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Chapter 5

Magnetostatics

5.1 Introduction

The crucial difference between electric and magnetic phenomena is the absence of isolated

magnetic charges, or magnetic monopoles. Here the basic building blocks are magnetic

dipoles. For a magnetic field, or flux density, B, the torque τ acting on a dipole of moment

µ is

τ = µ×B. (5.1.1)

The other concept we need in the study of magnetostatics is the electric current J, defined

as the flow of charge per unit time per unit area, with normal in the direction of J.

J =
dQ

da⊥dt
Ĵ =

dI

da⊥
Ĵ . (5.1.2)

For a line current I running in some direction specified by a unit vector ê we have

I =

∫
da⊥ · J , (5.1.3)

with da⊥ = da⊥ ê being an elementary area with normal in the direction of ê.

5.1.1 Current Conservation

Current conservation is represented by the continuity equation

∂ρ

∂t
+∇ · J = 0, (5.1.4)

where ρ is the charge density. This statement just states that the rate of change of charge

in any volume V is (minus) the flux of charge across the surface of V , as you can see by

applying the divergence theorem to charge Qin inside volume V . Note that decrease of Qin

159



160 Chapter 5

corresponds to increase of charge Qout outside the volume V , which is due to the current J

flowing from V to the outside space:

−dQin

dt
=
dQout

dt
=

∮
dQout

da⊥dt
da⊥ =

∮
Jda⊥ =

∮
J · da =

∫
d3x∇ · J

For steady currents we are considering in this chapter

∇ · J = 0. (5.1.5)

5.2 Biot-Savart Law

This describes the element of magnetic field B at some

point x due to an element of current flow Idl at x′:

dB = kI
dl× (x− x′)

|x− x′|3
, (5.2.1)

x’

x

dl

I

P

where, in SI units,

• I is the current (Ampères),

• dl is an element of length in the direction of the current flow,

• k = µ0/4π, where µ0 is the permeability of free space.

For a point charge q moving with velocity v, we can replace Idl by qv, and we have

B =
µ0

4π

qv × (x− x′)

|x− x′|3
, (5.2.2)

providing v is constant, and small compared to the velocity of light.

We can apply the superposition principle to the magnetic field, and obtain for a general

current density

B(x) =
µ0

4π

∫
d3x′

J(x′)× (x− x′)

|x− x′|3
. (5.2.3)



Magnetostatics 161

Example

Consider the magnetic field due to straight wire carrying

current I. Then the field a distance R from the wire is

tangential, and can be written (using l/R = tan θ)

B =
µ0I

4π
R

∫ ∞
−∞

dl

(l2 +R2)3/2
eϕ

=
µ0I

4π
R

∫ π/2

−π/2

Rdθ

cos2 θ

1

R3/ cos3 θ
eϕ

=
µ0I

4πR

∫ π/2

−π/2
dθ cos θ eϕ =

µ0I

2πR
eϕ

B
R

dl

I

5.2.1 Force on a Current in Presence of Magnetic Field

The element of force on a current element Idl at x in a magnetic field B(x) is

dF = Idl×B. (5.2.4)

Thus the force on a closed loop of current l1 due to magnetic field from closed loop l2 is

F12 =
µ0

4π
I1I2

∮
dl1 ×

{∮
dl2 × (x1 − x2)

|x1 − x2|3

}
=

µ0

4π
I1I2

∮ ∮
dl1 × [dl2 × (x1 − x2)]

|x1 − x2|3
.

We can put this expression in a more symmetric form by writing

dl1 × (dl2 × x12) = (dl1 · x12)dl2 − (dl1 · dl2)x12, (5.2.5)

yielding

F12 =
µ0I1I2

4π

∮ ∮ {
−dl1 · dl2
|x12|3

x12 + dl2
dl1 · x12

|x12|3

}
. (5.2.6)

We will now show that the second term vanishes. Consider the integration around loop 1,

for fixed x2. Then under a change x1 → x1 + dl1, we have

x12 → x12 + dl1. (5.2.7)

Now consider the change in 1/|x12|:

δ

(
1

|x12|

)
=

1

|x12 + dl1|
− 1

|x12|

=
1

|x12|

{
1− x12 · dl1

|x12|2
− 1

}
= −x12 · dl1

|x12|3
. (5.2.8)
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Thus the integrand in the second term of Eq. (5.2.6) is an exact differential, and therefore

the integrand around the closed loop vanishes, and we have

F12 = −µ0I1I2
4π

∫
dl1 · dl2
|x12|3

x12 . (5.2.9)

Now Newton’s third law is satisfied explicity, and we have

F12 = −F21 . (5.2.10)

For a general current density J(x) in a magnetic field B(x), we have

F =

∫
d3xJ(x)×B(x) (5.2.11)

τ =

∫
d3xx× (J×B). (5.2.12)

5.3 Laws of Magnetostatics in Differential Form

In analogy with electrostatics, our starting point is the expression for B due to general

current density

B(x) =
µ0

4π

∫
d3x′

J(x′)× (x− x′)

|x− x′|3
. (5.3.1)

We begin by recalling that ∇× (ϕa) = ∇ϕ× a, where a is a constant vector. Thus

∇x ×
(

1

|x− x′|
J(x′)

)
= ∇x

(
1

|x− x′|

)
× J(x′)

= − (x− x′)

|x− x′|3
× J(x′) =

J(x′)× (x− x′)

|x− x′|3
.

Thus we can write

B(x) =
µ0

4π
∇×

∫
d3x′

1

|x− x′|
J(x′) (5.3.2)

or

B(x) = ∇×A , (5.3.3)

where

A(x) =
µ0

4π

∫
d3x′

J(x′)

|x− x′|
(5.3.4)
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is the magnetic vector potential.

From Eq. (5.3.4), using ∇ · (∇×A) = 0 we immediately see that

∇ ·B = 0. (5.3.5)

This is another of Maxwell’s equations, and is just another statement that you cannot have

isolated magnetic charges, and that the total flux of B through any closed surface vanishes∫
S=∂V

dS ·B = 0 . (5.3.6)

To obtain another differential equation, we evaluate ∇×B. We begin by recalling the vector

identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (5.3.7)

so that

∇×B =
µ0

4π
∇
∫
d3x′∇x ·

J(x′)

|x− x′|
− µ0

4π

∫
d3x′ J(x′)∇2

x

(
1

|x− x′|

)
. (5.3.8)

Now

∇x ·
J(x′)

|x− x′|
= −J(x′) · ∇x′

(
1

|x− x′|

)
,

∇2
x

(
1

|x− x′|

)
= −4πδ(x− x′),

and thus

∇×B = −µ0

4π
∇
∫
d3x′ J(x′) · ∇x′

(
1

|x− x′|

)
+ µ0

∫
d3x′ J(x′)δ(x− x′)

=
µ0

4π
∇
∫
d3x′

1

|x− x′|
∇x′ · J + µ0J(x)

For magnetostatics, we have ∇ · J = 0, and thus

∇×B = µ0J . (5.3.9)

This is the second fundamental differential equation. We can apply Stokes’ theorem to a

closed curve C spanned by a surface S to obtain∫
∇×B · dS =

∫
B · dl = µ0

∫
J · dS. (5.3.10)
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5.4 Vector Potential

For static fields, the governing equations of magnetostatics are

∇ ·B = 0

∇×B = µ0J

For the case J ≡ 0, we have ∇×B = 0, and we can introduce a magnetic scalar potential

φM .

Much more interesting is the general case J 6= 0. We can show that if ∇ · B = 0 in a

star-shaped region,1 then a vector potential A can be found such that

B = ∇×A. (5.4.1)

In the case where B is the magnetic field, we call A the magnetic vector potential.

We have already established this representation for B in case of unbounded space (see Eq.

(5.3.4)).

5.4.1 Uniqueness of A and Gauge Transformations

If A is a solution of B = ∇×A, then A′ = A +∇f , where f is an arbitrary, continuously

differentiable scalar field, is also a solution, because

∇× (∇f) = 0. (5.4.2)

Transformation of this form are called Gauge Transformations; we say that B is invariant

under gauge transformations. To simplify calculations, we often make a specific choice of

gauge.

Examples

1. We could require A1(x) = 0 ∀x. In general, we could require Ai(x) = 0 for any

i = 1, 2, 3. Even more general, we could impose the axial gauge condition

n ·A(x) = 0 ∀x , (5.4.3)

where n is an arbitrary (non-zero) vector.

1A star shaped region is one in which there exists a point which can be connected to every other point

by a straight line
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2. We could require

∇ ·A(x) = 0 ∀x . (5.4.4)

This is the Coulomb Gauge.

3. A more exotic condition

x ·A(x) = 0 ∀x (5.4.5)

called Fock-Schwinger gauge is used in studies on quantum chromodynamics, which

is an example of non-Abelian gauge theories.

Choosing, or fixing, the gauge reduces the number of degrees of freedom, clear in example

(1) above. All the fundamental forces of nature are described by Gauge Theories, having

the property of a gauge, or local, symmetry.

5.4.2 Solutions for the Vector Potential in Free Space

We will specify that we work in the Coulomb gauge, ∇ · A = 0. Then the second of our

governing equation becomes

∇×B = ∇× (∇×A) = ∇(∇ ·A)−∇2A = µ0J (5.4.6)

and thus

∇2A = −µ0J. (5.4.7)

This is just Poisson’s equation, applied to each of the Cartesian components of A, and from

our investigation of electrostatics has the solution

A(x) =
µ0

4π

∫
d3x′

J(x′)

|x− x′|
. (5.4.8)

This expression for A(x) also follows from the general representation (5.3.1) for B(x) (which

may be treated as a solution of Maxwell’s equations).
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Example

Potential due to a wire loop of radius a, carrying current I.

I

x

y

z

θ

ϕ

The current is purely in the azimuthal direction, and in spherical polars, we can write the

current density as

Jϕ = Iδ(θ′ − π/2)
δ(r′ − a)

a
= I sin θ′δ(cos θ′)

δ(r′ − a)

a
. (5.4.9)

Normalization here is fixed by

I =

∫
da′⊥Jϕ =

∫
r′dr′ dθ′Jϕ . (5.4.10)

W.l.o.g. we will consider the case where the observation point is in the x− z plane, so that,

in Cartesian coordinates, the current density is

J = −Jϕ sinϕ′i + Jϕ cosϕ′j. (5.4.11)

Thus the vector potential, from Eq. (5.4.8), is given by

A(x) =
µ0

4π

∫
dΩ′ r′2dr′ {−Jϕ sinϕ′i + Jϕ cosϕ′j} × 1

|x− x′|
. (5.4.12)

The x component of A will vanish, since the expansion of 1/|x − x′| is symmetric under

ϕ′ ↔ −ϕ′. Thus the only non-vanishing component of A is in the y-direction, which coincides

with eϕ. Thus we have

Aϕ =
µ0

4π
I

∫
dΩ′ dr′r′2δ(θ′ − π/2)

δ(r′ − a)

a
cosϕ′

1

|x− x′|
. (5.4.13)

Performing the integrations over r′ and θ′ yields

Aϕ =
µ0Ia

4π

∫ 2π

0

dϕ′ cosϕ′ {a2 + r2 − 2ar sin θ cosϕ′}−1/2. (5.4.14)
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This is an elliptic integral, and its expression in elliptic functions is not particularly illumi-

nating. Instead, we will perform an expansion in spherical harmonics:

Aϕ =
µ0I

4π
<
∫
dΩ′ dr′ r′2δ(θ′ − π/2)

δ(r′ − a)

a
eiϕ

′

×4π
∑
l,m

1

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ),

where we write

cosϕ′ = <eiϕ′
. (5.4.15)

Performing the delta-function integrations, we arrive at

Aϕ = µ0Ia<
∑
l,m

rl<
rl+1
>

Ylm(θ, 0)
1

2l + 1

∫
dϕ′ eiϕ

′
Y ∗lm(π/2, ϕ′). (5.4.16)

We now use the orthogonality properties of the functions exp imϕ to write (you see why we

expressed cosϕ′ this way. . . ):

∫
dϕ′ eiϕ

′
Y ∗lm(π/2, ϕ′) =

{
2πYl1(π/2, 0) m = 1

0 otherwise
, (5.4.17)

and thus

Aϕ = 2πµ0Ia
∞∑
l=1

rl<
rl+1
>

Yl1(θ, 0)Yl1(π/2, 0)
1

2l + 1
. (5.4.18)

Now we have that

Yl1(π/2, 0) =

√
(l − 1)!(2l + 1)

4π(l + 1)!
P 1
l (0) (5.4.19)

which vanishes if l is even, since P 1
l (x) = dPl(x)/dx has the opposite parity to Pl(x). The

explicit evaluation of these integrals is performed in Jackson, so I leave it for you to look them

up there. However, the important feature is that even when we have azimuthal symmetry,

the vector potential and magnetic fields involve the P 1
l Legendre polynomials; this reflects

the vector nature of the source in magnetostatics, as opposed to the scalar nature of the

source in electrostatics.
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5.5 Magnetic Field Far from Current Distribution

Consider a localized current distribution J(x′) , and the magnetic vector potential produced

at a point P (x) where |x| � |x′|. Then we can write

1

|x− x′|
=

1

|x|
+

x · x′

|x|3
+ . . . , (5.5.1)

so that, in the Coulomb gauge

Ai(x) =
µ0

4π

{
1

|x|

∫
d3x′ Ji(x

′) +
x

|x|3
·
∫
d3x′ Ji(x

′) x′ + . . .

}
(5.5.2)

We can rewrite the scalar product in the second term in components:

Ai(x) =
µ0

4π

{
1

|x|

∫
d3x′ Ji(x

′) +
1

|x|3
3∑
j=1

xj

∫
d3x′ Ji(x

′)x′j + . . .

}
. (5.5.3)

Thus we need to know the volume integrals of Ji(x
′) and Ji(x

′)x′j, with Ji(x
′) in principle

being an arbitrary function. For magnetostatics, however, it satisfies ∇ · J(x) ≡ 0. Let us

use this property. Integrating ∇′ · J(x′) ≡ 0 with any function F (x′), we should get zero,

0 = −
∫
d3x′ F (x′)∇′ · J(x′) =

∫
d3x′ J(x′) · ∇′F (x′) , (5.5.4)

where in the second step we have integrated by part and used the fact that the surface

integral vanishes for a localised current distribution. In components, we have

3∑
k=1

∫
d3x′Jk(x

′)∇′kF (x′) = 0 . (5.5.5)

We now consider the first term in Eq. (5.5.2). To get Ji(x
′) in the integrand of Eq. (5.5.5 ),

we take F (x′) = x′i, which using ∇′kx′i = δik results in

3∑
k=1

∫
d3x′ Jkδik = 0

⇒
∫
d3x′Ji = 0.

Thus the first term in Eq. (5.5.3 ) vanishes. This is just a further restatement that there is

no “monopole” contribution to the multipole expansion for magnetic fields.
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For the second term in Eq. (5.5.3 ) we have Ji(x
′)x′j in the integrand. To get it, we apply

the identity Eq. (5.5.5) to the case F = x′ix
′
j. Then, using the chain rule we have

3∑
k=1

∫
d3x′ Jk

[
∂x′i
∂x′k

x′j + x′i
∂x′j
∂x′k

]
= 0

⇒
3∑

k=1

∫
d3x′ Jk

[
δikx

′
j + x′iδjk

]
= 0

⇒
∫
d3x′ [Jix

′
j + Jjx

′
i] = 0

or ∫
d3x′ Jix

′
j = −

∫
d3x′ Jjx

′
i =

1

2

∫
d3x′

[
Jix
′
j − Jjx′i

]
.

Thus, going back to Eq. (5.5.3), we may write

Ai(x) =
µ0

4π

1

|x|3
3∑
j=1

xj

∫
d3x′ Jix

′
j

= −1

2

µ0

4π

1

|x|3
3∑
j=1

xj

∫
d3x′[x′iJj − x′jJi] ,

or, in vector form,

A(x) = −1

2

µ0

4π

1

|x|3

∫
d3x′[x′(x · J)− (x′ · x)J] ,

which may be also written as

A(x) = −1

2

µ0

4π

1

|x|3
x×

∫
d3x′ x′ × J .

This result may be easily verified using A × (B × C) = B(A · C) − C(A · B), but it is

instructive to derive it using the Levi-Civita tensor notations.

Levi-Civita Tensor

We recall the definition of the Levi-Civita tensor

εijk =


0 if any two if i, j, k are equal

1 if (ijk) is an even permutation of (123)

−1 if (ijk) is an odd permutation of (123)

(5.5.6)
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Figure 5.1: Visualizations of Levi-Civita symbol

This tensor is isotropic, and totally anti-symmetric. In particular, we have

A×B|i =
3∑
j=1

3∑
k=1

εijkAjBk. (5.5.7)

There is the following well-known and easily shown identity

3∑
i=1

εijkεilm = δjlδkm − δjmδkl, (5.5.8)

which we will now use to write

x′iJj − x′jJi =
3∑

l,m=1

(δilδjm − δimδjl)x′lJm

=
3∑

k,l,m=1

εkijεklmx
′
lJm

=
3∑

k=1

εijk(x
′ × J)k

and

3∑
j=1

xj [x′iJj − x′jJi] =
3∑
j=1

xj

3∑
k=1

εijk(x
′ × J)k = [x× (x′ × J)]i .

Thus we have

Ai(x) = −1

2

µ0

4π

1

|x|3

[
x×

∫
d3x′ x′ × J

]
i

The vector

m =
1

2

∫
d3x′ x′ × J (5.5.9)
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is the magnetic moment, whilst

µ =
1

2
x′ × J (5.5.10)

is the magnetic moment density. Thus we can write

A(x) =
µ0

4π

1

|x|3
m× x

This is the lowest non-vanishing term in the multipole expansion of the magnetic vector

potential for a localised current density. Applying B = ∇×A, we have

B =
µ0

4π

[
3(x ·m)x− r2m

r5

]
, (5.5.11)

exactly analogous to the electrostatic field due to a point dipole.2

Example

For the case of a current confined to a loop, we have

m =
I

2

∮
x× dl. (5.5.12)

Furthermore, if we have a planar loop, x×dl is normal to the

plane of the loop, and we have

1

2
x× dl = n

1

2
x dl sin ξ

= dan

so that

m = IAn (5.5.13)

where n is a normal to the plane of the loop, and A is the

total area of the loop.
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Example

We conclude this section by considering the case where the current distribution arises from

the motion of a number of charged point-like particles:

J =
∑
i

qiviδ(x− xi), (5.5.14)

2It is possible to introduce a vector potential to describe electric dipole fields
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where vi is the velocity of the ith particle, which we assume is much less than the velocity

of light. Then we have

m =
1

2

∑
i

qixi × vi. (5.5.15)

Now the orbital angular momentum of a particle is given by

Li = Mixi × vi, (5.5.16)

where Mi is the mass of the ith particle. Thus we may write

m =
∑
i

qi
2Mi

Li. (5.5.17)

In the case where all the particles have equal mass, we see that the magnetic moment is

proportional to the total angular momentum.

5.6 Magnetostatics of Matter

5.6.1 Torques and forces on magnetic dipoles

First, consider a magnetic dipole in the uniform magnetic field B. Let us visualize magnetic

dipole m as a wire loop with area a carrying current I such as m = Ia.

The element of force on a current element Idl at x in a magnetic field B(x) is

dF = Idl×B. (5.6.1)

The total force acting on the loop is zero:

F = I

∮
dl×B = − IB×

∮
dl = 0 .

The torque acting on the loop is m×B. Let us show this. Using dx′ ≡ dl, we start with

N =

∮
x′ × dF =

∮
x′ × (Idx′ ×B) = I

∮
dx′(x′ ·B)− 1

2
BI

∮
d(x′

2
) = I

∮
dx′(x′ ·B) .

It is easy to prove that for an arbitrary constant vector a∮
dx′(x′ · a) = −1

2
a×

∮
(x′ × dx′) . (5.6.2)

Indeed,

a×
∮

(x′ × dx′) =

∮
[x′(a · dx′)− dx′(a · x′)] ,
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furthermore ∮
x′(a · dx′) =

∮
[d(x′(a · x′))− dx′(a · x′)] = −

∮
dx′(a · x′) , (5.6.3)

and therefore

a×
∮

(x′ × dx′) = −2

∮
dx′(a · x′) .

Taking a = B we get

N = −I
2
B×

∮
(x′ × dx′) =

(
I

2

∮
x′ × dx′

)
×B = m×B (5.6.4)

so the torque in a uniform external field is a cross product of the magnetic moment and the

field.

Let us now consider a small dipole in the non-uniform external field (the size of the dipole

� characteristic size of the field). The formula for the torque remains the same: N = m×B

where the magnetic field should be taken at the position of the dipole. However, the total

force is no longer zero.

F = I

∮
dl×B 6= 0 .

Since our dipole is small we can expand B(x′) in powers of x′. For simplicity, suppose that

the dipole is located at the origin. We get

B(x′) = B(0) + (x′ · ∇) B(0) + ...

and therefore (using dl′ ≡ dx′)

F = I

∮
dl′ ×B(0) + I

∮
dl′ × (x′ · ∇)B +O(x′

2
) = I

∮
dx′(x′ · ∇)×B +O(x′

2
) .

Next we use formula (5.6.2) with a = ∇ and obtain

I

∮
dx′(x′ · ∇) =

I

2

∮
(x′ × dx′)×∇ = m×∇

so finally

F = (m×∇)×B = ∇(m ·B)−m(∇ ·B) = ∇(m ·B)

because ∇ ·B = 0.

Since F = −∇U we see that the potential energy of a (small) magnetic dipole in the external

magnetic field is

U = −m ·B

(similarly to U = −p · E for the electric dipole).
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5.6.2 Maxwell equations in matter

We could, in principle, attempt to describe the magnetostatics of a material in terms of

the microscopic, or “vacuum”, fields. As in the case of electrostatics, this approach is

neither feasible nor desirable. At the microscopic level, the individual atoms have magnetic

moments and eddy currents are generated that we cannot account for exactly. Rather, we

discuss macroscopic quantities, including that part of the magnetic field arising from these

microscopic currents. In the following, we will use the subscript micro to denote microscopic

properties, with the remaining variables denoting macroscopic quantities.

At the microscopic level, we have ∇ ·Bmicro = 0. We can average this to obtain

∇ ·B = 0 (5.6.5)

and hence we know that we can write the macroscopic magnetic field in terms of a vector

potential

B = ∇×A. (5.6.6)

Suppose now that we have a collection of atoms of various types i, with magnetization mi.

Then the macroscopic magnetization

M =
∑
i

Ni〈mi〉, (5.6.7)

where Ni is the numer of atoms of type i/unit volume, and 〈mi〉 is their average magnetic

moment. Note the M is analogous to the polarization density of electrostatics.

We will now consider the contribution to the vector potential at x due to an infinitesimal

volume ∆V at x′. There are two contributions

∆A(x) =
µ0

4π

Jf (x
′)

| x− x′ |
∆V +

µ0

4π

1

| x− x′ |3
M× (x− x′)∆V, (5.6.8)

where the first term arises from the “free” macroscopic current densities and the second

is due to the macroscopic magnetization described above. We now sum over the volume

elements ∆V and get

A(x) =
µ0

4π

∫
d3x′

Jf (x
′)

| x− x′ |
+
µ0

4π

∫
d3x′

1

| x− x′ |3
M× (x− x′). (5.6.9)

There is a way to rewrite the second term in a more illuminating way. First, note that∫
d3x′

M× (x− x′)

| x− x′ |3
=

∫
d3x′M×∇′

(
1

| x− x′ |

)
(5.6.10)
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Then we use the formula ∇× (fM) = f(∇×M)−M× (∇f) which follows from

∇× (fM)i =
∑
j,k

εijk∇j(fMk) =
∑
j,k

εijk[(∇jf)Mk + f(∇jMk)]

= −
∑
j,k

εijkMj(∇kf)︸ ︷︷ ︸
(M×∇f)i

+f
∑
j,k

εijk∇jMk︸ ︷︷ ︸
(∇×M)i

. (5.6.11)

Rewriting it as M× (∇f) = f(∇×M)−∇× (fM) and substituting f = 1
|x−x′| we obtain∫

d3x′M×∇′ 1

| x− x′ |
=

∫
d3x′

1

| x− x′ |
∇′ ×M(x′) −

∫
d3x′ ∇′ ×

(
M(x′)

| x− x′ |

)
.

(5.6.12)

Using the divergence theorem for vector fields (see the cover of Jackson)∫
V

d3x′ ∇′ ×A(x′) =

∫
S=∂V

n×A dS (5.6.13)

the second term can be rewritten as a surface integral∫
S=∂V

M(x′)× n

|x− x′|
dS . (5.6.14)

Finally, we get

µ0

4π

∫
d3x′

M× (x− x′)

| x− x′ |3
=
µ0

4π

∫
d3x′

Jb
| x− x′ |

+
µ0

4π

∫
S=∂V

Kb(x
′)

|x− x′|
dS (5.6.15)

where Jb ≡ ∇ ×M is called a bound volume current density and Kb ≡ M × n a bound

surface current density.

If we take the surface to be an infinitely large sphere and assume that K vanishes at infinity,

we get

A(x) =
µ0

4π

∫
dV ′

| x− x′ |
{Jf (x′) +∇′ ×M′} . (5.6.16)

Comparing with the fundamental equation of magnetostatics in vacua,

∇×B = µ0Jf , (5.6.17)

we have

∇×B = µ0{Jf +∇×M}. (5.6.18)
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It is now conventional to introduce the magnetic field H, where

H =
1

µ0

B−M. (5.6.19)

In the context of media, the field B is known as the magnetic induction or magnetic

flux density. In terms of H and B, the fundamental equations of magnetostatics in matter

are

∇ ·B =0 . (5.6.20)

∇×H =Jf . (5.6.21)

Note that H is analogous to D in electrostatics; E and B are the fundamental fields, whilst

H and D depend on the medium.

5.6.3 Constitutive relation

In the case of (isotropic) diamagnetic and paramagnetic materials, where the magnetic mo-

ment arises solely from the applied magnetic field, there is a simple linear relation between

H and B

M = χmH, (5.6.22)

where χm is the magnetic susceptibility. Then we may write

H =
1

µ0

B− χmH (5.6.23)

yielding

B = µH (5.6.24)

where µ ≡ µ0(1 + χm) is the magnetic permeability.

For ferromagnets, the corresponding relation is non-linear and exhibits hysteresis, i.e. the

material retains a memory of its preparation.
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B(M)

H

B = F(H)

Remnant

magnetisation

5.6.4 Boundary Conditions at Surface Between Media

We will now obtain boundary conditions for the normal and tangential components of the

field at the boundary between two materials. Note that the following discussion is indepen-

dent of whether or not there is a linear relation between the H and B.

n

δ Α

C

Normal Condition

Apply Gauss’ Law to the pillbox shown

0 =

∫
dV ∇ ·B =

∫
B · n dS = (B2 −B1) · n δA (5.6.25)

where n is a unit normal from medium 1 to medium 2, and δA is the surface area of the

pillbox. Thus we have

B⊥1 = B⊥2

Tangential Condition

To get the boundary conditions on the tangential components, we apply Stoke’s theorem to

a contour C having the size ∆l along the boundary surface and lying in plane perpendicular
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to it ∮
C

H · dl =

∫
S

(∇×H) · da =

∫
S

Jf · da =

(∫
Jfdz

)
∆l ≡ K∆l, (5.6.26)

where S is a surface spanning C and K is the surface current density.

Thus we have the tangential boundary condition H
‖
2 −H

‖
1 = K or

n× (H2 −H1) = K .

5.7 Methods of Solving Boundary Value Problems

We will now look at various methods of solving boundary value problems between different

media. The method depends on nature of the constitutive relation between B and H, and

on whether there is non-zero current density.

5.7.1 Vector Potential

The magnetic field is always solenoidal, and therefore we can essentially always introduce a

vector potential A such that B = ∇×A.

The dynamical information for the magnetostatics of media is provided by the equation

∇×H = Jf . (5.7.1)

We will now specialise to the case where we have a linear constitutive relation, B = µH,

enabling us to write

∇×
[
∇×A

µ

]
= Jf . (5.7.2)

This can be written

∇2A−∇[∇ ·A] = −µJf , (5.7.3)

which in Coulomb gauge (∇ ·A = 0) becomes

∇2A = −µJf . (5.7.4)

This is analogous to the case discussed in Section 5.4.2, and the solution is that of Eq. (5.4.8),

with µ0 replaced by µ.
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5.7.2 Solution when Jf ≡ 0

In this case we have ∇×H = 0, and therefore we may admit introduce a scalar potential

φM such that

H = −∇φM . (5.7.5)

Once again, we will consider linear media, so that B = µH. Then we find that the scalar

potential satisfies Laplace’s equation

∇2φM = 0, (5.7.6)

where we assume that µ is piecewise constant, i.e has a constant value in each of the different

media we are considering.

5.7.3 Hard Ferromagnetic

In the case of a hard ferromagnet, we have Jf ≡ 0, and the magnetization is non-zero, and

essentially independent of the magnetic field H provided it is sufficiently small.

H

M constant

Since Jf ≡ 0, we can solve this problem using either a scalar or a vector potential.

Solution using Scalar Potential

The governing equations are

∇ ·B = 0 (5.7.7)

∇×H = 0 (5.7.8)

H =
1

µ0

B−M (5.7.9)

Since ∇×H = 0, we can introduce a scalar potential for the magnetic field,

H = −∇φM . (5.7.10)
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Then from Eq. (5.7.9), we have B = µ0(H + M) and from Eq. (5.7.7)

∇2φM = −ρM , (5.7.11)

where

ρM = −∇ ·M. (5.7.12)

In the case where there are no boundaries, this equation has the solution

φM =
1

4π

∫
d3x′

ρM(x′)

|x− x′|
= − 1

4π

∫
d3x′
∇′ ·M(x′)

|x− x′|
(integration by parts)

=
1

4π

∫
d3x′M(x′)∇′

(
1

|x− x′|

)
= − 1

4π
∇ ·
∫
d3x′

1

|x− x′|
M(x′).

Note that if we are far away from a non-zero M, i.e. r � r′, then we have

φM ' −
1

4π
∇
(

1

r

)
·
∫
d3x′M(x′) =

1

4πr3
m · x. (5.7.13)

where

m =

∫
d3x′M(x′). (5.7.14)

Suppose now that we had a hard ferromagnet confined to a volume V , with surface S. Then

there is a contribution arising from the discontinuity in M at the surface, which we can

express as a surface magnetization density,

σM = n ·M, (5.7.15)

and apply Gauss’ Law to obtain its contribution

φM = − 1

4π

∫
V

d3x′
∇′ ·M(x′)

|x− x′|
+

1

4π

∮
S

dS
σM
|x− x′|

. (5.7.16)

Note that for a uniform magnetization, the bulk volume integral vanishes, and the only

contribution arises from the surface term.

Solution using Vector Potential

We now write B = ∇×A, so that we have

H =
1

µ0

∇×A−M. (5.7.17)
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Thus Eq. (5.7.8) becomes

0 = ∇×H =
1

µ0

∇× (∇×A)−∇×M. (5.7.18)

Introducing an effective magnetization current

JM = ∇×M, (5.7.19)

we have, in Coulomb gauge,

∇2A = −µ0JM . (5.7.20)

Thus again each component of A satisfies Poisson’s equation, with solution

A =
µ0

4π

∫
d3x′

JM
|x− x′|

. (5.7.21)

In the case where there is a sharp boundary between two media, we again have a surface

contribution which we treat as for the case of a scalar potential, yielding

A(x) =
µ0

4π

∫
V

d3x′
∇′ ×M

|x− x′|
+
µ0

4π

∮
S

dS
M(x′)× n′

|x− x′|
. (5.7.22)

Example: uniformly magnetized sphere in a vacuum

r

θ

ez

M

Consider a sphere of radius a, with uniform magnetization M = M0ez. We will consider the

solution using a scalar potential.

Since the magnetization is constant throughout the body of the sphere, only the surface

integral contributes in Eq. (5.7.16), and we have

φM =
1

4π

∮
S

dS ′
n′ ·M(x′)

|x− x′|

=
M0a

2

4π

∫
dΩ′

cos θ′

|x− x′|
.
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To proceed further, we expand 1
|x−x′| in terms of spherical harmonics

1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ). (5.7.23)

Noting that cos θ′ = P1(cos θ′) =
√

4πY10(θ
′, ϕ′), and using orthogonality, we can write

φM(r, θ) =
1

3
M0a

2 r<
r2>

cos θ, (5.7.24)

where r<{>} = min{max}(r, a).

Inside the sphere, we have r< = r and r> = a. Thus

φM =
1

3
M0r cos θ =

1

3
M0z, (5.7.25)

which gives

Hin = −∇φM = −1
3
M

Bin = µ0(H + M) = 2
3
µ0M

}
, (5.7.26)

and we have that H (B) is anti-parallel (parallel) to M.

Outside the sphere,

φM =
1

3
M0

a3

r2
cos θ. (5.7.27)

Since M is uniform inside the sphere, we can associate this with the potential due to a

magnetic dipole of moment

m =
4πa3

3
M. (5.7.28)

The magnetic induction is parallel to the magnetic field, and given by

Bout = µ0Hout = −µ0∇φM =
2

3
M0µ0

a3

r3
(er cos θ +

eθ
2

sin θ) (5.7.29)

Sphere in External Field

Suppose now we add a uniform magnetic induction B0 = µ0H0. Then by the principle of

linear superposition, the resulting field inside the sphere is just the sum of the two solutions

Bin = B0 +
2µ0

3
M (5.7.30)

Hin =
1

µ0

B0 −
1

3
M (5.7.31)
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Suppose now that the substance is not permanently magnetized, but rather has a linear

relation between B and H,

Bin = µHin . (5.7.32)

Then M is also linearly related, and from eqns. (5.7.30) and (5.7.31) we have

M =
3

µ0

(
µ− µ0

µ+ 2µ0

)
B0. (5.7.33)

For the case of ferromagnets described earlier, we do not have such a linear relation; indeed

we have non-zero M for zero applied magnetic field. We can obtain one relation between

Bin and Hin by eliminating M in Eqs. (5.7.30) and (5.7.31), whilst obtaining another from

the hysteresis curve.

Example: spherical shell in uniform field

Consider a shell of permeability µ in a vacuum, as shown below.

a

b

B  =    H
0 00

µ

Since the current density is zero, we can once again write H = −∇φM . Furthermore,

B = µH, and thus ∇ ·H = 0 so that the scalar potential satisfies

∇2φM = 0, (5.7.34)

subject to the boundary conditions at r = a and r = b. We are now experts at writing down

the solution in terms of Legendre polynomials.

φM = −H0r cos θ +
∞∑
l=0

αl
rl+1

Pl(cos θ) r > b

φM =
∞∑
l=0

[
βlr

l +
γl
rl+1

]
Pl(cos θ) a < r < b

φM =
∞∑
l=0

δlr
lPl(cos θ) r < a
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where we have imposed that there be a uniform field at infinity for the case r > b, and that

the solution is regular as r → 0.

We now impose the boundary conditions at the interfaces r = a and r = b

B⊥ is continuous

H‖ is continuous
(5.7.35)

which become:

∂φM
∂θ

(b+) =
∂φM
∂θ

(b−)

µ0
∂φM
∂r

(b+) = µ
∂φM
∂r

(b−)

∂φM
∂θ

(a+) =
∂φM
∂θ

(a−)

µ0
∂φM
∂r

(a−) = µ
∂φM
∂r

(a+)

We now use these equations to determine the coefficients αl, βl, γl, noting that

∂

∂θ
Pl(cos θ) = P 1

l (cos θ). (5.7.36)

All the coefficients vanish for l > 1 (exercise), and we have (see Jackson)

α1 =

[
(2µ′ + 1)(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3
(µ′ − 1)2

]
(b3 − a3)H0

δ1 = −

[
9µ′

(2µ′ + 1)(µ′ + 2)− 2a3

b3
(µ′ − 1)2

]
H0, (5.7.37)

where µ′ = µ/µ0.

For r > b, we have the uniform field together with a dipole of moment α1, parallel to H1:

φM = −H0r cos θ +
α1

r2
cos θ. (5.7.38)

For r < a, there is a uniform magnetic field parallel to H0, of magnitude −δ1:

φM = −(−δ1)r cos θ. (5.7.39)

From Eq. (5.7.37), we see that δ1 ' 1/µ′ as µ′ →∞: the effect of a shell of high permeability

is to shield the interior from the magnetic field.


