

a
sin

mπy

b
sin

nπz

c
sin

lπx′

a
sin

mπy′

b
sin

nπz′

c
l2

a2
+
m2

b2
+
n2

c2

. (3.8.15)


