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Chapter 4

Multipoles and the Electrostatics of

Macroscopic Media

The simplest source for an electrostatic field is a point charge; such a source is sometimes
known as a pole. The arrangement of two point charges, of equal but opposite sign, is

known as a dipole. The concept of a dipole plays a crucial role in electrostatics:

e Even in the case of a neutral atom or molecule, the positive and negative charges can
become separated, e.g. by an applied external electric field. In that case, the atom or

molecule gives rise to an electrostatic field that can be approximated by a dipole.

e The concept of dipoles, and, more generally, multipoles, leads to an important method
for obtaining the electrostatic field and potential far from a charge distribution, the

multipole expansion.

4.1 Introduction and Revision: Electric Dipoles

Consider two charges —q and ¢ at x; and x5 respectively, and let a be the position vector

of q relative to —q.
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132 Chapter 4

Let x” be the mid point of the dipole, so that

x; = X —a/2

Xo = x/ + 3/2
Then the potential at the point P is

B(x) = 1 q n —q _ 1 ‘ 1 _ 1
dreg \ | x — X | | x—xq | dreg \|x—x'—a/2| |x—x'+a/2|
(4.1.1)

We will now consider the case where the separation between the charges is much less than

the distance of the point P from the charges, i.e. |a] <| x —x’ |. Then we have

|a|2 —-1/2
Ix —x'+a/2|"! = {|x—x’]2+7:ta~(x—x')}
~1/2
_ L f L ax=x) | JaP
— ’X—X/‘ {1:|: |X_X/’2 —+ 4|X—X’|2 .

Expanding as a series in |a|?/|x — x|? using the binomial expansion, we obtain

x— X' & /2]t = [x — x| {1+ (—%) lﬂ:ﬁ] +0 (%)} (4.1.2)

Thus
1 ga-(x—x)

O(x) =

Cdmey  x —x/3

(4.1.3)

We now take the limit |a] — 0, ¢ — oo, with ag = p fixed and finite. This defines a simple

or ideal dipole and we have

1 p-(x—x)

Pp(x) (4.1.4)

~ e |x — x/|?

e p is the vector moment or dipole moment of the dipole.
e ®p(x) is the potential at x due to a dipole of moment p at x'.

We can obtain the electrostatic field due to a dipole by applying E(x) = —V®p(x), and

obtain )
E(x) 1 3(p-x)x—1r°p

= e - (4.1.5)

for a dipole at the origin (useful relations: Vr = x/r, V(p - x) = p).
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4.1.1 Dipole in External Electrostatic Field

In this subsection, we will consider not the field due to a dipole, but rather the energy and
forces on a dipole in an external field E(x) = —V®(x).

Potential Energy of Dipole in External Electrostatic Field

Recall from Section 3.5 that for a charge ¢ in an electrostatic potential ®(x), the poten-
tial energy is

U(x) = q®(x) (4.1.6)

Let us now apply this to the case of a dipole in an external field; once again, a is the
separation of the charge ¢ from —q.

E(x - a/2) E(x +a/2)

-q . q
N
X \
The potential energy of the dipole is
Up(x) = (—q)P(x —a/2) + ¢P(x + a/2). (4.1.7)

If the separation between the charges is small, we can expand about x to obtain

d(x+a/2) =

1 0 1 a;a; 0°
P —_*3

2% 55,20 57T G o,

_ B(x) & %a L VP(x) + O(a)

O(x)+...

Thus we have

1 1
Up(x) = q[P(x)+ Jar Vo(x) — O(x) + ga Vo(x) + O(a®)]
= ga-Vo(x)[1+0(a*)]
Now take the point dipole limit, a — 0, ¢ — oo, ag = p fixed. Then

Up(x) =p-VO(x) (4.1.8)
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Aside: why did we take x to be at the mid point of the dipole? Because for a simple dipole,
all the corrections to the formula above involving even derivatives of ®(x) vanish. It just
makes the expansion neater, but of course we could have performed the expansion about any
point between the charges.

Recalling that E(x) = —V®(x), we have

Up(x) = —p - E(x) (4.1.9)

Note that the potential energy of a dipole has a minimum when E and p are parallel

Force on Dipole in External Electrostatic Field

We will now consider the force on an electric dipole.

qE(x +a/2) _ _

4 a - The force on the dipole is

/ N f Fo(x) = —gE(x —a/2) + ¢B(x +2a/2)  (4.1.10)
-qE(x-a2)  x
Once again, we can expand about r:

1

E(x+a/2) = E(x) + 3 (a-V)E+O(a®). (4.1.11)
We thus obtain

Fp(x) = gla- V)E(x) = (p- V)E(x) (4.1.12)

Now since E(x) is an electrostatic field, it is irrotational:
V x E(x) = 0. (4.1.13)
Recall the identity for a double vector product
Ax(BxC)=B(A-C)—-C(A-B) (4.1.14)
which (for A =p, B=V and C = E(x) ) gives
V(p-E(x) = p x (V x E()) + (p- V)E(x) (4.1.15)
Since V x E(x) = 0, we have

(p-V)E(x) =V(p-E(x)), (4.1.16)
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Applying this result to equation (4.1.12) gives
Fp(x) =V(p-E(x)) = -VUp(x) . (4.1.17)

Thus the force on a dipole is just minus the gradient of the potential energy, and furthermore

for a uniform external field, independent of x, the force is zero.

Torque on a Dipole in an External Field

We will now evaluate the torque, or moment of the force, 7 on a simple dipole about its
centre. This is just the moment of the forces acting on the two charges about the centre of
the dipole:

r = (3a) xGaBx+an) + (-3a) x (o Bx-a2) (4.1.18)

= (5) <o (B0 + jla- VIEG) + B — fla- V) E() + 0l

i.e. 7 =p x E(x) in the point dipole limit .

e Note that the torque about some point other than the centre of the dipole will be
different.

e 7 = p X E(x) is true for dipoles other than point dipoles if E(x) is constant over the

dipole.

4.1.2 Force between Two Dipoles

Many materials are dipolar; the positive and negative materials are separated. Here we will
consider the force between a dipole p; at x; and pg at x5. The force Fa; on the dipole at
xg due to the electrostatic field E; produced by the dipole p; is

Fo1(x2) = (py - V2) E1(x2)
vy g (oo ) pxt)

47eq |xo — x1]°

where V, means that we take derivatives with respect to x, (the position vector of dipole

P, ), and we have used Eq. (4.1.5). As discussed above, we can express this also as

Fa1(x2) = Va(p2 - E1(x2))
1 v, {3 (P - (x2 —x1)) (P2 (X2 —X1)) — (P1* Pa2) X2 — X1|2} . (4.1.20)

- 4meg |xo — x1|°

From this representation, it is evident that the force F15(x1) is equal and opposite to Fa; (X2).
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4.2 Multipole Expansion

In this section, we will see why the concept of dipoles, and more generally multipoles, is

so important in electrostatics. Consider the case of a charge distribution, localized to some

volume V. For convenience we will take the origin for our vectors inside V.

x-x’ P
7 We have that the potential due to the charge distribu-
x

tion within V' at a point P outside the volume is:

B(x) = 1 /p(x’) av’

dwey Jy |x — x|

(4.2.1)

For r = |x| much larger than the extent of V', i.e. r > 1’ = |x/| for all x” such that p(x’) # 0,

we can expand the denominator

x —x|7' = {r?—2x.x' 2} 7Y2

“1/2
R x-x r?
= T {1 — 2 7‘2 + ﬁ

1 x-x P 3 /x-x\?>
r{+ r2 27“2+2(r2)Jr (r/r7)

Thus we have

1 1 x-x  3(x-x)%—1r%?

_ O 13 /,.4
x—-x| r T 275 O/
1 1< PR ¥ ’ /o 2 13 7,4
=rte >+ 55 2 (BTity = 170i) + O /) . (4.2.2)
i=1 ij=1

p(x)dV’

Qij -

/.
P - /V p(x )X V"
/.

p(x') (3} — r'%6;;)dV’

is the total charge within V'
is the dipole moment of the charge distribution about the origin

is the quadrupole moment of the charge distribution.
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e We have defined the moments with respect to a particular point, e.g. the dipole

moment is the integral of the displacement x’ times the charge density p(x’). In

general, the moments depend on the choice of “origin”. What about the total dipole

moment when the total charge is zero?

e At large distances from the charge distribution, only the first few moments (@, P,

quadrupole moment, ...) are important.

e For a neutral charge distribution, the leading behaviour is given by the dipole moment.

Example:
The region inside the sphere: r < a, contains a charge density

p(ZE, Y, Z) = fZ<a2 - T2)

(4.2.4)

where f is a constant. Show that at large distances from the origin the potential due to the

charge distribution is given approximately by
2fa’ z

105¢y 73

Use the multipole expansion in SI units:

1 Q P-x i
o(x) = 47eg (r * r3 +O<r3)>

In spherical polars (r, 6, ¢),

x = rsinfcosyp ; y = rsinfsing ; 2z = rcosf .

The total charge @) is

Q = /Vp(x)dV = /O%/Oﬂ/oa (frcos.@(a2 - r2)> r?sin@drdfdy = 0.

The integral vanishes because
s O=m 1 ) 1 )
/ cosfsinfdf = —/ — d(cos”0)) = —=cos“0
0 o=0 2 2
The total dipole moment P about the origin is

P = /pr(x)dV = / ré p(x)dV

14

2m g a
= / / / r(sinf cospi + sinf sinpj + cosfk)
o Jo Jo

(frcosG (a® — r2)) r?sin @ dr df de.

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)
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The x and y components of the ¢ integral vanish. The z component factorizes:

2m 7r. ) a4 ) ) ) 2a
= fx dp X sin 0 cos® 0 df x r*(a® — r)dr = X271 X = X —.
0 0 0

3 35
(4.2.10)
Putting it all together, we obtain
1 f k- 2f a”
O(x) = Sma f kex2fal = (4.2.11)
4dmeg 105 13 105¢q 13
4.2.1 Multipole Expansion using Spherical Harmonics
To proceed further, we go back to our expansion of a pole in spherical harmonics
1 > ¢ 7t
—_— —= Y7 (0, )Y (0, ). 4.2.12
|X—X/| ZZQl—i—l l+1 lm( , P )l (7@) ( )

We assume that the charge is confined to a sphere of radius a, and take the centre of the

sphere to be the origin for our vectors. Then for the case r > a, we have

7‘< = T

T> - T,

and we have

[e's) l
_ Elz Z TH %) / e / dr' 127 (8, ) p(x). (4.2.13)

We now write
G / AV A2V (0, o p(x) (4.2.14)

so that the expansion may be written

@(x):lz L Yiml0:0) (4.2.15)
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This is the multipole expansion using spherical harmonics. Up to [ = 2, the combinations
Y (0, ¢') are given by
1

Y* 9/, / -
000 ¢) Jin
Y0 ¢) = =1y % sin @ e~ = —/ % (r'sin@ cos¢’ —ir'sin@ sin ')
3 .
- S—W(iﬁ' — 1)
3 - 3
Y 0,¢)=—r S sinf e’ = —\/S—W(r’sinﬁ’ cos ¢’ + ir' sin @’ sin ¢')
3 .
= 8_7T(I/+ly)

3 3
Y0, @) =r' i cos® = \/—ﬂz'

7"/2 }/2*2(9/7 S0/) :7‘,2

250, ¢) = — 1?4/ == cos@ sinf e = —\| —2'(2' — iy)

]2 /51 1[5
Yoo (0, @) =r" EPQO(COSG)ZT'Q 55(300529—1):5 5(32/2_70/%-

To make the connection with our previous expansion, it is useful to consider the few terms
in Cartesian coordinates
1

1
— d3 / / —
3 .
m = —\g /d3 (@' —iy') = - 8_7T(Px_ZPy)
B = \/— [ o) = \/313
4m dm~
1 /15 .
G0 = 1/ 27T/d3x’p (2 —iy')? = 12\/%(6211 — 2iQ12 — Q)
1 /15 .
1 = ~/87T/d3x’p (2 —iy') = g\/8—W(Q13—2Q23)
G = _1/—/d3x/p(x’)(3z’2 —r?) = ly/iQs&
2V 4w 2V 4w

Note that the components for negative m can be trivially obtained using

U—m = (—1)"q,. (4.2.16)
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In general, for the [-th multipole moment, there are (14 1)(l+42)/2 components in Cartesian
coordinates, while only 2/ 4+ 1 components using spherical harmonics. There is no inconsis-
tency here — the Cartesian tensors are reducible under rotations (i.e., under rotations, they
mix with tensors having a fewer number of indices ) whilst the tensor moments expressed
in spherical harmonics are irreducible (i.e. the g, for fixed | mix only amongst themselves
under rotations); that is why we remowve the trace in the quadrupole moment @);;, to give us
5 irreducible components.

We can express the electric field components trivially in spherical harmonics. In particular,
the contribution of definite [, m is

0 1141 1

E,=—-——9% — Yim (0, mTs
or = €20+ 1 m (0 0)ar rit2
10 1 1 1 0
Ey=—-—& = S (]
) o1z gg %%

1 0 1 1 1 im
E,=— —P = —— m —Yim (0, ¢).
v rsind dp €0 20+ 11m 2 ging ! (6. ¢)

If we now consider the case of an ideal dipole p along the z-axis, then
3

47Tp

a1 = q¢,1=0,

dio =

so that only Y1(0, ¢) = /2 cosf is involved, and we have

1 1 Yim (0, ¢) 3 cos 9 _ pcost
B(x) = — . - 1/ Y= 4217
() €0 % 20 + 1 rltl 4T  Amegr? ( )

and

2

B = » cos 0
dmeqrs
psin 6

B, —

b dmegr

E, = 0,

which reduces to the expression we derived earlier for an ideal dipole, Eq. (4.1.5).

4.2.2 Point Dipole vs. Dipole Moment

There is a danger in using the expression for the electrostatic field due to an ideal, or point
dipole. To see this, consider the electrostatic field E(x) due to a localized charge distribution
p(x). In partciular, consider the integral of E over some sphere of radius R, the center of

which we will take as the origin of our vectors.
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We have
/ dPrE = —/ dPr Vo = —RQ/dQ d(x)n (4.2.18)
r<R r<R

where n = x/R is a unit normal outward from the surface of the sphere, and we have used

the generalization of the divergence theorem.

Using Coulomb’s law for an extended charge distribution, we may write

3 R2 3./ / n
drE = e &>z p(x') [ dQ x—x| (4.2.19)

Now we can evaluate the x integration by writing the vector n = isin # cos ¢ + jsin 0 sin ¢ +

k cos 6, and then expressing these terms in spherical harmonics as

sinfcosp = —1/8_7T (5/11(9,@—}—)/171(97%0))
3 2
sinfsinp = _,/8_7T (}q1<9790)_¥,—1(97§0)>
3 2i
cosf = H%TY}O(G, ©) .

As a result, we can write

nl(ev p) = Z nZMleM(& ©) (4.2.20)

M=-1

with known projection coefficients n’, for the unit vector whose direction is characterized
by angles 6, ¢.
Thus only the [ = 1 terms contribute, and using the orthogonality property of spherical
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harmonics we have

=0 m
1

_4WZ Z 21+1 l+1 Yim (0, ') Z n?\J/dQ Yin (0, 9)Y, (0, 80)1

[=0 m=—1 M=-1 5113;1%
1
drr ) AT r_ .
= ?7’_; Z leM(9,7 Spl)n?w = ?T_< nz(el’ SO/) ’ (4221)
> M >

i.e., the result is proportional to n’, a unit vector in the direction of x’. Hence we have

2
4
/d3xE _ A /d%’p( );r;n’

4meq rs
R2
= 3o d%'p(x’):—;n’, (4.2.22)
>

where - = min(r’, R).

We now consider two cases

1. Charge density completely outside the sphere. Then we have r- = R, r~ =1/, and we

have
5 R3 5, n/ . R3 s, X/ .
4
- %R:‘E(O).

Thus the average value of the electric field over a spherical volume containing no charge

is just the value of the field at the centre of the sphere.

2. Sphere completely encloses the charge density. Then we have r- = ', and r~ = R,
and we have, from Eq. (4.2.22),

2 /
1
/d?’xE _ & d3m’r—n'p(x’) =—— [ &2 X pX) =

4.2.23
360 R2 360 ( )

3¢
where P is the electric dipole moment. Note that this expression is independent of the

size of the sphere, provided it completely encloses the dipole.

Let us now consider the corresponding expression for the integrated E in the case of an ideal
dipole, Eq. (4.1.5):

1 : _
/ PrE(x) = / ot 3@mn=p (4.2.24)
r<R r<R

47eg r3
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To get this result, we first rewrite the integral in component notation

3

1 d°x
dBrE(x) = / —(3nn; — 0;;) .
/r<R & dmeg ;pﬂ r<p T (3n, j)

Note that the integral

3

<R 3

should be proportional to d;;, since there is no external vector in the integrand. Convoluting

i
the equation I;; = Ad;; with d;; on both sides (with summation over i and j), we receive
A = 0. One can also get this result by taking dipole in z-direction, p = pk, and work in
spherical polars.

For Eq. (4.2.24) to be consistent with Eq. (4.2.23), our expression for the electrostatic field
due to a dipole at xg must be modified

1 [3n(p-n)—p 4r

E(x) = — —p&(x— . 4.2.2
(X) 47'('60 ‘X — X0’3 3 pé <X XO) ( 5)

This expression only changes the electric field at the position of the dipole, and we can
then, with some care, use the expression as if we were using ideal, or point, dipoles. The ¢-
function contains information about the finite distribution of the charge lost in the multipole

expansion.

4.3 Energy of Charge Distribution

in External Electrostatic Field

The energy is given by

W= / Pz p(x)D(x). (4.3.1)

We now suppose that @ is slowly varying, so that
0?P
T
J 8x28x j

1 OE;
= 2(0)—x-E(0) - 5 Zmixj%.
i,j J

1
d(x) = D0)+x-VD+ 5295
/L?J
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Now in the case of an external electrostatic field, we have V - E = 0, and thus we may write

1 oF; 1

oF;

1
= (I)—XE—EZ[ZgZ'zSCJ—(szTQ]a—%

i7j

where the derivatives are evaluated at 0. Thus we have

W= /d?’xp(X) {@(0) —x-E— %Z [31’1‘1’3‘ - 5@'7“2} g_il}

ihj

= ®(0)Q —E(0)-P — S zj: Qija—xj(())

4.4 Electrostatics with Ponderable Media

So far we have only considered the case of electrostatics in free space. We will now consider
the case of macroscopic materials in the presence of electric fields. Such materials are
classified according to whether or not electrons, or charges, can flow over long distances.
In the case of conductors, charges can move freely about the material, and, as we have
already seen, generate an induced field that exactly cancels any applied external field.

In this chapter we consider the case of dielectics. Here the electrons are bound to atoms,
and have only limited freedom to move. The material might have an inherent dipole moment,
or a dipole moment might be generated by the presence of an external electric field. The

crucial property of a dielectric is that
VxE=0. (4.4.1)

Thus
e We have a conservative electric force
e We can express the field as the gradient of a potential

In the following, we will assume the applied field induces a dipole moment, but no higher
moments. Now consider the potential at x due to the charge, and dipole moment, of a

volume AV at x':

A(I)(X, X/) — 1 p(X/)AV P(X’) ) (X . X/)

dme | |x — X/ |x — x/|3

AV, (4.4.2)
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where x is outside the volume AV. The dipole moment per unit volume is called polarization.

We now pass to an integral in the usual way, and obtain

1 x/ x — x/ ,
o(x) = dreq / d*x’ |Xp(_ ))(/| +P(x')- ﬁ (integ. by parts)
1% xxL
V(/x—x'|)
1 1 1 P(x')-n
— d3 / AN I P / dS/
47T€0/v S~y [p(x") = V' - P(x')] + Tneo /sav =x—x|

This expression can be rewritten as follows

1 / / 1 /
B(x) = - / o PrOD) X)L / g o)
Arey Jy |x — x/| ey Jo—oy  |x—X|
where 0, = P - n is the surface density of the bound charge, p, = —V - P is the volume

density of the bound charge, and the “old” charge density p is called the free charge density
py to distinguish from the density of the bound charge.

Thus Maxwell’s equation becomes

Ly —v.p (4.4.3)

€0

V-E=-V®(x)
(we use here —V? (1/|x — x'|) = 4763 (x — x)) which we can write as
VD =p; (4.4.4)
where
D=¢E+P (4.4.5)

is the electric displacement. Note that —V - P is the polarization charge density.
We now suppose that the media is usotropic, i.e. no preferred direction. Then the induced

dipole moment must be aligned with E, and we set
P =¢,x.E (4.4.6)
where y. is the electric susceptibility. Thus we have
D = ¢E + ¢y x.E = cE (4.4.7)

where € = (1 + x.). Note that €/¢q is the dielectric constant. Finally, if the material is

uniform, then y, does not depend on position, and we have

D=¢E, with V-E=ps/e (4.4.8)
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Thus, the potential ®,(x,x’) of a charge ¢ located at x’ inside a uniform material having the
dielectric constant € is given by
I q

olx,x) = dme|x — x|

4.4.1 Boundary Conditions at Boundary between Materials

We will now consider the boundary conditions at the / /r@
boundary between two materials, of permittivities ¢; and E D
€2, and with electric fields Eq, D, and E,, Dy respectively. E ,D 2 2

Tangential condition

We have that V x E = 0, and thus, applying Stoke’s theorem to the closed curve C' shown

above, we have
/ E-dl =0, (4.4.9)
c
yielding
E| = El (4.4.10)

which we can express as

(EQ — El) XNy =0 (4411)

where ns; is the normal from 1 to 2.

Normal condition

Applying Gauss’ law to the usual elementary pill-box we have

V-D = py :>/D-dS:/pde (4.4.12)

from which we find
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(DQ - Dl) ‘g =0y (4413)

where ¢ is the macroscopic free surface charge density at the interface.

To summarise, at the interface between two dielectrics:

e The tangential component of E is continuous.

e The normal component of D has a discontinuity given by

(D2 - Dl) ‘o =0y (4414)

4.5 Boundary-value Problems with Dielectrics

The method we adopt here essentially follows that of the solution of boundary-value problems
in vacua, with the boundaries given by conducting surfaces. The method is best illustrated

by examples.

Example:

A point charge g in a material of permittivity e¢; a distance d from the interface with a

charge-free region of permittivity es.

m
[e2)

15y

r 2 e q

The boundary conditions at the interface z = 0 are

aE.(05) = e&F.(0-) (normal on D)
E.(04) = E.(0-) (tangential)
E,(04) = E,0_) (tangential).

In order to determine the potential in the region z > 0, let us try an image charge ¢’ at

z = —d. Then the potential at x is

1 q q
2>0 — + :
drre; | |x —de,|  |x + de,|

B (x)| (4.5.1)
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We know that the potential in the region z < 0 must satisfy Laplace’s equation in that region,
and therefore, in particular, there cannot be any poles in the region z < 0. Therefore, let us

try the potential due to a charge ¢” at the position of our original charge ¢:

1 q//
) = 4.5.2
()]0 4rey |x — de,| ( )
We now introduce cylindrical polar coordinates, so that
1 q//
z <0
dmey {p? + (= — d)?}1/?
2(p.0,2) =4 : ; (45.3)
> 0
4meg { {p? + (z — d)?}1/2 * {P+(z+ d)2}1/2} :

We have two unknowns, ¢’ and ¢”, which we determine by imposing the boundary conditions
at z = 0. We begin with the tangential condition. We have that £, = —0®/dp, and thus

1 q'p
drey (p? + d?)3/2 2=0-
E,= , (4.5.4)
1 qap qp I
Ame; | (2 + d2)32 T (p2 + d2)3/2 +
Thus the tangential boundary condition is
1
—q"=—[q+d] = Jea=q+)e. (4.5.5)
€9 €1

To impose the normal boundary condition, we note that

1 _d " 0
q z =U_
2 2)3/2
4rey (p? + d2)3/2 (a—4d) z =04
from which we find
q// =q— q/ (457)

or ¢ +¢ = q. To solve for ¢ and ¢" we combine Eq. (4.5.5) ¢"e1 = (¢ + ¢)ex with
q"e1 = (¢ — ¢')ex which is Eq.( 4.5.7) multiplied by €;. This gives
/ €1 — €2

G+d)e=0G-—d)a = q= ot (4.5.8)

and

262
"= . 4.5.9
€1 + 62q ( )
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Thus we have a solution that satisfies the Laplace’s equation in z < 0, and Poisson’s equation
in z > 0, and the correct boundary conditions at z = 0. Thus, by our uniqueness theorem,
it is the solution.

To see the form of the field lines we consider two cases, €; > €5 and €; < €5; in both cases

the field lines for z < 0 are those of a point charge, of magnitude ¢”, at q.

1. €1 > €9.

Then ¢ is same sign

as ¢.

\
—— =

2. €9 > €7.

-~
~—
~—

Then ¢ and ¢ have N

different signs.

\
\
N
N
N
N

VN

In order to compute the polarization (bound) charge density, 0,0 = —V - P, we observe first
that P; = eox;Ei, i = 1,2, where €¢; = €g(1 + x;). Thus we have

~
°
-
~
©

Clearly the polarization charge density vanishes, except at the point charge ¢, and at the
interface between the two materials. At the interface, there is a discontinuity in P, and

integrating over the discontinuity we obtain
op = —(P1 —P3) -nyy, (4.5.11)

where ng; is the unit normal from region 2 to region 1 (in our case, ny; = k), and Py and

P, are the polarizations at z = 0_ and z = 0, respectively. Thus we have

op = sz — Plz = (62 — EQ)EQZ — (61 — EO)Elz (4512)
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or (using ¢ — ¢ = ¢” at an intermediate step and then ¢” = 2qes /(€1 + €2) )

1 —dq" ( ) 1 —d
— (1 —€
drreq (p? + d?)3/2 Y e (0% + @2

_ —d €2— € € —¢ q”
A7t(p? + d?)3/2 € €1 ~—~
2qgea /(e1+€2)

o, = { (62— ¢€) B (¢—4)

1

q

B d 1 1) 2ge
C dm(p? + d2)3/260 {g B a} €1+ €
_160(62 —€) d

2m e1(ex +€1) (2 + d?)3/2

Note that in the limit €;/e; > 1, the electric field in region z < 0 becomes very small, and
the polarization charge density approaches the value of the induced surface charge density
for a conductor at z = 0, up to the factor of ¢/e;. In that sense, the material in z < 0

behaves as a conductor in the €5 — 0o limit.

Example

Dielectric sphere, radius a, dielectric constant €/¢p, in

uniform field along z-axis.

We will work in spherical polar coordinates, and express our solution as an expansion in

Legendre polynomials:

S, At Pi(cos 0) r<a

, 4.5.13
SolBirt+ Cr Y Pi(cos0) r>a ( )

O(r,0, ) = {
where we have noted that the potential must be finite at » = 0.
To determine the coefficients, we impose the boundary conditions. At large distances, the
potential is that for a uniform field along the z axis, and thus our boundary condition at

infinity is

O(p,0,p) — —FEgrcos as r—> 00 . (4.5.14)
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We now impose the boundary conditions at the surface of the sphere

Ey(a_) = FEy(ay) (tangential condition)
cE.(ay) = €E.(a_) (normal condition)

The boundary condition at infinity tells us

B, = —E,
B =0 [#1

To impose other boundary conditions, we evaluate the components of the electric field,
beginning with Fjy:

ZAITZ I—PZ (cosf) r<a

— Xl: Cyr=72 @P[(COS ) — dePl(Cos 0) r>a

From the generalized Rodrigues’ formula, we have

Pir) = (1'% P
= P'(cosf) = —sin€dCO GPI(COSG)
= C%Pl(cos 0),
whence
—ZArl_lPll(cos 0) r<a
Eo = Z Cyr~ 2P} cos#) — By Pl (cosf) r>a (4.5.16)
The radial component is straightforward,
—ZAl-l-rlflpl(cosH) r<a
B, = ! . (4.5.17)

Z Cy(I+1)r '""2Py(cos ) — B1Py(cosf) r>a
!

Thus imposing the tangential boundary condition we have

Z AP} (cos ) = Z Cia""2 P! (cos ) + By P} (cos ). (4.5.18)
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Using the orthogonality property of the Legendre polynomials, we have, for [ # 1,
Adt = Cla=t? = A, = Cua 2L (4.5.19)
For the case [ = 1, we have
Ay =Cia + B, = Cia™® — E. (4.5.20)

The normal boundary condition yields

€0 {Z (1 + 1)a_l_2Pl(cos 0) — B1Pi(cos 9)} = —eZAllal_lPl(cos 0). (4.5.21)
1 ]

Once again, there are two cases

o[Cil + a2 = —eAjld™ | 1#1 (4.5.22)
c[2Cia® + Ey) = —eA; , =1 (4.5.23)

Substituting Eq. (4.5.19) into Eq. (4.5.22), we find
oCil+1)a ) =—eCra™®Mad ™ = C=0=4,=0 , 1#1. (4.5.24)

Finally, we have 24, = 2C1a™3 — 2E, from Eq. (4.5.20) and Aie/¢g = —2C1a™3 — Ey from
Eq. (4.5.23). This gives

A = ﬂ’
2+€/60
C, = a*(A +Ep) = ¢/eo — 1 a* B
1 1 0 2+ /ey 0 -
Thus we have
— Egrcosf r<a
2+¢€/e
o(r, 0, ) = /Oe e 1\ a8 0 , (4.5.25)
—F, —FE
o7 COS +(2+€/€0> 2 0 COS , r>a

e Inside the sphere, the field is parallel to the field at infinity,

3
= E07
2+ 6/60

Ei, (4.5.26)

with |Ein| < Ey if € > €.
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e (Qutside the sphere, the field is equivalent to that of the applied field, together with

that due to a point dipole at the origin, of moment

efeg— 1Y\ 4 4ra® 3
=4 — Ey=—"—""(e—€)k 4.5.27
b e (2+€/€0) @ "o 3 2+€/€0(6 60) 0 ( )

oriented in the direction of the applied field.

The polarization P = (¢ — ¢)E is constant throughout the sphere,

3(e — €o)
= —E,. 4.5.2
2+ 6/60 0 ( g 8)

We can evaluate the volume integral of P, to obtain

4 .3(e—
/ VP = —mi”qu
r<a 3 2+€/€0

-1
= 4dmeg (6/60—) a*Ey,

2"—6/60

which is just the dipole moment we obtained in Eq. (4.5.27). Thus the dipole moment is

just the volume integral of the polarization.

Because P is constant throughout the sphere,
the polarization charge density —V - P vanishes
throughout the interior. However, because of the
discontinuity in P at the surface, we have a sur-
face polarization charge density, whose magnitude

we can obtain from Eq. (4.5.11): -

o, = P-e. (P vanishes outside sphere)

-1
3¢ (E/EO—) FEqcosb -

2+ €/eg
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4.6 Electrostatic Energy in Dielectric Media

Back in the introduction, we computed the energy of a system of charges in free space:

W = %/d% p(x)P(x). (4.6.1)

We obtained this expression by assembling the charges, one-by-one, from infinity under the
potential of the charges already assembled. In the case of dielectrics, work is done not only
in assembling the charges, but also in polarising the medium.

To see how to perform the calculation in this case, consider the change in energy due to a

macroscopic charge density dp(x),
oW = /d3x Spr(x)P(x). (4.6.2)
We now use recall that V- D = py, enabling us to write V - ¢D = dp;. Thus we have
W = /d%cb(x) V- 0D
= / &z E - 6D,

where we have integrated by parts, assuming that the charge is localized so that the surface

term vanishes. Thus the total energy in constructing the system is

D
W:/d%/ E - ¢D. (4.6.3)
0

We now make the critical assumption of a linear, isotropic constitutive relation between E
and D,

D(x) = e(x)E(x). (4.6.4)

Then we have E - 6D = $6(E - D), and thus

P
W= /d% / 5cS(E -D) (4.6.5)
0
yielding
1

W= §/d3$E -D. (4.6.6)

We can recover our expression Eq. (4.6.1) by the substitution E = V& and using V-D = py.
The crucial observation is that the expression Eq. (4.6.6) is valid only if the relation between

D and E s linear.
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4.6.1 Energy of Dielectric in an Electric Field with Fixed Charges

As an important application of this formula, we will consider the case of a dielectric medium
introduced into an electric field Eq(x) arising from a fixed charge distribution pf = po(x).
Initially, the energy of the system is

1
Wy = 3 /d% E, - D (4.6.7)

with Dy = ¢Ep; here ¢, is the initial permittivity of the dielectric, not necessarily the
permittivity of free space.

We now introduce the medium, of volume Vi, with permittivity

V
e(x) = { X)) xeV (4.6.8)
e(x) x¢V
noting that the charge distribution is unaltered. Then the new energy is
1
Wy = §/d3m E(x) - D(x) (4.6.9)
and the change in energy is
1 1

With a little juggling, we can write this as
1 1
oW = 5/6133; (E-Dy— Eq-D) + 3 /d% (E+Eo) - (D —Dy). (4.6.11)

To evaluate the second term, we note that both V. x E =0 and V x Eq = 0, and thus we
may write E + Eg = —VW(x). Hence the second integral may be written

1 1
I= —§/d3xV\I/-(D—D0) = §/d3x\lfv-(D—D0) (4.6.12)

where we assume the integrand falls off sufficiently rapidly at infinity.
Now V - (D — Dy) = ps(x) — pos(x) = 0, since we required that the free charge distribution

be unaltered by the introduction of the dielectric. Thus the integral vanishes, and we have
1

We now spilt the region of integration into V; and the remainder,

1 1
(5W:—/ d3x(E.DU_E0.D)+—/ &’z (E-Dgy — Eq - D). (4.6.14)
2 eV 2 xgWV1
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For x ¢ V; we have Dy = ¢gEqg and D = ¢E, and the integrand vanishes, so that

1
ow = - / d313 (EoE : EO — €1E0 . E)
Vi

N}

1
= ——/ dSl' (61 — Eo)E : Eo.
2 Jv,

We now specialize to the case where the original dielectric is indeed the vacuum, and ¢y the

permittivity of free space, and write

(61 — Eo)E = P, (4615)
yielding
1 3
W =—— [ d’zP - E,.
2 Jy,
. 1 . : : :
We can interpret w = —=P - Ej as the energy density of the dielectric. The expression can

be likened to that for the energy of a dipole distribution derived at the end of Section 4.3.
There we were considering a permanent dipole, whilst here energy is expended in polarizing
the dielectric, and this is reflected in the factor of 1/2.

Note that the energy tends to decrease if the dielectric moves to a region of increasing E,
provided €; > €p. Since the charges are held fixed, the total energy is conserved, and we
can interpret the change in field energy W due to a displacement of the dielectric body &

as producing a corresponding change in potential energy, and hence a force on the body of

F=-— (%—VZ)Q, (4.6.16)

where the subscript () denotes at fixed charge.

magnitude

4.6.2 Energy of Dielectric Body at Fixed Potentials

We will conclude this section by considering the contrasting case where we introduce a di-
electric body into a system where the potentials, rather than charges, are kept fixed. A
paradigm is the introduction of a dielectric between the plates of a capacitor connected to a

battery, and hence at a fixed potential difference.
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- | \ Fixed e

Dielectric

In this case, charges can flow to or from the conducting plates as the dielectric is introduced
to maintain the potentials, and hence the total energy can change. Again, we will assume
that the media are linear.

It is sufficient to consider small changes to the potential 0® and to the charge distribution

0P, for which the change in energy W, from Eq. 4.6.1, is
1
W = §/d3:ﬁ (pé® + Popy). (4.6.17)

For the case of linear media, these two terms are equal if the dielectric properties are un-
altered. However, in the case where the dielectric properties are altered during the change,
€(x) — €(x)+de(x), this is no longer true, because of a polarization charge density generated
in the dielectric. We have already considered this problem for fixed charges, dp;y = 0. In
order to compute the change of energy at fixed potentials, we study the problem in two

stages;
1. The battery is disconnected, so that the distribution of charges is fixed, dp; = 0,
and the dielectric is introduced. Then there is a change in potential 0P, and the

corresponding change in energy is

1 1
(5W1 = 5 /dgl' pféq)l = —§/d3$ (61 — GO)E . Eo, (4618>

using the result of the previous subsection.

2. We now reconnect the battery. The potential on the conductors, where the only macro-
scopic charges reside, must regain its original value, i.e. d®5 = —J®P;, and there is a

corresponding change in charge density dpsy, yielding

1

In this step, the dielectric properties are unaltered and the two terms are equal, so we

have

5W2 == /d3l’pf(5(1)2

= —/d3a7pf5<I>1
= 260 (4.6.20)
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Thus the total energy change
OW = oWy + oWy = =W, (4.6.21)
which we write as
Wy = =W, (4.6.22)

i.e. the change in energy at fizxed potential is minus the change in energy at fized charges.
In this case, if a dielectric with €; > ¢y moves into a region at fixed potentials, the energy

increases, and a mechanical force

Fe=+ (%—?)V (4.6.23)

acts on the body.



