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Chapter 4

Multipoles and the Electrostatics of

Macroscopic Media

The simplest source for an electrostatic field is a point charge; such a source is sometimes

known as a pole. The arrangement of two point charges, of equal but opposite sign, is

known as a dipole. The concept of a dipole plays a crucial rôle in electrostatics:

• Even in the case of a neutral atom or molecule, the positive and negative charges can

become separated, e.g. by an applied external electric field. In that case, the atom or

molecule gives rise to an electrostatic field that can be approximated by a dipole.

• The concept of dipoles, and, more generally, multipoles, leads to an important method

for obtaining the electrostatic field and potential far from a charge distribution, the

multipole expansion.

4.1 Introduction and Revision: Electric Dipoles

Consider two charges −q and q at x1 and x2 respectively, and let a be the position vector

of q relative to −q.
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132 Chapter 4

Let x′ be the mid point of the dipole, so that

x1 = x′ − a/2

x2 = x′ + a/2

Then the potential at the point P is

Φ(x) =
1

4πε0

(
q

| x− x2 |
+

−q
| x− x1 |

)
=

1

4πε0
q

(
1

| x− x′ − a/2 |
− 1

| x− x′ + a/2 |

)
(4.1.1)

We will now consider the case where the separation between the charges is much less than

the distance of the point P from the charges, i.e. |a| �| x− x′ |. Then we have

|x− x′ ± a/2|−1 =

{
|x− x′|2 +

|a|2

4
± a · (x− x′)

}−1/2
= |x− x′|−1

{
1± a · (x− x′)

|x− x′|2
+

|a|2

4|x− x′|2

}−1/2
.

Expanding as a series in |a|2/|x− x′|2 using the binomial expansion, we obtain

|x− x′ ± a/2|−1 = |x− x′|−1
{

1 +

(
−1

2

)[
±a · (x− x′)

|x− x′|2

]
+O

(
|a|2

|x− x′|2

)}
(4.1.2)

Thus

Φ(x) =
1

4πε0

qa · (x− x′)

|x− x′|3
. (4.1.3)

We now take the limit |a| → 0, q →∞, with aq = p fixed and finite. This defines a simple

or ideal dipole and we have

ΦD(x) =
1

4πε0

p · (x− x′)

|x− x′|3
(4.1.4)

• p is the vector moment or dipole moment of the dipole.

• ΦD(x) is the potential at x due to a dipole of moment p at x′.

We can obtain the electrostatic field due to a dipole by applying E(x) = −∇ΦD(x), and

obtain

E(x) =
1

4πε0

3(p · x) x− r2p
r5

(4.1.5)

for a dipole at the origin (useful relations: ∇r = x/r, ∇(p · x) = p).
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4.1.1 Dipole in External Electrostatic Field

In this subsection, we will consider not the field due to a dipole, but rather the energy and

forces on a dipole in an external field E(x) = −∇Φ(x).

Potential Energy of Dipole in External Electrostatic Field

Recall from Section 3.5 that for a charge q in an electrostatic potential Φ(x), the poten-

tial energy is

U(x) = qΦ(x) (4.1.6)

Let us now apply this to the case of a dipole in an external field; once again, a is the

separation of the charge q from −q.

a

-q q

E(x + a/2)E(x - a/2)

x

The potential energy of the dipole is

UD(x) = (−q)Φ(x− a/2) + qΦ(x + a/2). (4.1.7)

If the separation between the charges is small, we can expand about x to obtain

Φ(x± a/2) =

Φ(x)± 1

2
ai

∂

∂xi
Φ(r) +

1

2!

aiaj
4

∂2

∂xi ∂xj
Φ(x) + . . .

= Φ(x)± 1

2
a · ∇Φ(x) +O(a2)

Thus we have

UD(x) = q [Φ(x) +
1

2
a · ∇Φ(x)− Φ(x) +

1

2
a · ∇Φ(x) +O(a3)]

= q a · ∇Φ(x)[1 +O(a2)]

Now take the point dipole limit, a→ 0, q →∞, aq = p fixed. Then

UD(x) = p · ∇Φ(x) (4.1.8)
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Aside: why did we take x to be at the mid point of the dipole? Because for a simple dipole,

all the corrections to the formula above involving even derivatives of Φ(x) vanish. It just

makes the expansion neater, but of course we could have performed the expansion about any

point between the charges.

Recalling that E(x) = −∇Φ(x), we have

UD(x) = −p · E(x) (4.1.9)

Note that the potential energy of a dipole has a minimum when E and p are parallel

Force on Dipole in External Electrostatic Field

We will now consider the force on an electric dipole.

a

q

-q E(x - a/2)

-q

q E(x + a/2)

x

The force on the dipole is

FD(x) = −qE(x− a/2) + qE(x + a/2) (4.1.10)

Once again, we can expand about r:

E(x± a/2) = E(x)± 1

2
(a · ∇)E +O(a2). (4.1.11)

We thus obtain

FD(x) = q(a · ∇)E(x) = (p · ∇)E(x) (4.1.12)

Now since E(x) is an electrostatic field, it is irrotational :

∇× E(x) = 0. (4.1.13)

Recall the identity for a double vector product

A× (B×C) = B(A ·C)−C(A ·B) (4.1.14)

which (for A = p, B = ∇ and C = E(x) ) gives

∇(p · E(x)) = p× (∇× E(x)) + (p · ∇)E(x) . (4.1.15)

Since ∇× E(x) = 0, we have

(p · ∇)E(x) = ∇(p · E(x)) , (4.1.16)
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Applying this result to equation (4.1.12) gives

FD(x) = ∇(p · E(x)) = −∇UD(x) . (4.1.17)

Thus the force on a dipole is just minus the gradient of the potential energy, and furthermore

for a uniform external field, independent of x, the force is zero.

Torque on a Dipole in an External Field

We will now evaluate the torque, or moment of the force, τ on a simple dipole about its

centre. This is just the moment of the forces acting on the two charges about the centre of

the dipole:

τ =

(
1

2
a

)
× (+q) E(x + a/2) +

(
−1

2
a

)
× (−q ) E(x− a/2) (4.1.18)

=

(
1

2
a

)
× q

(
E(x) +

1

2
(a · ∇) E(x) + E(x) − 1

2
(a · ∇) E(x) +O(a2)

)
i.e. τ = p× E(x) in the point dipole limit .

• Note that the torque about some point other than the centre of the dipole will be

different.

• τ = p × E(x) is true for dipoles other than point dipoles if E(x) is constant over the

dipole.

4.1.2 Force between Two Dipoles

Many materials are dipolar; the positive and negative materials are separated. Here we will

consider the force between a dipole p1 at x1 and p2 at x2. The force F21 on the dipole at

x2 due to the electrostatic field E1 produced by the dipole p1 is

F21(x2) = (p2 · ∇2) E1(x2)

= (p2 · ∇2)
1

4πε0

{
3 (p1 · (x2 − x1)) (x2 − x1) − p1 |x2 − x1|2

|x2 − x1|5

}
(4.1.19)

where ∇2 means that we take derivatives with respect to x2 (the position vector of dipole

p2), and we have used Eq. (4.1.5). As discussed above, we can express this also as

F21(x2) = ∇2(p2 · E1(x2))

=
1

4πε0
∇2

{
3 (p1 · (x2 − x1)) (p2 · (x2 − x1)) − (p1 · p2) |x2 − x1|2

|x2 − x1|5

}
. (4.1.20)

From this representation, it is evident that the force F12(x1) is equal and opposite to F21(x2).



136 Chapter 4

4.2 Multipole Expansion

In this section, we will see why the concept of dipoles, and more generally multipoles, is

so important in electrostatics. Consider the case of a charge distribution, localized to some

volume V . For convenience we will take the origin for our vectors inside V .

P

x
x’

x - x’

V

We have that the potential due to the charge distribu-

tion within V at a point P outside the volume is:

Φ(x) =
1

4πε0

∫
V

ρ(x′) dV ′

|x− x′|
(4.2.1)

For r ≡ |x| much larger than the extent of V , i.e. r � r′ ≡ |x′| for all x′ such that ρ(x′) 6= 0,

we can expand the denominator

|x− x′|−1 = {r2 − 2x · x′ + r′2}−1/2

= r−1
{

1− 2
x · x′

r2
+
r′2

r2

}−1/2
=

1

r

{
1 +

x · x′

r2
− r′2

2r2
+

3

2

(
x · x′

r2

)2

+O(r′3/r3)

}
Thus we have

1

|x− x′|
=

1

r
+

x · x′

r3
+

3(x · x′)2 − r2r′2

2r5
+O(r′3/r4)

=
1

r
+

1

r3

3∑
i=1

xix
′
i +

xixj
2r5

3∑
i,j=1

(3x′ix
′
j − r′2δij) +O(r′3/r4) . (4.2.2)

Hence we can write

Φ(x) =
1

4πε0

(
Q

r
+

P · x
r3

+
1

2

3∑
i,j=1

Qij
xixj
r5

+O(1/r4)

)
(4.2.3)

where

Q =

∫
V

ρ(x′)dV ′ is the total charge within V

P =

∫
V

ρ(x′)x′dV ′ is the dipole moment of the charge distribution about the origin

Qij =

∫
V

ρ(x′)(3x′ix
′
j − r′2δij)dV ′ is the quadrupole moment of the charge distribution.
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• We have defined the moments with respect to a particular point, e.g. the dipole

moment is the integral of the displacement x′ times the charge density ρ(x′). In

general, the moments depend on the choice of “origin”. What about the total dipole

moment when the total charge is zero?

• At large distances from the charge distribution, only the first few moments (Q, P,

quadrupole moment, . . . ) are important.

• For a neutral charge distribution, the leading behaviour is given by the dipole moment.

Example:

The region inside the sphere: r < a, contains a charge density

ρ(x, y, z) = f z (a2 − r2) (4.2.4)

where f is a constant. Show that at large distances from the origin the potential due to the

charge distribution is given approximately by

Φ(x) =
2f a7

105ε0

z

r3
(4.2.5)

Use the multipole expansion in SI units:

Φ(x) =
1

4πε0

(
Q

r
+

P · x
r3

+ O

(
1

r3

))
(4.2.6)

In spherical polars (r, θ, ϕ),

x = r sin θ cosϕ ; y = r sin θ sinϕ ; z = r cos θ . (4.2.7)

The total charge Q is

Q =

∫
V

ρ(x) dV =

∫ 2π

0

∫ π

0

∫ a

0

(
fr cos θ (a2 − r2)

)
r2 sin θ dr dθ dϕ = 0. (4.2.8)

The integral vanishes because∫ π

0

cos θ sin θ dθ = −
∫ θ=π

θ=0

1

2
d(cos2 θ)) = −1

2
cos2 θ

∣∣∣∣θ=π
θ=0

= 0. (4.2.9)

The total dipole moment P about the origin is

P =

∫
V

x ρ(x) dV =

∫
V

r êr ρ(x) dV

=

∫ 2π

0

∫ π

0

∫ a

0

r (sin θ cosϕ i + sin θ sinϕ j + cos θ k)(
fr cos θ (a2 − r2)

)
r2 sin θ dr dθ dϕ.
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The x and y components of the ϕ integral vanish. The z component factorizes:

Pz = f ×
∫ 2π

0

dϕ×
∫ π

0

sin θ cos2 θ dθ ×
∫ a

0

r4 (a2 − r2) dr = f × 2π × 2

3
× 2a7

35
.

(4.2.10)

Putting it all together, we obtain

Φ(x) =
1

4πε0

8πa7f

105

k · x
r3

=
2f a7

105ε0

z

r3
. (4.2.11)

4.2.1 Multipole Expansion using Spherical Harmonics

To proceed further, we go back to our expansion of a pole in spherical harmonics

1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ). (4.2.12)

We assume that the charge is confined to a sphere of radius a, and take the centre of the

sphere to be the origin for our vectors. Then for the case r > a, we have

r< = r′

r> = r,

and we have

Φ(x) =
1

ε0

∞∑
l=0

l∑
m=−l

1

2l + 1

Ylm(θ, ϕ)

rl+1

∫
dΩ′

∫
dr′ r′2Y ∗lm(θ′, ϕ′)r′lρ(x′). (4.2.13)

We now write

qlm =

∫
dΩ′dr′r′2Y ∗lm(θ′, ϕ′)r′lρ(x′) (4.2.14)

so that the expansion may be written

Φ(x) =
1

ε0

∑
l,m

1

2l + 1
qlm

Ylm(θ, ϕ)

rl+1
. (4.2.15)
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This is the multipole expansion using spherical harmonics. Up to l = 2, the combinations

r′lYlm(θ′, ϕ′) are given by

Y ∗00(θ
′, ϕ′) =

1√
4π

r′ Y ∗11(θ
′, ϕ′) =− r′

√
3

8π
sin θ′ e−iϕ

′
= −

√
3

8π
(r′ sin θ′ cosϕ′ − ir′ sin θ′ sinϕ′)

= −
√

3

8π
(x′ − iy′)

r′ Y ∗1,−1(θ
′, ϕ′) =− r′

√
3

8π
sin θ′ eiϕ

′
= −

√
3

8π
(r′ sin θ′ cosϕ′ + ir′ sin θ′ sinϕ′)

= −
√

3

8π
(x′ + iy′)

r′Y ∗10(θ
′, ϕ′) =r′

√
3

4π
cos θ′ =

√
3

4π
z′

r′2 Y ∗22(θ
′, ϕ′) =r′2

1

4

√
15

2π
sin2 θ′ e−2iϕ

′
=

1

4

√
15

2π
(x′ − iy′)2

r′2 Y ∗21(θ
′, ϕ′) =− r′2

√
15

8π
cos θ′ sin θ′ e−iϕ

′
= −

√
15

8π
z′(x′ − iy′)

r′2 Y ∗20(θ
′, ϕ′) =r′2

√
5

4π
P 0
2 (cos θ) = r′2

√
5

4π

1

2
(3 cos2 θ − 1) =

1

2

√
5

4π
(3z′2 − r′2) .

To make the connection with our previous expansion, it is useful to consider the few terms

in Cartesian coordinates

q00 =
1√
4π

∫
d3x′ρ(x′) =

1√
4π
Q

q11 = −
√

3

8π

∫
d3x′ ρ(x′)(x′ − iy′) = −

√
3

8π
(Px − iPy)

q10 =

√
3

4π

∫
d3x′ ρ(x′)z′ =

√
3

4π
Pz

q22 =
1

4

√
15

2π

∫
d3x′ρ(x′)(x′ − iy′)2 =

1

12

√
15

2π
(Q11 − 2iQ12 −Q22)

q21 = −
√

15

8π

∫
d3x′ρ(x′)z′(x′ − iy′) = −1

3

√
15

8π
(Q13 − iQ23)

q20 =
1

2

√
5

4π

∫
d3x′ ρ(x′)(3z′2 − r′2) =

1

2

√
5

4π
Q33.

Note that the components for negative m can be trivially obtained using

ql,−m = (−1)mq∗lm. (4.2.16)
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In general, for the l-th multipole moment, there are (l+ 1)(l+ 2)/2 components in Cartesian

coordinates, while only 2l + 1 components using spherical harmonics. There is no inconsis-

tency here – the Cartesian tensors are reducible under rotations (i.e., under rotations, they

mix with tensors having a fewer number of indices ) whilst the tensor moments expressed

in spherical harmonics are irreducible (i.e. the qlm for fixed l mix only amongst themselves

under rotations); that is why we remove the trace in the quadrupole moment Qij, to give us

5 irreducible components.

We can express the electric field components trivially in spherical harmonics. In particular,

the contribution of definite l,m is

Er = − ∂

∂r
Φ ⇒ 1

ε0

l + 1

2l + 1
Ylm(θ, ϕ)qlm

1

rl+2

Eθ = −1

r

∂

∂θ
Φ ⇒ − 1

ε0

1

2l + 1
qlm

1

rl+2

∂

∂θ
Ylm(θ, ϕ)

Eϕ = − 1

r sin θ

∂

∂ϕ
Φ ⇒ − 1

ε0

1

2l + 1
qlm

1

rl+2

im

sin θ
Ylm(θ, ϕ).

If we now consider the case of an ideal dipole p along the z-axis, then

q10 =

√
3

4π
p

q11 = q1,−1 = 0 ,

so that only Y10(θ, ϕ) =
√

3
4π

cos θ is involved, and we have

Φ(x) =
1

ε0

∑
l,m

1

2l + 1
qlm

Ylm(θ, ϕ)

rl+1
=

1

ε0

1

3

√
3

4π
p

√
3

4π

cos θ

r2
=
p cos θ

4πε0r2
(4.2.17)

and

Er =
2p cos θ

4πε0r3

Eθ =
p sin θ

4πε0r3

Eϕ = 0,

which reduces to the expression we derived earlier for an ideal dipole, Eq. (4.1.5).

4.2.2 Point Dipole vs. Dipole Moment

There is a danger in using the expression for the electrostatic field due to an ideal, or point

dipole. To see this, consider the electrostatic field E(x) due to a localized charge distribution

ρ(x). In partciular, consider the integral of E over some sphere of radius R, the center of

which we will take as the origin of our vectors.
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+

+

+
+

-

-
-

We have ∫
r<R

d3xE = −
∫
r<R

d3x∇Φ = −R2

∫
dΩ Φ(x)n (4.2.18)

where n = x/R is a unit normal outward from the surface of the sphere, and we have used

the generalization of the divergence theorem.

Using Coulomb’s law for an extended charge distribution, we may write∫
d3xE = − R2

4πε0

∫
d3x′ ρ(x′)

∫
dΩ

n

|x− x′|
. (4.2.19)

Now we can evaluate the x integration by writing the vector n = i sin θ cosϕ+ j sin θ sinϕ+

k cos θ, and then expressing these terms in spherical harmonics as

sin θ cosϕ = −
√

8π

3

(
Y11(θ, ϕ) + Y1,−1(θ, ϕ)

2

)
sin θ sinϕ = −

√
8π

3

(
Y11(θ, ϕ)− Y1,−1(θ, ϕ)

2i

)
cos θ =

√
4π

3
Y10(θ, ϕ) .

As a result, we can write

ni(θ, ϕ) =
1∑

M=−1

niMY1M(θ, ϕ) (4.2.20)

with known projection coefficients niM for the unit vector whose direction is characterized

by angles θ, ϕ.

Thus only the l = 1 terms contribute, and using the orthogonality property of spherical



142 Chapter 4

harmonics we have∫
dΩ

ni

|x− x′|
=4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Ylm(θ′, ϕ′)

∫
dΩni Y ∗lm(θ, ϕ)

= 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Ylm(θ′, ϕ′)
1∑

M=−1

niM

∫
dΩ Y1M(θ, ϕ)Y ∗lm(θ, ϕ)︸ ︷︷ ︸

δl1δmM

=
4π

3

r<
r2>

1∑
M=−1

Y1M(θ′, ϕ′)niM =
4π

3

r<
r2>

ni(θ′, ϕ′) , (4.2.21)

i.e., the result is proportional to n′, a unit vector in the direction of x′. Hence we have∫
d3xE = − R2

4πε0

∫
d3x′ ρ(x′)

4π

3

r<
r2>

n′

= −R
2

3ε0

∫
d3x′ρ(x′)

r<
r2>

n′ , (4.2.22)

where r< = min(r′, R).

We now consider two cases

1. Charge density completely outside the sphere. Then we have r< = R, r> = r′, and we

have ∫
d3xE = −R

3

3ε0

∫
d3x′

n′

r′2
ρ(x′) = −R

3

3ε0

∫
d3x′

x′

r′3
ρ(x′)

=
4π

3
R3 E(0).

Thus the average value of the electric field over a spherical volume containing no charge

is just the value of the field at the centre of the sphere.

2. Sphere completely encloses the charge density. Then we have r< = r′, and r> = R,

and we have, from Eq. (4.2.22),∫
d3xE = −R

2

3ε0

∫
d3x′

r′

R2
n′ ρ(x′) = − 1

3ε0

∫
d3x′ x′ ρ(x′) = − P

3ε0
, (4.2.23)

where P is the electric dipole moment. Note that this expression is independent of the

size of the sphere, provided it completely encloses the dipole.

Let us now consider the corresponding expression for the integrated E in the case of an ideal

dipole, Eq. (4.1.5): ∫
r<R

d3xE(x) =

∫
r<R

d3x
1

4πε0

3(p · n)n− p

r3
= 0 . (4.2.24)
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To get this result, we first rewrite the integral in component notation∫
r<R

d3xEi(x) =
1

4πε0

∑
j

pj

∫
r<R

d3x

r3
(3njni − δij) .

Note that the integral

Iij ≡
∫
r<R

d3x

r3
(3njni − δij)

should be proportional to δij, since there is no external vector in the integrand. Convoluting

the equation Iij = Aδij with δij on both sides (with summation over i and j), we receive

A = 0. One can also get this result by taking dipole in z-direction, p = pk, and work in

spherical polars.

For Eq. (4.2.24) to be consistent with Eq. (4.2.23), our expression for the electrostatic field

due to a dipole at x0 must be modified

E(x) =
1

4πε0

[
3n(p · n)− p

|x− x0|3
− 4π

3
p δ3(x− x0)

]
. (4.2.25)

This expression only changes the electric field at the position of the dipole, and we can

then, with some care, use the expression as if we were using ideal, or point, dipoles. The δ-

function contains information about the finite distribution of the charge lost in the multipole

expansion.

4.3 Energy of Charge Distribution

in External Electrostatic Field

The energy is given by

W =

∫
d3x ρ(x)Φ(x). (4.3.1)

We now suppose that Φ is slowly varying, so that

Φ(x) = Φ(0) + x · ∇Φ +
1

2

∑
i,j

xixj
∂2Φ

∂xi∂xj
+ . . .

= Φ(0)− x · E(0)− 1

2

∑
i,j

xixj
∂Ei
∂xj

.
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Now in the case of an external electrostatic field, we have ∇ ·E = 0, and thus we may write

Φ(x) = Φ− x · E− 1

2

∑
i,j

xixj

{
∂Ei
∂xj
− 1

3
δij∇ · E

}
= Φ− x · E− 1

6

∑
i,j

[
3xixj − δijr2

] ∂Ei
∂xj

where the derivatives are evaluated at 0. Thus we have

W =

∫
d3x ρ(x)

{
Φ(0)− x · E− 1

6

∑
i,j

[
3xixj − δijr2

] ∂Ei
∂xj

}

= Φ(0)Q− E(0) ·P− 1

6

∑
i,j

Qij
∂Ei
∂xj

(0)

4.4 Electrostatics with Ponderable Media

So far we have only considered the case of electrostatics in free space. We will now consider

the case of macroscopic materials in the presence of electric fields. Such materials are

classified according to whether or not electrons, or charges, can flow over long distances.

In the case of conductors, charges can move freely about the material, and, as we have

already seen, generate an induced field that exactly cancels any applied external field.

In this chapter we consider the case of dielectics. Here the electrons are bound to atoms,

and have only limited freedom to move. The material might have an inherent dipole moment,

or a dipole moment might be generated by the presence of an external electric field. The

crucial property of a dielectric is that

∇× E = 0. (4.4.1)

Thus

• We have a conservative electric force

• We can express the field as the gradient of a potential

In the following, we will assume the applied field induces a dipole moment, but no higher

moments. Now consider the potential at x due to the charge, and dipole moment, of a

volume ∆V at x′:

∆Φ(x,x′) =
1

4πε0

[
ρ(x′)∆V

|x− x′|
+

P(x′) · (x− x′)

|x− x′|3
∆V

]
, (4.4.2)



Multipoles and the Electrostatics of Macroscopic Media 145

where x is outside the volume ∆V . The dipole moment per unit volume is called polarization.

We now pass to an integral in the usual way, and obtain

Φ(x) =
1

4πε0

∫
V

d3x′

 ρ(x′)

|x− x′|
+ P(x′) · (x− x′)

|x− x′|3︸ ︷︷ ︸
∇′

(1/|x−x′|)

 (integ. by parts)

=
1

4πε0

∫
V

d3x′
1

|x− x′|
[ρ(x′)−∇′ ·P(x′)] +

1

4πε0

∫
S=∂V

dS ′
P(x′) · n
|x− x′|

This expression can be rewritten as follows

Φ(x) =
1

4πε0

∫
V

d3x′
ρf (x

′) + ρb(x
′)

|x− x′|
+

1

4πε0

∫
S=∂V

dS ′
σb(x

′)

|x− x′|

where σb ≡ P · n is the surface density of the bound charge, ρb ≡ −∇ · P is the volume

density of the bound charge, and the “old” charge density ρ is called the free charge density

ρf to distinguish from the density of the bound charge.

Thus Maxwell’s equation becomes

∇ · E = −∇2Φ(x) =
1

ε0
[ρf −∇ ·P]. (4.4.3)

(we use here −∇2 (1/|x− x′|) = 4πδ3(x− x′)) which we can write as

∇ ·D = ρf (4.4.4)

where

D ≡ ε0E + P (4.4.5)

is the electric displacement. Note that −∇ ·P is the polarization charge density.

We now suppose that the media is isotropic, i.e. no preferred direction. Then the induced

dipole moment must be aligned with E, and we set

P = εoχeE (4.4.6)

where χe is the electric susceptibility. Thus we have

D = ε0E + ε0χeE = εE (4.4.7)

where ε = ε0(1 + χe). Note that ε/ε0 is the dielectric constant. Finally, if the material is

uniform, then χe does not depend on position, and we have

D = εE, with ∇ · E = ρf/ε. (4.4.8)



146 Chapter 4

Thus, the potential Φq(x,x
′) of a charge q located at x′ inside a uniform material having the

dielectric constant ε is given by

Φq(x,x
′) =

1

4πε

q

|x− x′|
.

4.4.1 Boundary Conditions at Boundary between Materials

We will now consider the boundary conditions at the

boundary between two materials, of permittivities ε1 and

ε2, and with electric fields E1,D1 and E2,D2 respectively. E  , D
E  , D

1 1

2 2

n
21

C

Tangential condition

We have that ∇× E = 0, and thus, applying Stoke’s theorem to the closed curve C shown

above, we have ∫
C

E · dl = 0, (4.4.9)

yielding

E
||
1 = E

||
2 (4.4.10)

which we can express as

(E2 − E1)× n21 = 0 (4.4.11)

where n21 is the normal from 1 to 2.

Normal condition

Applying Gauss’ law to the usual elementary pill-box we have

∇ ·D = ρf ⇒
∫

D · dS =

∫
ρf dV (4.4.12)

from which we find
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(D2 −D1) · n21 = σf (4.4.13)

where σ is the macroscopic free surface charge density at the interface.

To summarise, at the interface between two dielectrics:

• The tangential component of E is continuous.

• The normal component of D has a discontinuity given by

(D2 −D1) · n21 = σf (4.4.14)

4.5 Boundary-value Problems with Dielectrics

The method we adopt here essentially follows that of the solution of boundary-value problems

in vacua, with the boundaries given by conducting surfaces. The method is best illustrated

by examples.

Example:

A point charge q in a material of permittivity ε1 a distance d from the interface with a

charge-free region of permittivity ε2.

q

d

q’

ε
2 1

ε

P
z

x

The boundary conditions at the interface z = 0 are

ε1Ez(0+) = ε2Ez(0−) (normal on D)

Ex(0+) = Ex(0−) (tangential)

Ey(0+) = Ey(0−) (tangential).

In order to determine the potential in the region z > 0, let us try an image charge q′ at

z = −d. Then the potential at x is

Φ(x)|z>0 =
1

4πε1

[
q

|x− dez|
+

q′

|x + dez|

]
. (4.5.1)
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We know that the potential in the region z < 0 must satisfy Laplace’s equation in that region,

and therefore, in particular, there cannot be any poles in the region z < 0. Therefore, let us

try the potential due to a charge q′′ at the position of our original charge q:

Φ(x)|z<0 =
1

4πε2

q′′

|x− dez|
. (4.5.2)

We now introduce cylindrical polar coordinates, so that

Φ(ρ, θ, z) =


1

4πε2

q′′

{ρ2 + (z − d)2}1/2
z < 0

1

4πε1

{
q

{ρ2 + (z − d)2}1/2
+

q′

{ρ2 + (z + d)2}1/2

}
z > 0

(4.5.3)

We have two unknowns, q′ and q′′, which we determine by imposing the boundary conditions

at z = 0. We begin with the tangential condition. We have that Eρ = −∂Φ/∂ρ, and thus

Eρ =


1

4πε2

q′′ρ

(ρ2 + d2)3/2
z = 0−

1

4πε1

{
qρ

(ρ2 + d2)3/2
+

q′ρ

(ρ2 + d2)3/2

}
z = 0+

(4.5.4)

Thus the tangential boundary condition is

1

ε2
q′′ =

1

ε1
[q + q′] ⇒ q′′ε1 = (q + q′)ε2. (4.5.5)

To impose the normal boundary condition, we note that

Ez =


1

4πε2

−d
(ρ2 + d2)3/2

q′′ z = 0−

1

4πε1

−d
(ρ2 + d2)3/2

(q − q′) z = 0+

, (4.5.6)

from which we find

q′′ = q − q′ (4.5.7)

or q′′ + q′ = q. To solve for q′ and q′′ we combine Eq. (4.5.5) q′′ε1 = (q + q′)ε2 with

q′′ε1 = (q − q′)ε1 which is Eq.( 4.5.7) multiplied by ε1. This gives

(q + q′)ε2 = (q − q′)ε1 ⇒ q′ =
ε1 − ε2
ε1 + ε2

q (4.5.8)

and

q′′ =
2ε2

ε1 + ε2
q. (4.5.9)
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Thus we have a solution that satisfies the Laplace’s equation in z < 0, and Poisson’s equation

in z > 0, and the correct boundary conditions at z = 0. Thus, by our uniqueness theorem,

it is the solution.

To see the form of the field lines we consider two cases, ε1 > ε2 and ε1 < ε2; in both cases

the field lines for z < 0 are those of a point charge, of magnitude q′′, at q.

1. ε1 > ε2.

Then q′ is same sign

as q.

-2 -1 0 1 2 3

-2

-1

0

1

2

2. ε2 > ε1.

Then q′ and q have

different signs.

-2 -1 0 1 2 3

-2

-1

0

1

2

In order to compute the polarization (bound) charge density, σpol = −∇·P, we observe first

that Pi = ε0χiEi, i = 1, 2, where εi = ε0(1 + χi). Thus we have

Pi = (εi − ε0)Ei. (4.5.10)

Clearly the polarization charge density vanishes, except at the point charge q, and at the

interface between the two materials. At the interface, there is a discontinuity in P, and

integrating over the discontinuity we obtain

σb = −(P1 −P2) · n21, (4.5.11)

where n21 is the unit normal from region 2 to region 1 (in our case, n21 = k), and P2 and

P1 are the polarizations at z = 0− and z = 0+ respectively. Thus we have

σb = P2z − P1z = (ε2 − ε0)E2z − (ε1 − ε0)E1z (4.5.12)
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or (using q − q′ = q′′ at an intermediate step and then q′′ = 2qε2/(ε1 + ε2) )

σb =

(ε2 − ε0)
1

4πε2

−d q′′

(ρ2 + d2)3/2
− (ε1 − ε0)

1

4πε1

−d
(ρ2 + d2)3/2

(q − q′)︸ ︷︷ ︸
q′′


=

−d
4π(ρ2 + d2)3/2

{
ε2 − ε0
ε2

− ε1 − ε0
ε1

}
q′′︸︷︷︸

2qε2/(ε1+ε2)

=
d

4π(ρ2 + d2)3/2
ε0

{
1

ε2
− 1

ε1

}
2qε2
ε1 + ε2

= − q

2π

ε0(ε2 − ε1)
ε1(ε2 + ε1)

d

(ρ2 + d2)3/2
.

Note that in the limit ε2/ε1 � 1, the electric field in region z < 0 becomes very small, and

the polarization charge density approaches the value of the induced surface charge density

for a conductor at z = 0, up to the factor of ε0/ε1. In that sense, the material in z < 0

behaves as a conductor in the ε2 →∞ limit.

Example

Dielectric sphere, radius a, dielectric constant ε/ε0, in

uniform field along z-axis. θ
ϕ

E
0

a

We will work in spherical polar coordinates, and express our solution as an expansion in

Legendre polynomials:

Φ(r, θ, ϕ) =

{ ∑
lAlr

lPl(cos θ) r < a∑
l[Blr

l + Clr
−l−1]Pl(cos θ) r > a

, (4.5.13)

where we have noted that the potential must be finite at r = 0.

To determine the coefficients, we impose the boundary conditions. At large distances, the

potential is that for a uniform field along the z axis, and thus our boundary condition at

infinity is

Φ(ρ, θ, ϕ) −→ −E0r cos θ as r −→∞ . (4.5.14)
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We now impose the boundary conditions at the surface of the sphere

Eθ(a−) = Eθ(a+) (tangential condition)

ε0Er(a+) = εEr(a−) (normal condition)

The boundary condition at infinity tells us

B1 = −E0

Bl = 0 l 6= 1

To impose other boundary conditions, we evaluate the components of the electric field,

beginning with Eθ:

Eθ =


−
∑
l

Alr
l−1 d

dθ
Pl(cos θ) r < a

−
∑
l

Clr
−l−2 d

dθ
Pl(cos θ)−B1

d

dθ
P1(cos θ) r > a

, (4.5.15)

From the generalized Rodrigues’ formula, we have

P 1
l (x) = (−1)1(1− x2)1/2 d

dx
Pl(x)

⇒ P 1
l (cos θ) = − sin θ

d

d cos θ
Pl(cos θ)

=
d

dθ
Pl(cos θ),

whence

Eθ =


−
∑
l

Alr
l−1P 1

l (cos θ) r < a

−
∑
l

Clr
−l−2P 1

l (cos θ)−B1P
1
1 (cos θ) r > a

. (4.5.16)

The radial component is straightforward,

Er =


−
∑
l

Al · l · rl−1Pl(cos θ) r < a∑
l

Cl(l + 1)r−l−2Pl(cos θ)−B1P1(cos θ) r > a
. (4.5.17)

Thus imposing the tangential boundary condition we have∑
l

Ala
l−1P 1

l (cos θ) =
∑
l

Cla
−l−2P 1

l (cos θ) +B1P
1
1 (cos θ). (4.5.18)
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Using the orthogonality property of the Legendre polynomials, we have, for l 6= 1,

Ala
l−1 = Cla

−l−2 ⇒ Al = Cla
−2l−1. (4.5.19)

For the case l = 1, we have

A1 = C1a
−3 +B1 = C1a

−3 − E0. (4.5.20)

The normal boundary condition yields

ε0

{∑
l

Cl(l + 1)a−l−2Pl(cos θ)−B1P1(cos θ)

}
= −ε

∑
l

Al l a
l−1Pl(cos θ). (4.5.21)

Once again, there are two cases

ε0[Cl(l + 1)a−l−2] = −εAl lal−1 , l 6= 1 (4.5.22)

ε0[2C1a
−3 + E0] = −εA1 , l = 1 (4.5.23)

Substituting Eq. (4.5.19) into Eq. (4.5.22), we find

ε0[Cl(l + 1)a−l−2] =− εCla−2l−1 lal−1 ⇒ Cl = 0⇒ Al = 0 , l 6= 1. (4.5.24)

Finally, we have 2A1 = 2C1a
−3 − 2E0 from Eq. (4.5.20) and A1ε/ε0 = −2C1a

−3 − E0 from

Eq. (4.5.23). This gives

A1 =
−3E0

2 + ε/ε0
,

C1 = a3(A1 + E0) =

(
ε/ε0 − 1

2 + ε/ε0

)
a3E0 .

Thus we have

Φ(r, θ, ϕ) =


− 3

2 + ε/ε0
E0r cos θ , r < a

−E0r cos θ +

(
ε/ε0 − 1

2 + ε/ε0

)
a3

r2
E0 cos θ , r > a

. (4.5.25)

• Inside the sphere, the field is parallel to the field at infinity,

Ein =
3

2 + ε/ε0
E0, (4.5.26)

with |Ein| < E0 if ε > ε0.
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• Outside the sphere, the field is equivalent to that of the applied field, together with

that due to a point dipole at the origin, of moment

p = 4πε0

(
ε/ε0 − 1

2 + ε/ε0

)
a3E0 =

4πa3

3

3

2 + ε/ε0
(ε− ε0)E0 (4.5.27)

oriented in the direction of the applied field.

The polarization P = (ε− ε0)E is constant throughout the sphere,

P =
3(ε− ε0)
2 + ε/ε0

E0. (4.5.28)

We can evaluate the volume integral of P, to obtain∫
r<a

dV P =
4

3
πa3

3(ε− ε0)
2 + ε/ε0

E0

= 4πε0

(
ε/ε0 − 1

2 + ε/ε0

)
a3E0,

which is just the dipole moment we obtained in Eq. (4.5.27). Thus the dipole moment is

just the volume integral of the polarization.

Because P is constant throughout the sphere,

the polarization charge density −∇ · P vanishes

throughout the interior. However, because of the

discontinuity in P at the surface, we have a sur-

face polarization charge density, whose magnitude

we can obtain from Eq. (4.5.11):

σb = P · er (P vanishes outside sphere)

= 3ε0

(
ε/ε0 − 1

2 + ε/ε0

)
E0 cos θ

E
0

+

+

+

+

+

+

-

-

-

-

-
-

-

-

-

+

+

+

+

+

-

-
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4.6 Electrostatic Energy in Dielectric Media

Back in the introduction, we computed the energy of a system of charges in free space:

W =
1

2

∫
d3x ρ(x)Φ(x). (4.6.1)

We obtained this expression by assembling the charges, one-by-one, from infinity under the

potential of the charges already assembled. In the case of dielectrics, work is done not only

in assembling the charges, but also in polarising the medium.

To see how to perform the calculation in this case, consider the change in energy due to a

macroscopic charge density δρ(x),

δW =

∫
d3x δρf (x)Φ(x). (4.6.2)

We now use recall that ∇ ·D = ρf , enabling us to write ∇ · δD = δρf . Thus we have

δW =

∫
d3xΦ(x)∇ · δD

=

∫
d3xE · δD,

where we have integrated by parts, assuming that the charge is localized so that the surface

term vanishes. Thus the total energy in constructing the system is

W =

∫
d3x

∫ D

0

E · δD. (4.6.3)

We now make the critical assumption of a linear, isotropic constitutive relation between E

and D,

D(x) = ε(x)E(x). (4.6.4)

Then we have E · δD = 1
2
δ(E ·D), and thus

W =

∫
d3x

∫ D

0

1

2
δ(E ·D) (4.6.5)

yielding

W =
1

2

∫
d3xE ·D. (4.6.6)

We can recover our expression Eq. (4.6.1) by the substitution E = ∇Φ and using ∇·D = ρf .

The crucial observation is that the expression Eq. (4.6.6) is valid only if the relation between

D and E is linear.
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4.6.1 Energy of Dielectric in an Electric Field with Fixed Charges

As an important application of this formula, we will consider the case of a dielectric medium

introduced into an electric field E0(x) arising from a fixed charge distribution ρf = ρ0(x).

Initially, the energy of the system is

W0 =
1

2

∫
d3xE0 ·D0 (4.6.7)

with D0 = ε0E0; here ε0 is the initial permittivity of the dielectric, not necessarily the

permittivity of free space.

We now introduce the medium, of volume V1, with permittivity

ε(x) =

{
ε1(x) x ∈ V1
ε0(x) x 6∈ V1

, (4.6.8)

noting that the charge distribution is unaltered. Then the new energy is

W1 =
1

2

∫
d3xE(x) ·D(x) (4.6.9)

and the change in energy is

δW =
1

2

∫
d3xE ·D− 1

2

∫
d3xE0 ·D0. (4.6.10)

With a little juggling, we can write this as

δW =
1

2

∫
d3x (E ·D0 − E0 ·D) +

1

2

∫
d3x (E + E0) · (D−D0). (4.6.11)

To evaluate the second term, we note that both ∇ × E = 0 and ∇ × E0 = 0, and thus we

may write E + E0 = −∇Ψ(x). Hence the second integral may be written

I = −1

2

∫
d3x∇Ψ · (D−D0) =

1

2

∫
d3xΨ∇ · (D−D0) (4.6.12)

where we assume the integrand falls off sufficiently rapidly at infinity.

Now ∇ · (D−D0) = ρf (x)− ρ0f (x) = 0, since we required that the free charge distribution

be unaltered by the introduction of the dielectric. Thus the integral vanishes, and we have

δW =
1

2

∫
d3x (E ·D0 − E0 ·D). (4.6.13)

We now spilt the region of integration into V1 and the remainder,

δW =
1

2

∫
x∈V1

d3x (E ·D0 − E0 ·D) +
1

2

∫
x 6∈V1

d3x (E ·D0 − E0 ·D). (4.6.14)
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For x 6∈ V1 we have D0 = ε0E0 and D = ε0E, and the integrand vanishes, so that

δW =
1

2

∫
V1

d3x (ε0E · E0 − ε1E0 · E)

= −1

2

∫
V1

d3x (ε1 − ε0)E · E0.

We now specialize to the case where the original dielectric is indeed the vacuum, and ε0 the

permittivity of free space, and write

(ε1 − ε0)E = P, (4.6.15)

yielding

δW = −1

2

∫
V1

d3xP · E0.

We can interpret w = −1

2
P ·E0 as the energy density of the dielectric. The expression can

be likened to that for the energy of a dipole distribution derived at the end of Section 4.3.

There we were considering a permanent dipole, whilst here energy is expended in polarizing

the dielectric, and this is reflected in the factor of 1/2.

Note that the energy tends to decrease if the dielectric moves to a region of increasing E0,

provided ε1 > ε0. Since the charges are held fixed, the total energy is conserved, and we

can interpret the change in field energy W due to a displacement of the dielectric body ξ

as producing a corresponding change in potential energy, and hence a force on the body of

magnitude

F = −
(
∂W

∂ξ

)
Q

, (4.6.16)

where the subscript Q denotes at fixed charge.

4.6.2 Energy of Dielectric Body at Fixed Potentials

We will conclude this section by considering the contrasting case where we introduce a di-

electric body into a system where the potentials, rather than charges, are kept fixed. A

paradigm is the introduction of a dielectric between the plates of a capacitor connected to a

battery, and hence at a fixed potential difference.
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Dielectric

Fixed

Potentials

In this case, charges can flow to or from the conducting plates as the dielectric is introduced

to maintain the potentials, and hence the total energy can change. Again, we will assume

that the media are linear.

It is sufficient to consider small changes to the potential δΦ and to the charge distribution

δΦ, for which the change in energy δW , from Eq. 4.6.1, is

δW =
1

2

∫
d3x (ρfδΦ + Φδρf ). (4.6.17)

For the case of linear media, these two terms are equal if the dielectric properties are un-

altered. However, in the case where the dielectric properties are altered during the change,

ε(x)→ ε(x)+δε(x), this is no longer true, because of a polarization charge density generated

in the dielectric. We have already considered this problem for fixed charges, δρf = 0. In

order to compute the change of energy at fixed potentials, we study the problem in two

stages;

1. The battery is disconnected, so that the distribution of charges is fixed, δρf = 0,

and the dielectric is introduced. Then there is a change in potential δΦ1, and the

corresponding change in energy is

δW1 =
1

2

∫
d3x ρfδΦ1 = −1

2

∫
d3x (ε1 − ε0)E · E0, (4.6.18)

using the result of the previous subsection.

2. We now reconnect the battery. The potential on the conductors, where the only macro-

scopic charges reside, must regain its original value, i.e. δΦ2 = −δΦ1, and there is a

corresponding change in charge density δρ2f , yielding

δW2 =
1

2

∫
d3x (ρfδΦ2 + Φ2δρ2f ). (4.6.19)

In this step, the dielectric properties are unaltered and the two terms are equal, so we

have

δW2 =

∫
d3x ρfδΦ2

= −
∫
d3x ρfδΦ1

= −2 δW1 (4.6.20)
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Thus the total energy change

δW = δW1 + δW2 = −δW1, (4.6.21)

which we write as

δWV = −δWQ, (4.6.22)

i.e. the change in energy at fixed potential is minus the change in energy at fixed charges.

In this case, if a dielectric with ε1 > ε0 moves into a region at fixed potentials, the energy

increases, and a mechanical force

Fξ = +

(
∂W

∂ξ

)
V

(4.6.23)

acts on the body.


