Chapter 1

Introduction to Electrostatics

Electrostatics is the study of time-independent distributions of charges and fields.

1.1 Coulomb’s Law

The foundation of electrostatics is Coulomb’s Law, together with the Super-

position Principle which we will discuss later.

Coulomb’s Law

The force Fy; on a particle of charge g2 at ry due to a particle of charge
q1 at rp is given by
21
Fy = k(h(lQ;Q
ry —

where
® 7T ="r2—r

e 7 is a unit vector in the direction of r.

Coulomb’s law is an experimental observation.
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In | ST units|:

e it = 1/4meg - the 47 is conventional.

e The charges ¢i,q> are measured in Coulombs (C'), and defined via the

magnetic effects of currents.

e ¢, the Permitivity of Free Space is also a defined quantity:

6o = 8.854187817... x 1072 C2N 12

There are two further observations that we can make:

e The forces on the two charges are equal and opposite, obeying Newton’s
third law: Fjo = —Fy;.

e The force is repulsive (attractive) for like (unlike) charges.

Electric Field: The electric field F at r is defined as the force acting on a unit
test charge at that point. More strictly,

F
B(r) = lig 2,
q— q

so that the electric field due to the test charge can be ignored.
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1.2 The Superposition Principle and Extended Distribu-

tions

In the above we have looked at the fields due to single, isolated point-like
charges. In this section, we will explore the second emperical ingredient necessary

for our understanding of electrostatic fields, the linear superposition principle.

Linear Superposition Principle

The resultant force on a test particle due to several charges is the

vector sum of the forces due to the charges individually.

Example: We have N charges ¢;(i = 1,..., N), situated at the points r;. The
force on a test particle of charge ¢ at the point r is given by

O

=3

where k = 1/4mey in SI units.
Thus the electrostatic field E(r) is

1.2.1 Extended Charge Distributions

We will now apply the linear superposition principle to a continuous distribution
of charge.
Consider a continuous distribution of charge density (charge per unit volume)

p(r'"), confined to a volume V.
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In order to use the superposition principle,
we will divide the volume V' into infinites-
simal volume elements AV’ centred at r’.
The charge occupying the volume element
at r' is

dg = p(r')dV’

Therefore, the electrostatic field at the point r due to the element of charge dq at

ris

gy =108

where we take AE(r) — 0 as r — o0o. We now use the principle of linear

superposition to write that the resultant field at r as a sum over the elements

AV inV NAV
R

Aver
In the limit that AV’ becomes infinitessimal, we have

k/,o (r —1r")dV’

|r—r |3

Much of the rest of this course is centred on methods for obtaining the electrostatic

field, and we begin with one of the simplest - Gauss’ Law.

1.3 Gauss’ Law

Suppose that the charge density p(r) is the sole source of the electrostatic field
E(r). Gauss’ Law relates the flux of E out of a closed surface S bounding a

volume V' to the total charge () contained within V'
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|

Gauss’ Law states that:

in SI units

/Ew&%MQ:Q

where
e () = total charge within S

e dS5 = outward normal to surface, having infinitessimal area dS

Gauss’ Law provides a powerful way to compute the electrostatic field for the
case where there is spherical, or even cylindrical, symmetry. It will also form the

starting point for our derivation of Laplace’s equation later in the course.

1.3.1 Geometrical Interpretation of Gauss’ Law

Consider a point charge ¢ placed at the origin (not necessarily inside V'), and the

electrostatic flux across an area dsS.
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m

dQ

Then we have

dS cosf

E-dS = kq 5

- r

= kqdf)
where df) is the solid angle subtended by dS at the origin; df? is the projection of
the surface element dS onto the unit sphere. Note that [¢ df) = 47 where S is a

unit sphere, or any closed surface, enclosing the origin.

e [f the charge ¢ is outside the volume, then the total flux fiy £/-dS is zero; the
contributions from two elements of surface area produced by the intersection

of a cone with the surface cancel, see below.

e If the charge ¢ is inside the volume, the total flux fiy F - dS = ¢/e.
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ds

Outside Inside

Though this provides an intuitive interpretation of Gauss’ Law, we will now pro-

ceed to a more formal proof.

1.3.2 Proof of Gauss’ Law

We will begin by proving Gauss’ Law for a single, pointlike charge ¢ at the origin.

Gauss’ Law for a Single Charge

Our starting point is once again Coulomb’s Law:

T
E(r) = ka3

Lemma: For a single charge at the origin, V- E =0 for r # 0

Proof:
V(&) = (V) r+ (Vg

7"3

3 3
— _<—Z>-£+—3:O when r # 0
T
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Gauss’ Law for a point charge is:
E.dS — drtkq if the s'urface S encloses the origin
ST 0 otherwise

Proof:
Origin outside V':
E(r) is continuously differentiable, and V- £ = 0 everywhere within V. From the

divergence theorem,
/SE -dS = /V(z -E)dV =0 if origin not within V

Origin inside V'
E(r) is undefined at r = 0. Therefore define V' to be the region between the
closed surfaces S’ and S, where S’ is a small sphere of radius € centred at the

origin:

Now in the region V', V- E = 0. Therefore, by the divergence theorem,
|, Y-EdV=[E-dS+ [ E-dS=0
Introduce spherical polar coordinates (r,6,1). Then on the sphere S’ we have:

dS = —€*sinf db di e,
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where the outward normal for S’ points towards the origin. Therefore

2m .
L e
= —4rkq 1ndependent of €

We now let € — 0, so that V' — total volume within .S, and we have

/ E-dS =4rkq = 4 in SI units
S— — €0

so that the theorem is proved.

If the point charge is at the point r;, then we have

1
E(r )_qu

By changing variables to p = r — 1y it is easy to show

E.-dS =
SE=A-

Atkq =q/e¢y in Slunits ifr, eV
otherwise

Gauss’ Law for Distribution of Point Charges

We can extend the proof of Gauss’ Law for a single charge distribution to a set of

N point charges {¢;} at {r;} using the linear-superposition principle:

N
E@Z%E@

where E(g) is the total electrostatic field at the point r, and F;(r) is the electro-
static field at the point r due to the charge ¢; at the point r;. Applying Gauss’

Law for point charges proved above, we have

/Ei-dS: dtkq; = qi/ep in Sl units ifr, eV
S— T otherwise
Hence

454@:: /E dS =drk S q

i, eV

= 4nkQ = 4 (in SI units)
€0
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where () is the sum of the charges contained within the volume V.

Gauss’ Law for Continuous Distribution of Charge

This we prove by exact analogy with derivation of the electrostatic field for a
continuous distribution: we divide up the volume V' into elements of volume AV”,

centred at r’; and obtain
JLE-dS = dmk Y p(r) AV
s AVTEV
AV50 47?/6/‘//)([/) dV' = AmkQ,

where () is the total charge contained within the volume V.

S

not included
included



Chapter 1 11
1.3.3 Applications of Gauss’ Law

Gauss’ Law provides a powerful method of determining the electrostatic field

where we have symmetrical or cylindrical symmetry.

Spherical Symmetry

Suppose we have a spherically symmetric distribution of charge - or mass -
p = p(r), where r = |r|. Then the electrostatic field will depend only on r, and
therefore must be in the radial direction.

Choose a spherical surface S of radius r, centred on the centre of the charge

distribution. Then we have that
[y () - dS = [(E(r) e, dS = [ B(r)r®dQ = AmE(r)
But by Gauss’ Law, we have
J5E - dS = 4mkQ(r),

where Q(r) = Jy p(r’) dV is the total charge contained within the sphere of radius
T.

Thus we have

kQ(r) Q(r)

_— e
r r
- r2  —  dmwegr? —

in SI units.

Note that outside a spherically symmetric charge distribution, the field is the

same as if we had a point-like charge Q)(r) at the origin.
Example: Consider a thin spherical shell of charge (). We can say immediately:

e Outside the shell, the electrostatic field is the same as that of the equivalent

point charge () at its centre:

e Inside the shell, the field is zero.
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Cylindrical Symmetry

Suppose we have a infinitely long, cylindrically symmetric distribution of
charge, with the axis of symmetry along the z axis. Introduce cylindrical co-
ordinates (p, 0, z). Note: we use 6 rather than ¢ for the axial coordinate, to avoid
confusion with the potential that we will be introducing next.

Consider an element of length L, and radius p, containing a charge Q(p, L):

S

< \//

Y

Ep

The field will depend solely on p, and therefore must be in the e, direction,

E(r) = E(p)e,. Applying Gauss’ Law to the cylinder we have

J E - dS = 4nkQ(p, L)

Now on the “end-caps”, z =0 and z = L, E - dS = 0, and therefore

JoE-dS = [ E(p)e, - dS = E(p) [ dS = E(p)2mpL.

Hhus 2k L 2 L
pL AmegpL

Example: Infinitely long, thin rod carrying charge A per unit length. Thus,

Q(p, L) = AL and we have
A

- 2meqp

E(p)



Chapter 1 13

We expect the treatment of the rod as infinitely long to be a good approximation

for a rod of finite length providing
w < p<<l

where w and [ and the width and the length of the rod respectively.

1.4 Maxwell’s First Equation (ME1)

Our starting point is Gauss’ Law:
. / /
JsE - dS =4k || p(r') dV
where p(r’) is the charge density. By the divergence theorem, we have
E-dS:/ V. EdV,
S— — V— —

and thus
JAN - E —4nkp}dV' = 0.

This applies for any volume V', and therefore the integrand itself must vanish:

V-E=drkp="L. (1.1)

€0

This is Maxwell’s First Equation (ME1). ME1 is essentially an expression of

Gauss’ law in differential form.
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1.5 The Scalar Potential

ME]1 has provided us with a differential equation to describe the electric field,
E(r), but it would be easier were we able to work with a scalar quantity. The

scalar potential provides a means of so doing.

Scalar Potential

e Given a vector field A(r), under what conditions can we write A as the
gradient of a scalar field ¢, viz. A(r) = —V ¢(r), where the minus sign

is conventional?

e What can we say about the uniqueness of ¢(r).

Definition: A simply connected region R is a region where every closed curve
in R can be shrunk continuously to a point whilst remaining entirely in R.

Examples:

The region between two cylin-

The inside of a sphere is simply ders is not simply connected:

ted
connecte it’s doubly connected
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1.5.1 Theorems on Scalar Potentials

Let A(r) be a continuously differentiable vector field defined in a simply con-
nected region R. Then the following three statements are equivalent, i.e. any

one implies the other two:-
1. VX A(r) = 0 for all pointsr € R

2. (a) fcé(fr’) -dr' = 0, where C' is any closed curve in R

(b) ¢(r) = — TE A(r") - dr' does not depend on the path between ry and 7.
ro To

3. A(r) can be written as the gradient of a scalar potential ¢(r)

r

Alr) = =V o(r) with ¢(r) = — [~ A(r') - dr

g T ada

where 7 is some arbitrary fixed point in R.

Proof that (1) implies (2):

Let V x A(r) = 0in R, and consider any two curves, C; and Cj from the point
ry to the point r in R. Introduce the closed curve C' = C} — C5, and let S be a

surface spanning C.
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Apply Stokes’ theorem:
/ r_ ) _
tﬂﬂ@wﬁ-éVxédS—O

since V. x A = 0 everywhere. Note that we use 1’ as integration variable to

distinguish it from the end-points of C; and C5, r, and r.

Thus we have:
VxA=0= ¢ AW)-dr' = 0 (1.2)

c
for any curve C' in R, and the first part of the proof is done.

For the second part of the proof, we observe

Jo, AC) - dr’ = [ AW i = | AW -di’ =0,

Thus the scalar potential ¢(r) of the vector field A(r) defined by

o) = = [ Ar) - dr’

is independent of the path of integration joining r, and r.
Proof that (2) implies (3)
Consider two neighbouring points r and r 4 dr. Define the scalar potential as

before:
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Now define the quantity d¢(r):
0p(r) = o(r+dr) — o(r)

r+dr r N
- {_ /7’:) — AW -dr' + /7“_; A(r') @/} (by definition)

d
- {/T?_T A(r') - dr' + /fo A(r') '@’} (swapped limits on 2nd /)

redr .
= — / A(r') - dr’  (Integral around closed curve vanishes)

! r+dr
- — [A(f) -7’ ; ~ (for infinitesimal dr)
= A(r) {—-(r+dr) + 1}
So d¢(r) = —A(r)-dr (1.3)

To perform the integral, we used path independence and integrated along the

infinitesimal straight line between r and r + dr along which A(r’) is constant up
to effects of O(dr).

But, by Taylor’s theorem, we also have

o(r) = 2N ;= () -a (1.4
i
Comparing equations (1.3) and (1.4), we obtain
Alr) = =Vo(r)

Thus we have shown that path independence implies the existence of a scalar
potential ¢ for the vector field A.

Proof that (3) implies (1)
A=V¢ = VxA=Vx(Ve)=0

because curl (grad ¢) is identically zero (i.e. it’s zero for any scalar field ¢).
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1.5.2 Terminology
Such a vector field is called

e Irrotational: Vx A(r) = 0 < fé(f) ~dr' =0
C

If you look in older textbooks, you will sometimes see rot rather than curl.

e Conservative: e.g. if A = force, then ¢ is potential energy and total energy

is conserved (see later).

e The field ¢(r) is the scalar potential for the vector field A(r).

1.5.3 Uniqueness

¢(r) is uniquely determined up to a constant.

Proof:
Let ¢ and ¢ be scalar potentials obtained by different choices of ry. Then

Vo -Vi=A-A=0

Therefore
Vi —9¢) =0

Integration of this equation wrt any of x, y, or z gives
¥ — ¢ = constant

Therefore
Y = ¢ + constant

The absolute value of a scalar potential has no meaning, only potential dif-

ferences are significant.
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1.5.4 Existence of Scalar Potential for Electrostatic Field

After the digression on subject of the scalar potentials, it is time to show that the
electrostatic field is, indeed, irrotational.
The central result of this chapter was the expression for the electrostatic field due

to a continuous charge distribution

k/,o (r—1' dV’.

|r—1" |3

Thus we have

VxE(r) = Vx{p(’f)f_f,)}dvl

where the derivatives act only on the unprimed indices.

The electrostatic field E(r) can be written in terms of a
scalar potential F(r) = — Vo(r)

1.5.5 Methods for finding Scalar Potentials

We have shown that the scalar potential ¢(r) for an irrotational vector field A(r)

e LG

for some suitably chosen 7y and any path which joins ry and r. Sensible choices

can be constructed via

for ry are often ry = 0 or ry = oo.

We have also shown that the line integral is independent of the path of integration
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between the endpoints. Therefore, a convenient way of evaluating such integrals is
to integrate along a straight line between the points r, and r. Choosing r, = 0,

we can write this integral in parametric form as follows:

r = Ar where {0 < X < 1}

so dr' = d\r and therefore
A=1
o(r) = — | _, AQAr)-(dAr)
Example:
Let A(r) = (a-r)a where a is a constant vector.

It is easy to show that V x ((a-r)a) = 0. Thus

or) = — [ AW)-dr’

= — [ (@ 1)a)-d
= — [ (@ Ar)a) - (@rr)

ISR B
e [
1

= —5la-r)

Of course, this is all rather artifical. What we really want to do is to obtain ¢

and A from first principles.
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1.5.6 Singular Fields

We have seen that, for the case of a point-charge at the origin, the electric field
is singular at r = 0. In such cases, it is not possible to obtain the corresponding
scalar potential at r by integration along a path from the origin. All is not
lost - remember that the starting point for our path is arbitrary, and often it is
convenient to take it at infinity.

Example: Electric field due to point charge at r = 0: E(r) = kqr/r3, so that
E(r = 0) is singular, and hence undefined. As in the proof of Gauss’ law, our
region R must exclude an infinitessimal sphere centred at r = 0.

Here we choose a path from ry = oo, yielding

or) = — [ E =~ [ E(w)-drr

ld)\r
- —kq/ A2 3

r
Thus we have the famous 1/r potential due to a point charge.
Because of the linearity of the gradient operation, we can impose the linear su-

perposition principle on the potential, and hence obtain an expression for the

potential due to an extended charge distribution:

)=k [ pr _dv’ (1.5)

'

1.5.7 Multiply-connected Regions

In this case, V x A = 0 does not imply the existence of a scalar potential function.

Example: Work using cylindrical coordinates (p, ¢, z). A vector field A, with

a
A, =A, =0,A,=—
P ¢ P
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where a is a constant, is defined outside an infinitessimal cylinder about the z-
axis, where A, is singular. This region is doubly connected (c.f. example above

where we exclude an infinitessimal sphere).

y A
€6
_Vv ep
Excluded ’
region 0
p .
X

Then we have (Exercise!):
e VXA=0

o ¢ A-dr# 0 where C is a circular path enclosing the z-axis
C

In this case, the “potential” would depend on the choice of path, and in particular
the winding number - the number of times that a path wraps around the z-axis.

Examples: Vortices in superconductors, Cosmic strings...

1.5.8 Conservative Forces and Physical Interpretation of Potenital

To see how the name conservative field arises, consider a vector field F(r) cor-
responding to the only force acting on some test particle of mass m. The work

done by the force in going around a closed curve C' is

W= E)-dr

For a conservative force, V. x F' = 0, the earlier theorems tell us:
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e The total work done by the force in moving the particle around a closed curve

1S zero.

e We can write the force in terms of a scalar potential
F(r)=-VU(r).
where the minus sign is conventional (see later).

We will now show that for a conservative force, the total energy is constant in
time.

Proof

The particle moves under the influence of Newton’s Second Law:

mit = F(r).

Consider a small displacement dr taking time dt along the path followed by the

particle. Then we have

mit-dr = F(r)-dr = -NVU(r) - dr.

Integrating this expression along the path from r4 at time ¢ = ¢4 to rp at time
t =tp yields
r r
m [Li-dr =— [EYU() - dr. (1.6)
ra T ra— T

We can simplify the left-hand side of equation 1.6 to obtain

B .. tg .. . ts 1 d . 1
m/r_ [-@:m/m [-[dt:m/tA 5%_2dt:§m[v%—vi],

where v4 and vp are the magnitudes of the velocities at the points labelled by A
and B respectively.

To integrate the right-hand side of equation 1.6, we appeal to Taylor’s theorem
to note that
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is the change is U when we move from r to r + dr. Thus we have

B _ (s o B
VU@ dr =~ [PEdU = Us— Up

where Uy and Up are the values of the potential U at r4 and rp, respectively.
Thus we have that

1
Emvi +Uy = §mv% +Ug
e The first term on both sides we recognise as the kinetic energy

e The second term we identify as the potential energy

The Total Energy

1
E:§mv2+U

is conserved, i.e. constant in time.

We have seen that the existence of a scalar potential is associated with the irrota-
tional or conservative nature of a vector field. Where the vector field corresponds
to a force, we have a neat physical motivation for the name: a force is conservative
if the work done in going around a closed path is zero, and if a particle moves

solely under the influence of that force, then the energy is conserved.

Physical Interpretation of ¢(r)

In electrostatics, the force F' acting on a charge g due to an electrostatic field £
is F(r) = qE(r). Now E(r) = —=V¢(r) so that

F(r) = =V(qgo(r)).

We have seen that the (conservative) force acting on a particle is minus the gra-

dient of its potential energy: F(r) = —VU(r).
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The potential energy U(r) of a charge ¢ sit-

uated at r in an electrostatic potential ¢(r) is

U(r) = qo(r). (1.7)

1.5.9 Potential Energy of Charge Distribution

For the case where ¢ vanishes at infinity, the potential U(r) is the work done, W,
in bringing the charge ¢ from infinity to the point r. We will now consider the
work done in assembling a set of point charges ¢; at r,, ¢ =1,..., N.

We do this by bringing each charge 7 in turn, one at a time, to position r;, and
then fixing it in position. The work done in bringing charge i is

¢ ‘2 g

47T€0 j=1 ’tz — T

m:
7l

and thus the total work done in assembling the charges is

1 X qg;

W =
dmey =513 |1y — fj’

:U,

where U is the potential energy of the system. We can write this in a more

symmetric form as

U:

where we do not include the self-energy term, i = j.

We can generalise this to a continuous charge distribution in the usual way, viz

U=

/d3 73, PP

87T60 ]r — ']’

and we now use eqn. 1.5 to write

U =5 [ por)av, (19

analogous to eqn. 1.7.
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We can also interpret the potential energy in terms of the electric field, by using
ME1

U = 3 [dvV-Em)sr)
— —%O/dV E(r)-NVo(r) (Integration by parts)
_ o 2
= o Javier (1.9)
We now identify the integrand as the energy density

ulr) = JIE@)P.
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1.6 Laplace’s and Poisson’s Equation

We are now ready to derive a differential equation for the potential. Our starting

point is Maxwell’s First Equation (ME1), derived earlier:

V.-E=drkp="L.
€0
We now make use of the irrotational nature of E(r) to write E = —V¢(r). Thus

ME1 becomes

V2¢(r) = —4nkp(r) = —p(r) /ey in SI units

where V2(r) = V- (Vo(r)) = 0¢(r)/0x;.

e This equation is Poisson’s Equation. p(r) is the source for the electro-

static potential ¢(r).
e If we have that the source p(r) = 0 everywhere, then this equation becomes
V2 = 0.
This is Laplace’s Equation.

These are two of the most important equations in physics. They, or close variants,

occur in:
e Electromagnetism, as above

e Gravitation, with & — —G, p the mass density, and ¢ the gravitational

potential

e Fluid dynamics, for the irrotational flow of a fluid.
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1.6.1 Uniqueness of Solutions of Laplace’s and Poisson’s Equation

Laplace’s and Poisson’s equations are [inear, second order, partial differential
equations; to determine a solution we have also to specify boundary conditions.
Example: One-dimensional problem
d*¢(x)
dx?
for x € [0, L], where X is a constant. This has solution

1
o(z) = 5)@2 + Az + B

=

where A, B are constants. To determine these constants, we might specify the

values of ¢(z = 0) and ¢(x = L), i.e. the values on the boundary.

Consider the solution of Poisson’s Equation within a finite volume V', bounded

by a closed surface S. Boundary conditions are classified as:

e Dirichlet boundary conditions, where we require
o(r) = f(r) on surface S,

i.e. we specify the value of ¢(r) on the boundary. Example: Electrostatic

potential inside a conductor, with ¢ specified on the boundaries.

e Neumann boundary conditions, where we require

99 _

on

n-Vo(r) =

g(r) on surface S,

where n is a unit vector normal to the surface S, i.e. we specify the normal

derivative of ¢ on the boundary.
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normal /\

Example: Electrostatic potential inside S

S
<
S

S, with charge on S specified on the

boundaries.

We will proceed to show that the solutions of Laplace’s and Poisson’s are unique,
up to a constant (Neumann), if subject to either of the above boundary conditions.

We begin with a couple of useful vector identities

Green’s First Identity and Green’s Theorem

We begin with a couple of identities that will be useful both in this proof and
later.

Let 11 and 19 be two continuously differentiable, arbitrary scalar fields defined
in a volume V' bounded by a closed surface S. Introduce the vector field A(r) =

Y1 V1. From the divergence theorem, we have

[ V-Adv = [ A-ndS

V— — S— -
where n is the unit outward normal to the surface S.
We now apply the vector identity

VA=V + Vi - Vi,
to obtain
[ @1V + Yoy - Vo) dV = [ 41V - ndS. (1.10)

This is known as Green’s first identity.
If we write down eqn. 2.5 with 1; and 1), interchanged, and take the difference of

the two equations, we obtain

J Vs = o VP) AV = [ (1Y — 92V ¢) - ndS. (1.11)
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This identity is Green’s Theorem.

1.6.2 Proof of Uniqueness of Solutions of Laplace’s and Poisson’s Equa-

tions

We now proceed to the formal proof. Let ¢1(r) and ¢o(r) be solutions of Poisson’s

equation V2¢; = —p/¢q inside a volume V bounded by surface S, satisfying either:

1. Dirichlet boundary conditions

oi(r) = f(r) for r on surface S

2. Neumann boundary conditions

n-Vaoi(r) = g(r) for r on surface S

where f(r) and g(r) are continuous functions defined on the surface S.

Consider the function
(1) = d1(r) — alr).
Then 1 satisfies Laplace’s equation:
V3p(r) =0 inV
with either
L. ¥(r)=0 for r on surface S - Dirichlet.
2.n-Vi(r)=0 for r on surface S - Neumann

We now apply Green’s first identity for the case 1y = ¥y = 1), and obtain

JIVOPav = [V 4 [VoP)dv (since V2 =0in V)
— /S@bng -ndS (from eqn. 2.5)
_ 0 (1.12)
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since either ¢(r) = 0 or V¢ - n = 0 on surface S. Now |V (r)|? is positive
indefinite, i.e.

Vo (r)P >0

for all r € V. Therefore, using equation (1.12), we have that Vi (r) = 0 every-
where in V', and thus

Y (r) = constant

forallr e V.

Thus we have

e Dirichlet Problem: 1 (r) is continuous at surface S, and ¥(r) = 0 on

the surface. Therefore 1)(r) = 0 everywhere, and solution is unique.

e Neumann Problem: Vi(r)-n = 0 on the surface S, and the constant

undetermined. Solution is unique up to an additive constant.

Some observations on the proof:

e We can specify either Dirichlet or Neumann boundary conditions at each
point on the boundary, but not both. To specify both is inconsistest, since

the solution is then overdetermined.

e However, we can specify either Dirichlet or Neumann boundary conditions

on different parts of the surface.

e The uniqueness property means we can use any method we wish to obtain
the solution - if it satisfies the correct boundary conditions, and is a solution
of the equation, then it is the correct solution. A good example: Method of

Images, to be covered in the next chapter.
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1.6.3 Uniqueness Theorem in an Infinite Region

We need a slight refinement of the proof if the region is infinite, ie if S contains
a “surface at infinity”.

The two solutions are the same provided they agree to O(1) at infinity.

Proof:

We merely need to show that this is a sufficient condition to ensure that the

surface integral vanishes at infinity.

Consider a sphere, radius r, area S = 4mr?. Suppose

Y = ¢1—¢2 = O(1/r) as r — o0 so that Vi = O(1/r?)

then /Sww -dS = O(1/r)
which vanishes as r — oo0. The remainder of the proof is unchanged.
e If the potential is due to a localised charge distribution, then, by the mul-
tipole theorem, it falls off as least as fast as (1/r) as r — oo. Hence, the

difference ¢ = ¢ — ¢ must also fall off as least as fast as (1/r), and the

uniqueness theorem applies.

e Sometimes a uniform field is specified at infinity. For example, if the uni-
form field £ is in the z direction, then
¢(r) = K — Ez
where K is a constant. In this case, the uniqueness theorem holds because
the ‘two’ solutions must satisfy the boundary condition
o(r) + Ez — K + O(1/r)
as r — 00.

The next couple of chapters of this course will be concerned with solving such
boundary-value problems. We will conclude this chapter by discussing the bound-
ary conditions to impose on our solutions, and in particular the boundary condi-

tions at a conductor.



Chapter 1 33

1.7 Boundary Conditions at a Conductor

e In a conductor, electrons are able to move freely so as to set up a charge

distribution.

e In the presence of an external electrostatic field, a charge distribution is gen-
erated under the influence of this field, and itself give rise to an electrostatic
field.

e Once equilibrium is attained (about 107'® secs. for a good conductor), no
current flows, and thus the electric field E is zero throughout the body of a

conductor.

e If the electric field vanishes in a conductor, the potential must be constant.
This provides the defining property of a conductor, namely that the boundary

of a conductor is an equipotential surface.

On the boundary of a conductor, ¢(r) = const.

e Conventionally, we take ¢ = 0 for an earthed conductor.

e The electric field at the surface of a conductor is normal to the surface; a

tangential field would give rise to a charge flow along the surface.

1.7.1 Surface Charge Density at a Conductor

Within a conductor, the electrostatic field £ must be zero. However, the field is
zero because of an induced charge density sufficient to annul the external field.
Now MEL tells us that V - E = p/e, where p is the charge density. So if E is
zero within the conductor, the charge density must be zero. So where does the
induced charge density reside?

The charge density is confined solely to the surface of the conductor
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We can compute this surface charge density using Gauss’ Law.

AreadA
/

Consider applying Gauss’ Law to the infinites-
simal “pill-box” of height dh and area dA, as

shown. Within the conductor, &/ = 0, and at
g the surface of the conductor E is normal to the
\ surface.

surface charge density

Therefore we have

where o is the surface charge density, and n is the outward normal to the surface
of the conductor.
Thus we have that the surface charge density is proportional to the discontinu-

ity in the normal electrostatic field at the conductor.

E-n=o/e

Note: the surface charge density discussed here is different to a sheet of charge
of density o per unit area discussed earlier in the course. The latter may best be
viewed as a charge distribution in an insulator, i.e. a fixed charge distribution.
Unfortunately, the two terms are often confused in the literature, and indeed

probably in these lectures!

1.7.2 Capacitance and Potential Energy of Conductors

Consider now a set of NV isolated conductors, with charge ¢;, i = 1... N, and with
no external electric field. Then each conductor is an equipotential ¢;, and the

charges reside on the surface of the conductor.
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Thus the potential energy of this system is

1 1
U= [dVp(ne(r) = Said:

The potentials ¢; and the charges ¢; are not independent. In particular, for a
given set of charges ¢; the potentials are determined by the solutions of the field
equations. Because of the linearity of the field equations, the relationship between

the ¢’s and the ¢’s must be linear, i.e.
N
¢ = > Pijqj,
j=1
which in matrix form may be written
¢ = Pq.

We can invert this equation to obtain
N
g = _ Ci;¢; (1.13)
j=1

where, formally, C = P~ 1.

The diagonal elements of this matrix C;; are the capacitances, whilst the off-
diagonal elements Cj;,7 # j are the coefficients of induction. We can use
eqn. 1.13 to write the potential energy of a system of conductors in terms either

of the potentials or charges alone:

1 1 _
U= B >_9iCijp; = 2 ZQiCijlqj
ij ij
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Boundary-Value Problems in

Electrostatics

In this chapter we will examine solutions to Poisson’s and Laplace’s equations
in electrostatics. Before we proceed to a formal solution of Poisson’s equation,
we will look at a few simple solutions. In the next section we will exploit the
uniqueness theorem in a particularly neat way through the Method of Images, but

first, back to Gauss’ Law for a simple example. . .

Example: Charged sphere inside grounded, conducting shell.
A sphere of radius a, carrying a charge (), is placed inside an grounded, conducting

sphere of radius b (b > a). Find the potential in the region a < r < b.

® =0 onsurface
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Thus we have to solve Poisson’s equation, subject to the boundary conditions

o(r) =0 for r = b. Apply Gauss’ Law to the region a < r < b:

E(r) = Tre? O <r<b
for which the potential is
¢ = < +do;  a<r<b
dmegr

where ¢y is a constant.

The boundary conditions tell us that ¢ vanishes at r = 0. Thus we have

¢ © (1—1>, a<r<hb.

- dmeg \r b

Let us check that our solution for ¢(r) satisfies Poission’s equation for a < r <
b. We are implicitly working in spherical polars (r, 6, ¢), therefore (from your
favourite vector-calculus course, or back of Jackson):
2
VEp(r,0,1) = %% <7’2 %) t sz siln26 {sin&% <sin6 %) + %}
Q 10 (,(-1
B 41eg r2 Or {T <ﬁ>}

_ ¢ i2<_1)20

Ameg T2 Or

Hence ¢(r) satisfies V2¢(r) = 0 in the charge free region a < r < b, and satisfies
the boundary condition ¢(b) = 0 on the surface. Therefore, it is the unique
solution of Poisson’s equation in this region. Of course, due to spherical symmetry,
$(r) doesn’t depend on 6 or v, and therefore the calculation of the V2¢(r) is
particularly simple.

Finally, let us find the surface charge density on the conductor. At the boundary

of the conductor,

Q

E=—% ¢
— 47r60b26_
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Thus the surface charge density is given by

Q@
A7h?

which is negative, as expected. Indeed the total induced charge on the conductor

o =

is equal and opposite to that of the charge distribution.

Once again, the method was particularly simple in this case because of spherical

symmetry. Similar simplifications occur in the case of cylindrical symmetry.

2.1 Method of Images

The uniqueness property of the solutions of Laplace’s and Poisson’s Equations

leads to a neat method of obtaining their solution in particular geometric cases.

Consider a charge ¢ placed at r, = hk above g I- r_ P
an infinite grounded conducting plane at
z = 0, as shown on the right. Then on the

conducting plane the potential must vanish. —
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Now consider a system with a charge ¢
placed at r, and a charge —q placed at —r;
in the absence of the conducting plane, as

shown on the right. The potential ¢(r) is

q 1 —q 1
r)= :
#r) dreolr — 1] dmeolr + 1]
At z = 0, the potential vanishes because

here points are equidistant from the posi-
tive and negative charges. Furthermore, in

the upper half plane ¢ must satisfy Poisson’s

equation for a point charge at r;, since no
further changes have been introduced in this
region (the only charge we have introduced

is in the lower half plane).

Thus, by our uniqueness theorem, the potential in the upper half plane is the

same as that of a charge ¢ placed above an grounded sheet at z = 0.
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2.1.1 Point Charge near grounded Sphere

¢=0
Consider a point charge g placed at \

a distance b from the centre of an

grounded conducting sphere of radius Q
a < b. We will now show that an a
equivalent problem is to place an im-
age charge ¢ = —qa/b as shown.

<------- t—) ——————— >

By symmetry, the image charge ¢’ must lie along OQ, at a distance V', say, from

the centre of the sphere. Thus the resultant potential of the image system is

1 q q
gb(i)_ﬁlﬂe(}{li—le " |£—1_?'|}'

We need two equations to determine ¢’ and b’; we will obtain these by imposing

that ¢ vanish at the two points where OQ) intersects the sphere

1 q q
=0
4ﬂeo{b—a+a—b’}

1 q q
= 0.
4ﬂeo{a+b+a+b’}

Eliminating ¢’, we obtain

a+b’_a+b
a—V b—a
and hence
v = a®/b.

We can substitute this into either equation to obtain

, —_—

q¢ = —qa/b.
Finally, let us verify that ¢ does indeed vanish for all points on the surface of the

sphere. On the surface,
2 4

r=V)? = a* —Qa%cosﬁ%—%
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CL2

= 5 {a2 — 2abcos O + b2}
P

a
= ﬁ’i—l_ﬂ

and hence

Ol = {!Z b b a/blr — Ql} -

Thus we have

1. The image system satisfies the original Poisson’s equation for » > a since the

only additional charge we have introduced is in the region r < a.
2. The potential for the image system satisfies the condition ¢ = 0 at r = a.

Thus, by the uniqueness theorem, the required potential is

1 q qga 1
o(r) {lZ T ?m} (2.1)

4meq

with b = a2/b.

Induced charge density

In Chapter 1, we showed that the induced charge density on the surface of a
conductor is

o=¢6L-n=—en-Vo

where n is the outward normal to the surface.

From eqn. 2.1, we have

1
e Iy A e )

At the surface, r = a = ae, and n = ¢, yielding

1 —q qa 1 9 119
o= —— —b- + = — b=b - .
41 { la — b|3(a b-cr) b la— a2/b29|3(a /b er)
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Using
a — a2/b212’7“=a = a/bla — bl,—q

we find

q a
o= “Inla—Bf {b°/a* — 1} a.

Note that the surface charge density is not uniform, but that

/SadS:q’

as expected.

2.1.2 Point charge near insulated conducting sphere at potential V'

This is a simple modification of the method above. We introduce an additional
image charge ¢ = Vadmey at the centre of the sphere yielding ¢ = V at r = a.
Because we have introduced no additional charges in the region » > a, we apply
the uniqueness theorem to say that the resultant potential is

1 q qa 1 Va
¢(£)_4W€o{!£—él bz—oﬂ/b%l}+ ro

2.1.3 Point charge near insulated, conducting sphere with total charge

Q

This problem is a slightly more complicated. Our starting point is the point charge

near the grounded conducting sphere, together with the superposition principle.

1. Start with an grounded conducting sphere. We have shown that a total
surface charge ¢’ is induced, distributed to balance the electrostatic forces

due to gq.

2. Disconnect the sphere from earth, and add a charge (Q—¢’ to the sphere. This
charge will be uniformly distributed, since the charge ¢ is already distributed

to balance the forces due to g.
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Appealing to the uniqueness theorem, and noting that, once again, no charges

have been introduced in r» > a, we have

Q-4 1 q q
o(r) = Ameyr + dreg | |r — 0 + r—a?/b| |’

We will now proceed to calculate the Force on the charge ¢; this is just given by

Coulomb’s law for the forces between ¢ and the two image charges:

P ! q{Q_q/wq—/(@—@’)}

dreg” | VP b= b
~1Logbf qa’(2b* — a?)
e b3 b(b? — a?)?

Note that the force is always attractive at sufficiently small distances irrespec-

tive of () due to the induced surface charge density on the conductor.
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2.2 Formal solution of Poisson’s Equation: Preliminaries

We will now proceed to a formal solution using Green functions. First, however,

a mathematical digression. . .

2.2.1 Dirac 0-Function

The Dirac -function is defined as follows:
1.

d(r—a)=0 if  z#a.

0 otherwise

1 if
/Rdx(S(x—a){ itach

The delta function is not strictly a function but rather a distribution; it is de-
fined purely through its effect under an integral. It immediately follows from the
definition that

[ dx ()3~ a) = f(0 22
if a lies within the region of integration.
The J-function d(z — a) may be thought of as the limit of a Gaussian centred at

a in which the width tends to zero whilst the area under the Gaussian remains

unity.

de(r —a) = ——e = (2.3)

It is easy to see that lim. o d.(x) = 0 if z # a and [ 6. (x —a) = 1. Let us check
the property (2.2)

lim de(z —a) f(z)

e—0J—00
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= lim [© L) + (o — a) f'(a) + %(g; —a)%f"(a) + ...
= lim[f(a) + (@) + O(H)] = f(a)
There are some simple relations that follow from the Eq. (2.2)
1. The d-function is a derivative of a step function 6(x):

o(z) - {(1) e (2.4)

Indeed, if f(x) vanishes at infinity

[ 0@ == [T f@ o) == [ @) =10

2.
/dx f(x)d(x—a) = — /dx f'(z)d0(x —a) integ. by parts
-
3.
1
o Fitate) = 5 dy |t o)

o f(x:)
R

where y is defined in a small region of each ;.
4. The definition extends naturally to three (or higher) dimensions:
0(z — X) = 0(z1 — X1)0(z2 — X2)0(z3 — X3)
so that

1 if XeV
/d?’x(S(x—X): b= .
14 - 0 otherwise
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Note that it is this last property that defines the multi-dimensional /-function,
with this simple representation in a Cartesian basis; you have to be a little

careful when working in curvilinear coordinates.

As a simple illustration of the power of the d-function, let us return to the expres-

sion, eqn. (1.5), for the potential due to a continuous charge distribution

¢(§) _ 1 /Vd3£/ p(gl)

dmeq z — 2’|

We now introduce the d-function to enable us to write a set of NV discrete charges

¢; at x; as a charge distribution

p(r') = 6P (2 — x,)

so that
1 i qid®) (2 — )
_ d3 ! fadl )
0@) = pro f =T
1 4

dmeg T | —
which is our familiar expression for the potential due to a set of point charges.
Poisson’s Equation for a Point Charge

It is easy to see that
Vi1/r)=0 r#0.
Furthermore, from our proof of Gauss’ law, we can see that

[dv v (1/r) = —4x.

Thus we can write formally




Chapter 2 12

2.3 Formal Solution of Boundary-Value Problem using Green

Functions

Our starting point is Green’s theorem, eqn. (1.11):

Jy @ (W (@) (a) = s () V1 (o) = [ (1(2) T () —a(2) V01 (2')) mdS.

where the “primed” denotes differentiation with respect to the primed indices.
Let us apply this for the case 1;(z) = T x| and 19(2') = ¢(2') where

VZ(a') = —p(z') /o,

and

V2 (2) = —4m6® (z —

')

yielding

fd {]x - v (—pg)) + o(a') 4w (z — z’)} =
Jasn-{ it v - o)y (1)

Applying our rule for integrating over d-functions, we obtain

¢(£>: 1 /dS/ P( /) +

Areg |z — 2|

47r/d5’ {,x_lx,|a¢( ) ¢(£’)ai, (@_1@')}. (2.5)

The function 1/|z — /| is said to be a Green function for the problem.

The Green function is not unique, and is just a function satisfying

VG (x,2") = —4m6®) (z — o).
In general, it has the form
1
G(z,2) = + F(z,2/),
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where F'(z,2') is a solution of Laplace’s equation
V2F(z,2") = 0.

Thus our expression for the potential can be generalised to

/d%'Gm 2 p(a") +

i S 1 {6 298 o) O (2

P(z) =

47T60

The utility of this generalisation is the following. In eqn. 2.5, the surface integral
involved both ¢(z'), and 0¢p(z")/On'; in general we cannot specify both simultane-
ously at a point on the surface, since the problem is then overdetermined. Thus in
eqn. 2.5 we have an implicit equation for ¢(z), with the unknown also appearing
under the integral on the right-hand side. In eqn. 11.79, we can choose G(z, z')
so that the surface integral depends only on the proscribed boundary values of ¢
(Dirichlet) or 0¢/0n’ (Neumann).

2.3.1 Boundary Conditions on Green Functions

We will now consider the boundary conditions we have to impose on the Green

Functions to accomplish the above aim.

Dirchlet Problem

Here the value of ¢(2) is specified on the surface, and therefore it is natural to

impose that the Green function Gp(z,2') satisfy
Gp(x,2') =0 for 2’ on S,
and thus
o(z) = — [ &3 Gpla,2)p(x ——/%” a@mx) (2.7)

Thus the surface integral only involves ¢(z’), and not the unknown d¢(x')/0n’.

47T60
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Neumann Problem

Here it is tempting to construct the Green function Gy(x,z') such that

OGN(z,2')
on/

However, recall that the Green function satisfies

=0 forz’ onS.

OGN (z,2) 3, /2
/dST /deG(xx) —4m,

and thus OGy(x,z")/0On’ cannot vanish everywhere. The simplest solution is to

impose
oGy(z,2') 4w,
B
where S is the total area of the surface. Thus the solution is
3
blx) = % J, &' G, 2)p(a) +
—/ dS' Gy(z x,)ﬁgb(_ + —/ dS’ ¢(z') (2.8)
A JS = =7 0on/ S /s -

where the final term is just the average value of ¢(z’) on the surface S. The
inclusion of this term is perhaps not surprising; recall that the solution to the
Neumann problem is unique only up to an additive constant.

2.3.2 Reciprocity relation for Gp(z,y)

For the Dirichlet problem, we have Gp(z,y) = Gp(y, ).
Proof
Apply Green’s theorem for the case (') = Gp(x,2), and 2(2') = Gp(y, 2'):

|, &% (Gp(z, )V Gp(y,2') — Goly, «')V"Cp(z,2')) =
;8" n - (Gp(z,2")V'Gply,2') — Gply, ')V Gp(z,2')).
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But for the Dirichlet problem Gp(x,z’) vanishes for all 2/ € S, and hence the

right-hand side of the above is zero. Thus we have
[ &' {Gp(x, ') {~4md®) (y — 2')} = Gp(y, &) {470z — ') }} = 0

and hence
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2.4 Methods of Finding Green Functions

The secret, then, to the solution of boundary value problems is determining the
correct Green function, or equivalently obtaining the function F(z,z’). They are

several techniques

1. Make a guess at the form of F(z,z’). Here we recall that F' is just the
solution of the homogeneous Laplace’s equation V?F(z, 2') = 0 inside V, and
therefore is just the solution of the potential for a system of charges external
to V. In particular, for the Dirichlet problem, since Gp(z,x’) vanishes at
' € S, we have that F(x,z') is just that system of charges external to V
that, when combined with a point charge at z, assures that the potential
vanishes on the surface. And finding that system of charges is precisely what

we were doing in the Method of Images. . .

2. Expand the Green function as a series of orthonormal eigenfunctions of the

Laplacian operator. We will be exploring this method later in the chapter.

2.4.1 Dirichlet Green Function for the Sphere

We saw at the beginning of this chapter how to use the method of images to con-
struct the potential ¢(z') for a point charge at z outside an grounded conducting

sphere of radius a. In particular, for a charge ¢ = 4meq, the potential satisfies

V2¢(z') = —4m6® (z — o)

with ¢(z') = 0 for 2’ on S. Thus now see that ¢(x’) is precisely the Green func-
tion Gp(x,2') that we need. Note that you have to be careful to distinguish the
variable we are integrating over, ’, and the variable at which we are evaluating
the potential, x. Perhaps counter-intuitively, it is at the point x that we place

our point charge.
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From eqn. 2.1, we have that the Green function
is

1 a
@' — x| la’ — a?/a%a]

G(z,2') =

and it is easy to check that, indeed, G(z, 2") =
G(z', z).

oo

We can rewrite this as

G@éﬁz{ 1 - : }
(22 + 22 — 2z’ cosy)Y2 2222 /a? + a? — 2z’ cosy)1/2
where 7 is the angle between x and ’.

The general solution for the potential is then

= | &2 Gz,z /d? anx) (2.9)

41eg

¢(z) =

Thus we need the normal gradient of the Green function to the surface, which

points inward,

oc| |G
on'[surface 0T |p=a
1 —2a — 2x cosy 22%a/a? — 2x cosy
2| (@2 +a? —2azcosy)3?  (z2a2/a* + a® — 2ax cosy)3/?
x? — a?

a(z? + a®> — 2ax cos )

Thus we have all the ingredients to solve the Dirichlet problem outside a sphere

of radius a.
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2.4.2 Solution of Laplace’s equation outside a sphere comprising two

hemispheres at equal and opposite potentials V'

Because the source is zero, we only need the surface term from eqn. 2.9

:——/dS’ 8Gx9:)

Now dS" = a*dipd(cos '), yielding
, oG
o(x) = ——a / dy)’ {V/ (cos®) —+( V) /—01d(6089)an/}

a(x2 — a?)

_ 7 / Ty ! [N d(cost) _
47 Jo 0 (a? + 2% — 2az cosy)3/?

[ dcos#) afe” — @) } |

(a% + 2% — 2az cosy)3/?

We can express cos~y in terms of the spherical polar coordinates of x and z’ by

noting that

cosy=n-n" = (sinfcosv,sinfsin,cosh) - (sinf cosv’, sinf siny’, cosd’)
= sinfsinf’ cos(yp — ') + cosfcosh’,
where n and n’ are unit vectors in the directions of z and x’ respectively. Finally,

we can combine the two integrals through by making the substitution 8 — 7 — ¢’

and 1" — ¢’ + 7 in the second integral, giving

V 27 1
= — d 0')
¢(z) Am a(@® — o’ / 4 / co8 {(a2 + 22 — 2ax cosy)3/?

1
(% + 22 + 2az cos 7)3/2}

In general, we cannot obtain the solution in closed form; v is just too complicated

a function of # and v¢'. However, we can study the solution in specific cases.
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Solution above North Pole

Here 6 = 0, so that cosy = cos®’, and |z| = z. Thus

§(2) = ~-a(* — a¥)2r [ du { ! ! } |

4t (a2 + 22 — 2azu)3?  (a® + 22 + 2azu)3/

The integration can be performed easily, by making the substitution y = a®+ 2% —
2azu and y = a® + 2% 4 2azu for the first and second terms respectively, yielding
(2 a?)
Dpeg=Vil— ——=7.
¢(2)]y—o { P
Note that for z > a, we have

3Va?
¢(z) ~ 9.2

and the boundary conditions are trivially satisfied at z = a.

Solution at Large Distances

We can also obtain the solution for x >> a, by means of a Taylor expansion. We

begin by writing
a® + 2% £ 2ax cosy = (a® + 2%)(1 £ 2a cosy)

where
axr
o =

T
yielding
Voa(z? —a?) oy 1 1 !
= — [T dy' | d(cos# - '
o(z) Ar (a? + x2)3/2 /() Y /0 (cos &) (1 — 2 cos 7)3/2 (1+ 2ccos 7)3/2

We now expand the integrand as a power series in «, yielding

{} = 6acosy + 35a° cos® v + O(a?).

The integrals for the first two terms in the expansion are perfectly tractable.
Recalling that cosy = sin 0 sin @’ cos(v) — ¢') + cosf cos @', we find
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1.
/Zﬂ dy)’ /1 d(cosf') cosy = /Zﬂ dy’ /1 d(cos®') cos B cosl = mcosb
0 0 0 0
2.
2l / 3 2
/0 di) /o d(cos’) cos®y = m/4cosB(3 — cos” 0)
and thus

35  a’x?
24 (a® + x2)?

3V ale(z? — a2
¢lz) = 2(2256&2)572)

cos0{1+ (3 — cos® ) +O(a4/:c4)}.

Note that we can express this power series as a series in a?/z?, rather than o,

yielding

3Va? 7a*> (5 3 4 4
o(x,0,v) = o {cos@— 19,2 <§cos 6 — 50089) + O(a*/z%) ;.

and we can verify that this gives the correct expression for 6 = 0.

As we go to higher order terms in the expansion, the angular integrals become
increasingly intractable, and this approach fails. However, the eagle-eyed amongst
you may recognise the angular terms as the Legendre polynomials P;(cosf) and

Ps(cosf), and this brings us to the next section.

2.5 Orthogonal Functions

The expansion of the solution of a linear differential equation in terms of orthog-
onal functions is one of the most powerful techniques in mathematical physics.
Consider a set of functions U,,(§), n =0,1,..., defined on a < & < b.

1. The set {U,(§)} is orthonormal iff (if and only if)

[ AU (€) = by (2.10)
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2. The set is set to be complete iff
> U(ER(E) = 66— €), (211)

The completeness relation is important because it implies that any square-integrable
function f(&) defined over the interval a < & < b can be expressed as a series in

the orthogonal functions U(£). This is easy to see:
f(§) = [dg f(€)3(E—¢€) (defn. of o-func.)

= /df f(& ZL[( WUI(E)  (completeness)
::2%@/%ﬂ®%@>

Thus we may write

where

an = [ d€'FENUE).
2.5.1 Fourier Series

One of the best-known cases where we expand in terms of orthogonal functions
is the Fourier expansion. Consider the expansion applied to the interval —a/2 <

x < a/2. The set of ortonormal functions is provided by the sines and cosines:

Cn(z) = \/2/acos<27rmx>, m=1,2...

a

Sm(z) = MSin<2ﬂ?x>, m=1,2,...
Co(z) = 1/a.

It is easy to show that the set C),,(x), Sy, (z) forms an orthonormal set of functions,

/de x)Sy /dxC ()Cr(z) = dpn,
/dem z)Cp(x) = 0.
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Later we will prove completeness,
1 22X 2 2 ! 2 2 2 !
— 4+ = cos < me) COS ( e ) +—Zsin< me) sin ( e ) = 0(x—2')
a a‘q a a a 7 a a

(2.12)

and thus we can write any function f(z) on the interval —a/2 < x < a/2 as

Fa) = Ao n i‘é {Amcos (2%21:6’) B sin (27rm:c’)}7

a
where
a/2 2
A, = —/:/2d9:f cos(ZmC) m=0,1,2,...
a/2 2
B, = —/:/def sin< 7T;TL$> m=12,...
We can combine the sine and cosine terms by noting
cosr = E [em + e"ﬂ
2
: 1 1 —ix
sinx = —_[e —e },
21

and introducing a new set of functions

U (x) = —=e2™m/0 =0, 41,42, .. .,

f@) = S Anlh(),

m=—oo

where
a/2

Am \/_/a/Q

dz’ f —27rimx’/a.

Proof of completeness

S ) = 9nh(x — o)

—0Q

for x, 2’ € [—m, 7|



Chapter 2 23

For simplicity, take x instead of x — 2’. We have

oo oo o) ) 1 e—ix
Z enT Z et + Z e~inT L . =0
—00 0 1

1] — e 1l —e @

if x # 0. To check for the J-function contribution, calculate
.S SO
emx — emx —
L =2l

= 2> " = 2716(x), Q.E.D.

For the interval [—a/2,a/2] we get:

S e = ad(x — ') (2.13)
Taking the real part of both sides of this equation we reproduce Eq. (2.12).

An orthonormal set sin %mx

If we have to expand a function f(x)[0,a] — R which vanishes at the ends of the
interval [0, a] we can use an orthonormal set of sin’ s only: U, = /2 sinZna.
It is easy to check that

2 ra
—/ dr sin “masin —nx = Omn (2.14)
a /0 a a
and )
>, T T
= = 8z —12' 2.15
azl:sman:(: sman:(: (x —a') (2.15)

(Strictly speaking, in the r.h.s of the eq. (2.15) we get §(z — a’) — d(z + ') but
the last term does not contribute for x, 2’ € [0, al).

Thus, we get an expansion
flx) = \/2/a2fn sin En:(:
fn = v /a/ dx f(x)sin— nm (2.16)
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2.5.2 Fourier transformation

Suppose we now let a — oo, so that the discrete sum over m becomes an integral

over a continuous variable £ where

2mm

— k.
a

Then we have
a
— — | dk
m 27‘('/
and the discrete coefficients become a continuous function

A, — 2—7TA(k)

a

Thus we may express the Fourier Transforms as
1 ikx
flz) = E/dk A(k)e
1 —ikx
A(k) = \/—2?/dxf(x)e .

Note that the assignment of the coefficients outside the integrals depends on the
convention adopted; in all cases the product is 1/27.
The orthogonality and completeness relations assume the continuous, and sym-

metric, forms
]_ o i(k—kDx
%/_Oodxe(k M = §(k—K)

1 ’ /
%/dk eFe=r) — 5z — 2')

2.5.3 Sturm-Liouville Equation

How does one obtain a complete set of orthonormal functions? We will now show
that, for a certain class of differential equations, the solutions are orthogonal, for

specific boundary conditions.
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The Sturm-Liouville Equation is the differential equation

p() T2 PEVD () = ~Ae(apin(a)

which we may write in the more compact form

d%] a(@)r = —Ar(2)n

da: p(x) dx

Here the parameter A identifies the solution, and plays the role of an eigenvalue,

with ¢, the corresponding eigenvector. In the next couple of lectures we will
encounter several equations of this form - the Legendre and Bessel equations,

and of course you are familiar with the time-independent Schrodinger equation.

2.5.4 Theorem

For the Sturm-Liouville equation, with p, ¢, r real functions of x, the integral

(X = X) [ dr() s (@) ()

is zero provided the following boundary condition is satisfied:

o) (1522 — 5, 28] o

Proof

Wy and 1y satisfy

d d
= o022+ q@yn = —ar@w (217)
d dipy
= o]+ alwpn = Xy, (2.18)
respectively. Multiplying eqn. 2.17 by ¢}, and eqn. 2.18 by 1)} and integrating,
we obtain
b, d dm b §
[0 @) 2|+ [ dwvian, = < [ dovire,
b, d dzp,\ b i}
[ i @) |+ [ dwviane = =X [ dw i,
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Integrating by parts yields

By PR )"

] — X [dryirgy (2.19)
d%]

2ok [ain =~ [poi

. dm d%/

+ [ g = =[] =N [do g (220)

Observing that, since g, p, r are real, the l.h.s. of eqn. 2.19 is the complex conjugate

of the Lh.s. of eqn. 2.20 we can take the difference to obtain

- ) /d:r: r(z)Yiy =0,

o) (1522 4, 28]~

providing

Corollaries
1. If r(x) does not change sign in (a, b)
[ r(@) gl # 0
and hence \* = A.

2. For \ # A,
b
/a dxr(x)iy =0,

i.e. the functions ¢, are orthogonal.
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2.6 Separation of Variables in Cartesian Coordinates

We will now see how the Sturm-Liouville equation arises in the solution of Laplace’s
equation, and how we can then use the Sturm-Liouville theorem to provide an
orthonormal set of functions. The method we will use will be the separation of
variables. It is best shown by illustration.
Consider the solution of Laplace’s equation in a box 0 < z < a, 0 < y < b,
0 < z < ¢, with the values of the potential prescribed on the boundary. In
particular, let us consider the case where ¢ vanishes on the boundary, except on
the plane z = ¢ where ¢(z,y,z = ¢) = V(z,y).
In Cartesian coordinates, the natural coordinate system for the problem, Laplace’s
equation assumes the form
2 2 2
S0 2) + 500, + 450wy, 2) =0

We will seek solutions to this equation that are factorisable, i.e.

¢(r,y,2) = X(2)Y (y)2(2),

and build up our final solution from such factorisable solutions. Substituting this
form into Laplace’s equation, we obtain
d*X () d’Y (y)
dx? dy?

X(2) + Xy () A o,

Y(y)Z(z) + X ()

which we may write as

1d*’X 148 1d°Z
v ottt 55=0

X dx Y dy Z dz

We have separated the equation into three terms, each dependent on a different
variable. Since the equation holds for all x,y, z, we can say that each term must

separately be constant. Thus

1
<X =0 (2.21)
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—Y" = C 2.22
v 2 (2.22)

1

—7" = C 2.23

o 3 (2.23)
where C7 + Cy + C3 = 0.
Let us consider eqn. 2.21

d’>X (x)
—C1 X =0
dx? !

and choose a trial solution

X(x) =e™

Then we have that o = C}.
1. If 7 > 0, « is real, and the trial solution is exponential.
2. If C7 <0, « is imaginary, and the trial solution is oscillatory.

The boundary conditions require that X vanish at x = 0,a, and this is only
possible for the oscillating solutions. Thus if we choose C; = —a?, where «a real,

the general solution will be of the form
X(x) = Acosax + Bsinax.
Since X must vanish at x = 0,
X(x) =sinax.
Furthermore, X also vanishes at * = a, and thus
nm
a=oq,=—, n=12,....
a
Thus we have a set of solutions

X, (z) = sina,z.

Eqn. 2.21 is a Sturm-Liouville equation, with p(xz) = 1, ¢(z) = 0, r(z) = 1 and

A = o?. It satisfies the conditions required for the Sturm-Liouville theorem, and
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hence we immediately know that the functions X, (z) are orthogonal. We can

treat Y (y) similarly, and obtain

mi

Yin(y) = sin Bny;  Bm = 3 m=1,2,...
Finally, we obtain Z from
YA ) , n2n?  m2n
7 =ty =—gt >0

In this case, the solution is a real exponential, and imposing the boundary condi-
tion Z(0) = 0 we have
Z(z) = sinh v,z

where

Yom = Tn2/a® +m? /2.

Thus the general solution, using the completeness property, is

o0
o(x,y,2) = Y. Appsina,zsin B,y sinh v,,2.

m,n=1

We obtain the coefficients A,,,, by imposing the boundary conditions on the plane
z=c:

o0
V(z,y) = > Apmsina,xsin G,y sinh v,,c.

m,n=1

Using the orthonormal property of the basis functions, we have

a . nmx b . mmy
/Od:(:smT/O dysmTV(x,y)
a nmx . n'mx b . ommy . mnty .
= mz;l Ao /0 dx sin ——sin— /0 dy sin 5 sin— sinh Yy c

b
— Z An/m/g(sn/ni(sm/m Sinh /')/n,m,c

n/7ml 2

b
= %Anm sinh v,,¢

Thus we have
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4

a b . .
A, = absin—h%mc/o da:/o dyV (x,y) sin ay,x sin G,y

2.6.1 Two-dimensional Square Well
¢ finite

This is the two-dimensional version of the
above problem. We have a square well, of
width a, with the potential at the bottom con-
strained to be ¢(x,0) =V, and zero potential Y
on the sides, with ¢ vanishing as y — oo. We \

wish to calculate the potential inside the well.

Xx=0 X=a
Laplace’s equation becomes
0? 0?
_¢ + _¢ — O
ox? = 0y?

subject to the boundary conditions
¢(0,y) = d(a,y) = 0
¢(x,0) =V
¢(x,y) — 0 asy— o0
As before, we look for separable solutions ¢(z,y) = X (x)Y (y), yielding

1d2X 14

I
de2+Ydy2 ’

so that each of the above terms must separately be constant.
Since X (0) = X (a) = 0, the solution for X must be oscillatory,

X"+a?’X =0
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giving X (x) = sin ax. The boundary condition at x = a then yields

Xn(z) = sina,x; where oy, = “*.n = 1,2, . ..
The corresponding function Y,,(y) must satisfy

Y, —apY, =0

with exponential solutions Y, (y) = exp ta,y. The boundary condition ¢ — 0 as

y — oo requires that we take the exponentially falling solution, and thus
Y, (y) = e .
Thus the factorisable solutions are of the form
On(z,y) = e “Ysina,x
so that the general solution is

o(x,y) = Ape  “sinapxr; o, = —.
n a

We determine the coefficients A,, by imposing the boundary condition at y = 0:
V => A,sinay,z,
n

and using the orthogonality of the sin functions, we obtain

/
a . nNmx a . nmx . NTXI
/OVsm— = ZAn/O dz sin sin
n

a a a

— 24,
2
The integral is straightforward:

2V ra
A, = —/ dx sin@
a /0

a
2V a l nrx®
= ———— |cos —
a nmw a o
2V n
= —[1—-(=1)"],

nmw
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and thus
4 4V /nm n odd
" 0 n even
with
4V 1
bloy)=— Y e g
T nodd™ a

32

For y/a < 1, we can expand this as a series, and we converge to an accurate

solution within a few terms - remember that exponential! But in this case, we

can actually sum the series. We begin by recalling that

e = cosx + isinz.

yielding
sin 0 = Qeinma/a,
a

Thus we may write the general solution as

4V 1 :

(ﬁ(.f,g) _ _e—nﬂy/a%emﬂx/a
T nodd™
_ W Ly o)

T nodd™

We now introduce the variable

7 = linfa)wiy).

so that the solution becomes

4V 1
=— > =Sz
n odd "
To sum this series, we recall that
VAR
In(l—-2) = - Z2————+4...
VAR A
m(l1+2) = Z——+—+...,
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and thus
1 1
> 7" = ——{ln(1-2)—-In(1+2)}
n odd ™ 2
B 11 1+7
- M=z

Hence we may write the general solution as

2V 1+7Z

We will conclude by writing this solution explicitly in terms of z and y. We begin
by noting that Z = |Z]expif where 6§ is the phase of Z, i.e. tanf = SZ/RZ.
Thus

InZ=In|Z|+i = JInZ = 0.

Now,
1+7Z (14+2)(1-2%) 1-|Z*+2i8Z
1-Z -z 11— Z|2
and thus 7 5
1+ a2
Sl = — .
\snl_Z an (1—|Z|2)
But we have
SZ = e TV SinE
a
’Z’Z _ e—27ry/a
and thus )
2V 4 |2e7™ “sin%
(ﬁ(ﬂ?,y) — 7 tan [ 1 — ¢—2my/a ]

which, after some simplification, becomes

/0

2V 1(sin7rx/a)

e —t -
oz, y) an sinh 7ty /a
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In practice, such problems can be done in a much simpler way, by observing that
the real and imaginary components, u and v respectively, of an analytic complex
function f(z = = + iy) satisfy the two-dimensional Laplace’s equation
0u  0%u v %
—+—=0, —+—-—=0.
ox?  Oy? ox?  Oy?

This is a direct consequence of the Cauchy-Riemann eqnations.

2.6.2 Field and Charge Distribution in Two-dimensional Corners
Consider two conducting planes
meeting at an angle (3, with po-
tential V' on the planes. The most
appropriate coordinate system for
the problem is that of cylindrical
polars (s, 6, z), with the z axis along

the line of intersection of the planes.

Note that if we consider the problem

sufficiently close to the intersection,
the shape of the surface at larger

distances will be unimportant.

Then Laplace’s equation assumes the form

) _12<@> 19%
v¢(8’9)_883 888 +32(962

where we have suppressed the z variable. As before we look for factorizing solu-

tions of the form
¢(s,0) = R(s)T'(0).
Then we have

s 0 ( 8R> 182T_O

Ros \"as) T T
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Each term depends on a different variable, and this must hold for all s and =z.
Thus each term is separably constant. For the function 7'(9), let us take

—— = -1,

T 06?
Since T" must attain the same value at 8§ = 0 and 6 = (3, the solution must be

2

oscillatory rather than exponential, and hence v* must be positive. Thus the

solution is
T,(6) A, cosvl + B,sinvl; v #0
A() + Bog; v=20
For the radial function, we have
0 ([ OR 5
8& (8&) — UV R—O

For v # 0, let us take as trial solution R ~ s,
(o —1?)s* = 0,

yielding @ = +r. We need to consider the case v = 0 separately. Here we have
0 ([ OR
~[s==) =0
0s <8 0s )
with solution
Ry(s) = ap+ bylns.
Thus the general form of R, is
a,s” +b,s7"; v >0

ag+bylns; v=0

R,(s) = {
so the general solution for the potential has the form

o(s,0) = (ag+bolns)(Ag+Boh)+ > (ay,s”+b,s") (A, cosvf+ B, sinv) (2.24)

v>0
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The solution must be valid as s — 0 (note that we are not interested in the
solution for s large), and therefore the terms proportional to Ins and s~ cannot

contribute. Thus our solution is of the form

Ao + Bo(g, v=20
¢(s,0) = .
s”(A, cosvh + B,sinvd); v >0

We will now use the boundary conditions on the planes to further constrain the

solution. At 6 =0, 3, we have ¢ = V', independent of s, and therefore we have
A, =0
sinvg = 0;, v=—,n=12,...,

yielding

0
d(s,0) = Ag+ Bof + 3 B,,s"/Psin %

Finally, we impose that the potential be V' on the two planes

0=0,p=V = A=V
0=B.6=V = By=0,

and thus our final result is

$(s,0) =V + 3 B,s"sin %9

As we get closer into the corner, the first term will dominate,
d(s,0) ~ V 4+ B1s™Psin %

Taking the gradient, we obtain

TBL r1p-1 i W0, — TBLgni1 0 ™0,

&) p p B

and the induced surface charge density is

E=-V¢=-

B
o=¢|E-n] = 20r/-1
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1. For 8 < m, we have that &/ and o vanish as s — 0.

2. For 8 > m, E and o become singular as s — 0.

Thus we see behaviour familiar from our knowledge of “action at points” - the

fields and surface charge densities become singular near sharp edges.
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Boundary-value Problems in Curvilinear

Coordinates

In the previous chapter, we saw how we could look for factorizable solutions to
Laplace’s Equation in Cartesian coordinates, and then construct the solution for
more general boundary values using the completeness property of the such fac-
torisable solutions. In this chapter we will employ analogous methods in spherical
polar and cylindrical coordinate systems. In practice, the coordinate system that

is appropriate depends on the symmetry or geometry of the problem.

3.1 Laplace’s Equation in Spherical Polar Coordinates

We will denote our coordinates by (r, 6, ¢), in terms of which Laplace’s equation

assumes the form

00

19 (.,00 1 9 (. 9¢ 1 0%
2 _ = |22 -
Vp(s,0,p) = 39, (T 87“) + 000 (smﬁ ) 12 sin? 0 0

We will now seek factorisable solutions of the form

o(r, 0, ) =
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where the factor of 1/r is conventional. Substituting this into Laplace’s equation,

we have
1 d 1 1dU(r)
P(6 —— | —-=U -
O 5 | (- mve+ 10|
UrQp) 1 d [ dP@O)) UrPEO) 1 dQy) _
——— | sin6 -+ —5 =0,
r r2sin 6 df de r r2sin“f dp?
yielding
PQAEU  UQ d (S. 6dP> UrP d*Q 0
— (sinf— =
r dr?  r3sinfdf db 73 sin? 0 dy? ’
which we may write as
1d’Q 5 ., [1d°U 1 14d dP
~ 8 26in2e | - ~ % sing™ )| =0, 1
Qdez NG T e P do (Sm d@) ¥ (3.1)

The first term is a function of ¢ alone, and the remaining term is a function of

(r,0) alone. Thus they must be separately constant, and we may write

1 d?
@d—g = —m2, (32)

where m is a constant. Eqn. 3.2 has solution
Q — e:timga

We now observe that the solution must be periodic, with period 27, in the az-
imuthal variable . Thus m must be an integer, and, of course, real. Thus we

may write eqn. 3.1 as

0.

7’2d2U+ 1 1d ( de> m?
——— + ————|sin — ==
U dr?  sinf Pdf do sin” 6
We now observe that the first term is purely a function of r, whilst the remaining
terms are purely a function of . Thus we may write

r? d*U
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where [ is a constant - we will see the reason for expressing the constant in this

way later. To solve this equation, we will take a trial solution
U(r)=r®,

yielding
ala—1)=1(l+1)

with solutions a« = [ + 1, —[. Thus we have

U(r) = Ar'™ + Br'.

The equation for the polar coordinate # now assumes the form

1 d dP m?
— | sinf— l(l+1)— P=0.
sin 6 df (sm d@) + { (F+1) sin? 9}
It is convenient to introduce the variable x = cos#, with —1 < x <1 and
d o d
Fr i sin 9%.
After a little algebra, we have
d dP m?
— (1= 2®) | + [I(l+1) - P=
dx( x)dx +[(+) 1—.1:2] 0

This is the Generalised Legendre Equation, and is, once again, an equation
of Sturm-Liowville type, with p(z) = 1 — 22, q(z) = —m?/(1 — 2?), A = 1(l + 1),
and r(z) = 1.

We will now seek solutions of this equation, first for the case m = 0, where the

equation is known as the Ordinary Legendre Equation

d

dx

dpP
1— 2% —
(1—2%)—

+i(l+1)P=0.
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We begin by noting that the solutions must be both continuous and single-
valued in the region —1 < x < 1, corresponding to 0 < 6 < 7. We will obtain
the solutions through series substitution, i.e. by trying a solution of the form
oo
P=> c,x’™,
n=0

from which

dP o0
R y+n—1
& = S
dP 0 0
(1—-a?)—= = X ey +n)27™" = 3 u(y +n)a?*"H,
1-a)| = Y eat+n)(r+n—1)a > ey +n)(y +nt et
dx dx n=0 n=0

Thus Legendre’s equation becomes

oo

S ey m)(r4Hn— D)2 S e [+ 1) — (v+ ) (v + 1+ 1) 27 =0,

n=0 n=0
As this equation must be valid Vo € [—1, 1], we can equate the coefficients of the
powers of = to zero. The leading power of z is 772, and we use this equation, the

indicial equation, to determine . Thus

o 1072
coy(y—1)=0 = y=0o0ry=1
o 201
c; undetermined : vy =0

a(y+1)(y+1-1)=0 =
c1 =0 cy=1

e 17" n > 0:
(v+n)(y+n+1)—=1(1+1)

(Y+n+2)(y+n+1)

Cp+2 = -
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Note that the recursion relation relates only even (odd) polynomials for v = 0
(y=1).

We have already noted that the solution must be valid for z € [—1,1], and in
particular at the end points x = £1. Thus the series must be finite at x = +£1.

To explore the convergence properties, we note that
Cnia/Cn — las n — o0,

and thus the series resembles a geometrical expansion > z?". This diverges at
xr = *£1 unless the series terminates, i.e. unless ¢, = 0 for some n. Thus our

requirement for convergence is
(v+n)(y+n—-1)—=1(+1) =0for some n.
e v =0:
nn+1)=I(l+1)=n=1
o yv=1:
n+1)(n+2)=I(l+1)=n=1-1.
Note that in both cases the highest power of z is z'; the two cases are the same.

We call the corresponding solutions P(x) the Legendre Polynomials, and con-
ventially we take Pj(1) = 1. The first few are

Po(x‘) = 1

Pi(x) = ﬁ

Py(x) = 5(3x2—1)
Py(z) = %(5353—3;5).

3.1.1 Rodriques’ Formula and Generating Function

We can write the Legendre polynomials in a more memorable form through Ro-

drigues’ Formula:
1 d



Chapter 2 6

An equally useful means of determining the Legendre polynomials is through the

generating function

glt,z) = (1 —2at +12)71/2 = Z;)Pl(x)tl, | < 1. (3.3)

3.1.2 Orthogonality and Normalisation of Legendre Polynomials

Applying our theorem concerning the orthogonality of the solutions of the Sturm-

Liouville equation yields
1
-1 -0+ / de Py(x)Py(x) =0 = [ d Pi(x)Po(x) = 0, 1 £ 1,

i.e. the Legendre polynomials are orthogonal. N.B. it is easy to check that our
solutions satisfy the required boundary conditions.
To determine their normalisation, we can use either Rodrigues’ formula, or the

generating function; we use the latter. From eqn. 3.3, we have

1 s (1 1
/_1dxg(t,x) = /—1dx1—29:t+t2

1 1
= {——1In(1 — 2zt t2}
{ 2tn( xt + )_1

1 . 2
= —ln(1 )
2t (14 1)
o 2t
N §)2l+1’

where we have used the series expansion of In(1 + ¢). However, we also have

/jldxg(t’x)Q - 5 /dxpl ) Pr(a)t""

L=
_ l;)t%/_ldxpl(a;)z

Equating the coefficients in these two expansions yields

2

/_11 dx P(z)P(x) = 1
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3.1.3 Recurrence Relations

Rodrigues’ formula provides a means to obtain various recurrence relations

between the Legendre Polynomials, for example:

L+ 1) Pa(z) — 2L+ DaP(z) + 1P (z) = 0

%PI—H(%’) — xdjzg(:x) —(l+1)P(z) = 0
(2% — 1)d139(:x) —lzP(x)+ 1P _1(z) = 0
@ @)~ T b = o

Such recurrence relations allow us to evaluate many of the integrals we will en-

counter in the problems.

3.1.4 Completeness

Since the Legendre Polynomials form a complete set, we may write any function
flx), z € [=1,1] as
flz) = > AP ().

1=0
We obtain the coefficients using the orthogonality relations

[drf@R@) = X A [ de R@)P()

2
= A
"+ 1
whence ol 11
+1 p1
A =202 [ e @) Pi)
Example

Consider the step-function f(x) defined by

1 0<x<1
-1 -1<z<0

-]



Chapter 2 8

Then we have that

20+1

AZZT/ dz f(x)P(z)

20+ 1
+ { / dz Py(z / dz By )}
21 + 1
= [ dr {Pi(x) — Ai(~a)}.
Thus we see that A; is non-zero only for [ odd:

A ) @+ D) fyde B(e) 2l odd
L 0 : [ even

Now by the last of our recurrence relations

A = /01 dx {dipul(ﬂ?) - %3—1(@}
= Pra(1) = Pa(0) = i1 (1) + P1(0)
= P_1(0) = P41(0

—

where we have used the normalisation condition P(1) = 1. But we have (from

Rodrigues’s formula, with a little work)

(=) (1—1)! [ eve
Pz(O){ oy leven

0 [ odd
where (I — 1)l = (I —1)(l —3)...3.1. Thus
p (— 1)(l+1)/2u| ( 1)(l—1)/2(l —2)!!
l pr—

T OR((I+ 1)/2)1 T 2002((1—1)/2)
(—=1)=D2( — 2\ l
2T VA((1— 1)/2)] {1 * z+—1}

Thus

2 2(51)!
0 : | even

{ (_l)(l—l)ﬂ (=21 .7 44
A=

and we have
3 7 11

f(x):§P1(x)—§P3( )+16P5( z)..
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3.2 Boundary-Value Problems with Azimuthal Symmetry

We may now write our general solution for the boundary-value problem in spher-

ical coordinates with azimuthal symmetry, i.e. no ¢ dependence, as

o(r,0) = ioz (Alrl + Blr_l_l) Py(cos @),
1=0

where the coefficients A; and B; are determined from the boundary conditions.

Example:

Consider the case of a sphere, of radius a, with no charge inside but potential
V (8) specified on the surface.
Since there are no charges inside the sphere, the potential ¢ inside must be regular
everywhere. Thus B; = 0VI[, and we may write the solution as
00
o(r,0) =S Ay’ P(cosb).
1=0
Imposing the boundary conditions at r = a yields
00
V(0) =Y Aja'P(cosh),
1=0
so that, using the normalisation condition on the Legendre polynomials, we have

20+1
A= 5
a

Suppose now that we require the solution outside the sphere. Then the solution

/OW df sin0V (0)P,(cosh).

must be finite as r — oo, and thus
o(r,0) =3 Bir "' P(cos )
1=0
with
V(0) =3 Ba""'P(cosb),
1=0
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so that
20+ 1 S

2
Let us now go back to the problem in Section 2.4.2:

B, = / df sin0V (0)P,(cosh).

V 0<6<7/2
V() = sf<m/
—V n/2<0<nm

Then we have

20+ 1
;_ al—i—lv

21+ 1
_ Tal+1v{/ dxP(z / dx Py( )}

_ ?d“v { /_ dzf (x)Pz(x)}

B, = {/me Py(cos @) sin 6df — /W p Py(cosf)sin Hde}

where
1 O<x<l1

-1 —-1<x<0

o-|

This is just the expression we evaluated in Section 3.1.4, and thus we have:

I+1( 1\ (=2)1(20+1)
Bl{va (=)= S Lodd

so that
3 a? 7at 114°
o(r,0) =V {§PP1(COSQ> — gﬁPg(COSH) + EEPE)(COS 0)+ .. } :

Recall that in Section 2.4.2 we obtained

3V a? 7 5 3 4
B(r,0,p0) = rza {COSQ — #‘;2 <2 cos® ) — 5 €08 0) + (’)(%)}
3 a? 7at
=V {§§P1(COS 6) — gﬁPg(cos 0)+ .. } :

which is precisely the first two terms in the expansion of eqn. 3.4.

10

(3.4)
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The crucial observation in such problems is that the series expansion

o(r,0) = Zz: (A, r' 4+ B r_l_l) Py(cosb) (3.5)

is unique. Thus it is possible to determine the coefficients A; and B; from a
knowledge of the solution in some limited domain. As an illustration, we recall
that we obtained a closed solution to the above problem above the North pole,
ie. at 0 =0:

,',.2_a2

We can use the binomial expansion to express this as a series in a/r:

gb(z:r,9:0):V{——(l—az/TQ)iF( 1;)(1%)(%_ ) (%)23}.

If we use the property
T

F(z)I'(1—-2) =

sin mz
and note that ['(1/2) = /7, we obtain, after a little manipulation (ezercise),

B

We now compare this series solution with eqn. 3.5, evaluated at 8 = 0, and observe

o(r,0 =0) =

that only terms with [ = 25 — 1 enter, and that

(_1)()% _ 3Va2/2

)1(5/2)2.(3/2) _ 7va :

jzllBl \/L
Jj=2: By3= %

/-\
|
—_

and once again we reproduce the expression eqn. 3.4.
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1
|2~

3.2.1 Expansion of
Let us conclude this section by looking at the expansion of this critical quantity
that occurs in the construction of the Green’s function. We begin by observing
that the result can depend only on r, 7" and ~, the angle between x and z’. We
may thus simplify the problem by choosing the azimuthal direction (z axis) along
the 2 axis. The problem then displays manifest azimuthal symmetry, and we may

write

z _1 7 = g} (A (r")r' + By(r')yr~"71) Py(cos ) (3.6)

We now consider the case where z lies parallel to 2’, when cosy = 1. Then the

l.h.s. of eqn. 3.6 becomes

1 B 1
z—2z] -7
There are two cases:
l

1 1 12 (1 o /!

r>r = = — — | =
r—r' = r%(r) ZZ:OTZ_H
1 1 1 r\t & 7

r<r = = = —| =
r—r' rr—r 3 r’) ZEZ:OT’ZH

Let us introduce r~ = max(r,r’) and r- = min(r,7’). Then we may write

1 ool
=~ &

and, comparing with eqn. 3.6, we have

LS peosy)
= — COS
@ - £/’ 1=0 7’l>Jrl : K
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3.3 Solution of the Generalised Legendre Equation

Let us now consider the case where we no longer assume azimuthal symmetry.

Then we are concerned with solutions of the Generalised Legendre Equation,

d% [(1 - x2>dzix)] N [l(H 1) — 17_”;] P(z) = 0. (3.7)

We can obtain a series solution in an analogous way to that of the ordinary
Legendre equation. For solutions to be finite at x = 41, corresponding to § = 0, 7,

we require that [ must be a positive integer or zero, and that m takes the values
m=-—l,—l+1,...,1—1,1.

Recall that we already know that m must be an integer by the requirement that
the azimuthal function Q(p) be single-valued.

For the case where m is positive, we can write the solutions P/"(z) as

Py @) = (1) (1= 2" p(a)

or for both positive and negative m by adopting Rodrigues’ formula:

—

_1>m dl—i—m
21

Note that eqn. 3.7 depends only on m?. Thus we have that P ™(x) must be

proportional to P/"(z), and in fact
—-m o m (l - m)' m
B (a) = (1) mpl ().
Eqn. 3.7 is an equation of Sturm-Liouville class, with eigenvalues [(I+1). We can
apply the orthogonality theorem at fized m, and we have

2 (I+m)!
C2A+1(I—m"

[ da P () P (x)
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3.4 Spherical Harmonics

We began by looking at separable solutions in spherical polar coordinates, and
writing

8010, 9) = ~U(r PO)Qs)
It is convenient to combine the angular functions into solutions on the unit sphere:

(I—m)(2l+1)
4m(l +m)!

P/"(cosf)e"™?. (3.8)

}/lm(e, 90) - J
The spherical harmonics (3.8) satisfy the equation
=V (0, ) = UL+ 1)r*Yim (0, ) (3.9)

or, in explicit form

19 9 19 ,
[_M% (Slne(?e) Sln298—9021%m(6’90)_l(l+1)r Yim(8:0) - (3.10)

(A person familiar with quantum mechanics may recognize the expression in
square brackets in I.h.s. of this eqn as a square of operator of anglular momentum
L?).
Using our relation between P ™ (cos#) and P (cosf) we have
Yi—m(0,9) = (=1)"Yim(0, )"
and the normalisation condition is
/ / ng df sin QY (9 )Y/m/(e, 90) = 511’6mm’7
i.e.
/dQ Yim (0, 0) Yy (0, 0) = e Orrr-

For the case m = 0, the solution clearly reduces to the Legendre polynomial, up

20+1
Yiol#, ) =\~ Filcost)

to some normalisation:
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3.4.1 Completeness

Any arbitrary function g(, ¢) defined on 0 < 6 < 7, 0 < ¢ < 27 may be expressed

in terms of Y},,:
o0

90.0) =5 S ApYin(0.9)

1=0m=-1
where

™ . 27 N
Alm - /Od@ Slne/o 9(9790) lm(9790)
= [dQY,(0,9)9(0, ¢)

3.4.2 General Solution

We can now write the general solution of the Laplace boundary value problem as
o

l
o(r,0,0) =3 > [Amr" + Bur ™7 Yim(0, ¢)

= m=-1
3.4.3 Addition Theorem for Spherical Harmonics

Consider two vectors z,x’, with coordinates (r, 8, p) and (1,6, ¢’) respectively.

Let v be the angle between x and ', so that

/
cosy = ’xlf,l = cosfcosd + sin@sin @’ cos(p — ¢').
x|z
Then we have
47( l * / /
Pleosn) = 57 32 V0 Vind6. )

This is proved in Jackson, but is more easily proved using group theory. Note

that we can rewrite this in the form

l — |
Bicos) = Plcost)Pcost!) +2 3 'L prt(cost) B (cost) cos mlip — )
m=1

= ([ +m)!
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Example

discussed in section 3.2.1:

An important application is to the expansion of

I-%’ x|

1 oo gyl
— = — P (cosy).
o] s

Using the addition theorem, we can rewrite this as

1 1 b

-] - ZE) g 20+ 17 l“Ylm(gl’(’O/)Ylm(e’ 2

Superficially, this looks like a much more complicated expression, since we have
introduced an additional sum over m. But it is now a sum over terms that factorise

into a function of (6, ) and a function of (¢, ¢'), and thus much more useful.

3.5 Laplace’s Equation in Cylindrical Polar Coordinates

We will denote the coordinates by (s, ¢, 2)

Z
A
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In terms of these coordinates, Laplace’s equation assumes the form

10 [ 0¢\ 10% 0%
(45) * o+ 5 O

As before, we look for separable solutions of the form

V2¢(87 2 Z) -

 s0s

d(s,,2) = R(s)T(p)Z(2),
so that Laplace’s equation becomes

1d [/ dR 1 d*T d*Z
72- % (&) y RZ=C L RTEZ —
sds (S ds) * s2 dp? * dz? ’

which we may rewrite as

1 d ( dR>+ 1 d2T+ 1 d*Z 0
—— | s— ——— 4+ ———=0.

Rsds \ ds 2T dpl 7 dz?

The third term is a function of z alone, whilst the others are a function of s and

© alone. Thus we may write
1d*Z
Z dz?
where k is a (not necessarily real) constant, with solution

— k2

Z(2) = e,

Thus we may now rewrite Laplace’s equation as

s d ( dR 1 d*T
e v Il ]{32 2 =0
Rds (Sds>+Td<,02+ ° ’
and so for the angular term we have
1 d*T 5
—_ = —U
T dp?
with solution
T(p) = *%.

For the solution to be single valued at ¢ = 0 and 27, ¥ must be an integer.
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Finally, the radial equation is

s d ( dR 5 59
E£<8E>—V +k3—0
We can eliminate the constant k& by the substitution x = ks, yielding
xr d ([ dR 5 5

which we write as

de? ' xdx

2 1 2
el dR+(1—”—>R:o

This is the Bessel Equation.

As in the case of the Legendre equation, we find a solution by series substitution
[ee]

R(z) =Y cx®™: ¢ #0 (3.11)
n=0

Aside: why do we have to introduce the power z*, rather than just looking for a
solution in terms of a Taylor expansion about x = 07 The reason is that there is
a reqular singular point at x = 0, i.e. the coefficents of R and its derivatives in the
Bessel equation vanish at x = 0, and therefore the solution can have a singularity
there. In the case of the Legendre equation, there are regular singular points at
r = =£1.

From eqn. 3.11, we have

dR o0
— v+n—1
- nz::O cn(y+n)x
d’R o0
R . — 1) prtn—2
73 nz::oc (v+n)(y+n—1)z ,

and substituting into the Bessel equation we have

00 00 00 00
3 (v An) (YAn—1)27T 2 E Y e (vAn) 2T Y T =12 Y a2 = 0.
n=0 n=0 n=0 n=0

The lowest power of z is 2772, and equating the coefficients of this to zero gives

the indicial equation which determines .
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A

coy(y — 1) + coy + vy = 0= v = %v, since ¢y # 0.
o 271

0 = a(y+Dy+aly+1) —via
= (Y +2y+1-17)
= c1(2y+1) since 4% = 12

= c; = 0 since v is an integer.
o 2" n>0:

o[y Fn+2)(yFn+ )+ (v +n+2)=v+e = 0

= cup[(Y+Fn+2)?2 -1 = —c¢,

1
= Cn - = n
Cn+2 (n—|—2)(n+2—|—27)c

where in the last line we have used 2 = 12

As in the case of Legendre’s equation, the recurrence relation relates either odd or
even values of n. However, we have seen that ¢; = 0. Thus ¢, = 0 for all odd n.
Therefore, let us make the substitution n = 2j, and write the recurrence relation

as

1
. . Coj,
AG+1)G+1+7)

Cojr2 — — j:O,l,Q,...

c25+1 = 0.

We can now iterate this recursion relation to obtain

i (B Chy+1)
C”_(])<J TG+ 1y +j+1) "

Conventionally, we choose
1

0T AT+ 1)
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so that the solutions may be written
ANES (—1)/ x\?%
Jy - <_> . . <_>
(%) 2 jgo TG+ 10w +j+1)\2

Tole) = <g>_§ I(j+ 1)(;(2)1 v+ 1) <g>2j '

These are the Bessel Functions of the first kind of order +v. Some obser-

vations:

e The series converge for all finite x
e If v is not an integer, the solutions are linearly independent.

e If v is an integer, they are linearly dependent, and in particular
J_m(z) = (=1)" ().

Proof: This is a consequence of the properties of the gamma function I'(2),
which has singularities for z = 0 and for z a negative integer - recall the

earlier relation

T(A)D(1—2) =

sinmz

T-m(@) = (9 _mg T(j+ 1)(r_(;)i m+ 1) <g>2j |

Now I'(j — m + 1) — oo as argument approaches 0 or a negative integer.

We have

Thus only those terms in the sum for which j — m + 1 > 1 contribute, and

we can write

J_m(x) =

@) St ()

. Y 2\ 2
(=1)" EO T+ 1)(F(ll)+ m+1) <§>
)me(x)

3

I
/N TN TN
R N8 NS
}—‘v N————— N———

|
—
|
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Because of the linear dependence of J_,,(x) on J,(x), we introduce a second,

linearly independent function

N, (z) = Jy(z)cosvm — J_,(x)

sin v

known as the Neumann Function or the Bessel Function of the second
kind. Conventionally, we choose as our linearly independent functions J,(z) and

N, (x) even if v is not an integer.

Bessel Function of the Third Kind

These are just another pair of linearly independent solutions of the Bessel equa-

tion:

HV(z) = J,(z)+iN,(z)
HY(z) = J,(z) —iN, ()

14

These are also known as Hankel Functions. Their utility is that they have a

more straightforward integral representation than J,(x) and N, (z).

3.5.1 Recursion Relations

The sets of solutions of the Bessel equation are collectively known as cylinder
functions, and satisfy recursion relations in the same manner as the Legendre
polynomials, e.g.

Qy—l(aj) +Qu+1(x) = ?Qy(aj)
dQ,(x)

Qy_l(l‘) - Qy—i—l(x) = 2 do

3.5.2 Limiting Behaviour of Solutions

In the limit z < 1, we have
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tin(g) s ] =0
v#0

where v is real and non-negative, and vg = 0.5772... is the Euler-Mascheroni

constant. Note that, when constructing solutions of the boundary-value problem,
only J,(x) is regular as x — 0.

In the limit > 1, v, we have

J(x) — 2 oS (x e E)

T 2 4

2 vwT T
N, — sl —- = — . 3.12
() — — sin <x 5 4) ( )

The transition between these limiting forms occurs at = ~ v.

3.5.3 Roots of the Bessel functions

From the limiting forms 3.12, we see that each Bessel function has an infinite
number of roots, which we denote z,,,n =1,2,3,... where
J(x,,) =0, forx=123,...
In particular, we have
v=0:xy, = 2.405,5.520,8.654,...
v=1:x, = 3.832,7.016,10.173, ...
v=2:x9, = 5.136,8.417,11.620,...

3.5.4 Ortogonality of the Bessel Functions

The roots of the Bessel function J,(z) are crucial when we consider its orthogonal-

ity properties, which take a rather unexpected form. We introduce the functions
Vs (xyps/a),n=1,2.3, ...

and will now show that, for fixed v > 0, these functions, identified by n, form an

orthogonal set on 0 < s < a.
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Proof

Substitute into the Bessel equation:

1d[ d OV
g@ [S@Jy($yn8/a)] + ( a2 — ?) JV(ZUVnS/CL) = O,
where we have made the change of variable © — x,,s/a. We now rewrite this as
d [ dJ, V2 x?
I - _(]y — — vn Jy.
ds | ds s a2’

This is the Sturm-Liouville equation, with
(x) = S
(x) = —v*/s,

() = s,

A = 22 Jd®.

p
q
r

Thus we have
(z2 — %) /Oa ds sdy(xyws/a)d,(xys/a) =0

providing
=0. (3.13)
0

d d

[s {Jyxm/s/a)gcfy(xm/s/a) — Jy(xms/a)ngy(xm/s/a)}

At the upper limit, s = a, this expression vanishes since z,,, and z,,  are roots of

the Bessel function, and at the lower limit, s = 0, the expression vanishes because

of the factor of s. Thus we have

/Oa dss.J, (x,ms> J, (x,m/s> =0,n#n'

a a

The integral can be evaluated for n’ = n, with the result

a

a TynS Tyn'S a’
/0 dssJ, < . ) g, < ) =5 [J,,Jrl(q;m)]? Onn! -
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3.5.5 Completeness

We now assume that the Bessel functions satisfy the completeness relation, and

therefore we can expand any function on 0 < s < a as
(0.]
f(s)=> A (xyns/a)
n=1

where

TynS
Ayn - - d zvne .
CL2J3+1 xun / ’ Sf < a )

This is a Fourier-Bessel series. This expansion is particularly useful for the
case where f(a) = 0, e.g. the Dirichlet problem, since each term in the expansion

satisfies the boundary conditions. An alternative set of basis functions is provided

. Vs, <yun3>

where the y,,, are the roots of dJ,/dx = 0, because this set still satisfies the

condition of eqn. 3.13. This choice is often more appropriate for the Neumann

problem.

3.5.6 Modified Bessel Functions

Note that if we had chosed a separation constant such that the solution in the

z-variable was
Z(Z) _ eizka7

then the equation for R(s) would have been

PR 1dR V2
kR =
ds? + s ds ( + ) ’

which, after our usual substitution x = ks, becomes

2 1 2 2
@+—@—(1+”—)R:o.

dr? z dx 22
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with solutions

I(z) = i"J,(ix),

K, (z) = giv+1H§1>(ix).

These, like I,, and N, are real functions of a real variable x, with limiting forms:

k1
1 \"
Iz) = T(v+1) (5
—In&)+ye+..] v=
K,(z) — N olh
L) 40
x> 1,v
1 1
I,(x) — Tﬂxe 1+O<E>
1
K,(x) — %e‘x [1+(’)<;>

Note again that only I,(x) is regular as = — 0.
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3.6 Boundary-value Problems in Cylindrical Coordinates

Consider the solution of the boundary-value problem in a cylinder of radius a,

and length L, subject to the boundary conditions
¢(s,9,0) = 0
ola,p,2) = 0;0<2<L
¢(s, 0, L) = Vs, p)

z ® =V (p,0)
1 L

N— |

We look for separable solutions of the form
85,0, 2) = R(S)T()Z(2).
The angular factor has the form
Tim(p) = Asinme + B cosmy
where m is an integer greater than or equal to zero. The z factor is of the form

Z(z) = sinh kz
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where £ is the separation constant, and we have imposed the boundary condition

Z(0) = 0. Finally, the radial component is of the form
R.(s) = Crydim(ks) + Dy Ny (Es).

Since there are no charges in the region s < a, the solution must be regular there,
and in particular must be finite at s = 0. Thus we have D,, = 0. Furthermore, R

must vanish at s = a, and thus
Im(ka) =0
and hence the values of k are
kmn = Tmn/a, n=1,2.3, ...

where x,,, is the n-th root of J,,,(z) = 0. Thus our general solution may be written

s BOn

os.07) = X5

+ > > Jnlkmns) sinh(kp,,2) [Apn sinme + By, cosmp].(3.14)
n=1

m=1

Jo(kons) sinh(kg,2)

We now impose the boundary condition at z = L:

V(S,g&) -

&

% Jo(kons) sinh (kop L)

DNgLs

M2
NERS

n

+ I (kmn$) sinh (K L) [Apn sin me + By, cos mp].

1

1n

m
This is a Fourier series in ¢ and a Fourier-Bessel series in s. We apply the

orthogonality conditions, e.g., for A,,,:
a 2m
/0 ds 5/0 do V (8, 0) I (kymys) sinm’p =

o 0

> 3 sinh(kun L) { [ ds 5T (koun) o (o)
m=0n=1 0
A 2w d . . / B 2w d . /
x{ m"/o @ S mepsImm @ + m"/o gocosmgosmmgo}
00 00 2
= Y > sinh(kynL)Amn {%[Jm+1(xmn)]25m,} {70 mm }

m=0n=1
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and thus
2 a 2w
ma? sinh (kyn L) [ Jma1 (Tmn))? /0 5 8/0 0V (8,0)Jom(kpmns) sinme
2 a 2
ma? sinh (K L) [ Jims1 ()] /0 S 3/0 0V (s,0) I (kmns) cosmep

This form of the Fourier-Bessel seires is appropriate for problems confined to a
finite region of s. Suppose, however, that we are interested in the solution for all
0<s < o0.

Example

Determine ¢(s, ¢, z) in the upper-half plane z > 0, with ¢(s, ¢,0) = V (s, ¢), and

¢ finite as z — oo. Then the separable solutions are of the form
e M Asinme + B cos mep|J,(k2)

but there is now no restriction on the value of k other than it be positive (to
ensure that ¢ is finite as z — 00). Thus the sum over discrete values of k becomes

an integral over k, and our general solution is

By (k)

(s, p,2) = /OOO dk e TJQ(/{?S)

+ i; /OOO dk e " { A,, (k) sinme + By, (k) cosmp)} Jy(ks).

We still have a Fourier series in ¢, but the Fourier-Bessel series has evolved to a
Bessel transform.

Imposing the boundary conditions at z = 0, we have

~ . By(k)
Visp) = | dk—

+ f;jl |7 dk { A (k) sinmp + By (k) cosmip} Jy (k)

Jo(ks)
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and we can invert the Fourier series to obtain
Ak A () (ks) = 2 [T dov i
J, dk Au(k) Ju(ks) = — [T dpV(s, @) sinme
00 1 2
/0 dk By, (k) (ks) = ;/0 dp V (s, ) cosme. (3.15)

We can invert the Hankel transforms on the left-hand side using the complete-

ness relation

o0 / 1 /
| de e d(ka) T (Kx) = LO(K — k).

Applying this to the first line of eqn. 3.15, we have
1 ;o 2m . 00 e9)
;/0 dss/o de V (s, @) sinmepJ,(K's) = /0 dss/o dk A (k) (ks)Jm(K's)
o 1 ,
= /0 dk Ay ()75 (k — k)
1
— EAm(k/),

and thus we have
]{j 00 2 .
Apn(k) = }/0 dss/o dp V (s, ) sinmeJ,,(ks)

k o 2
Bn(k) = ;/0 dss/o dp V (s, ) cosmpdy,(ks)
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3.7 Expansion of Green Functions in terms of Orthogonal

Functions

The solutions found by separation of variables constituted complete sets of or-
thogonal functions satisfying the appropriate boundary conditions. We have
shown that any function, and in particular the Green function, satisfying the same
boundary conditions can be expanded as a series of these orthogonal functions.

We will illustrate the basic principle for our old friend, the Dirichlet Green function
for the sphere in spherical polar coordinates, and then proceed to discuss the

general construction using cylindrical coordinates.

3.7.1 Green function for the Sphere in Spherical Harmonics
Recall that the Green function for the region V satisfies
V2G(z,2") = —4nd(z — ) for 2,2’ € V,

and has the general form

1
Gz, 7)) = + F(z,2)),
(2.2) |z — | (.2)
where F'(z,2') is a solution of Laplace’s equation in V', chosen to satisfy the

boundary conditions on G, e.g. for the Dirichlet Green function

G(z,2") = 0for x € IV.

We have already seen the expansion of 1/|z — 2| in terms of spherical harmonics,

ViZ.
l

1 < [ T re
z—a| 47Tz§) g:_z 20 + 1@}/“”(0/’ ) Yim(0,9).

Suppose we wish to construct the Dirichlet Green function for the outside of a

sphere of radius a. We use the method of images, and obtain

1 a
2’ —z| 7|’ —a®/riz]

G(z,2") =
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— S S @ im0 {1 - 2L
0m——l2l+1 Ym0 @ im0, 0

7J>+1 ropfl+l

where we note that, for the image charge, r~ = r’,r. = a?/r, since the image

charge is always inside the sphere. Thus we have

I 1 CL2 I+1
4 0 VY (0. o) < — = [ L
G( ) le%mglzl_i_l lm( 7@) [ ( 790){Tl>+1 (TT’)

a

We have thus accomplished our goal of expressing the Green function as an ex-

pansion over orthogonal functions. There are some important observations we can
make by looking at the radial part

I+1 1 l e /

{ Tl< B 1 (CL2) } _ it |7 r<r
I+1 / - I Y r

> a \rr T |7 | >

e The radial part manifestly vanishes at » = a and v’ = a.

e It is symmetric under r < 1’

e The solution is a linear combination of the solutions of Laplace’s equation
regarded as a function of 7’ for fixed r, but a different linear combination for

r’ > r and v’ < r. We will see how this property arises below.

3.8 General Solution of Green Function in Cylindrical Po-
lars

The Green function satisfies

V2G(z,2") = —4nd(z — ).
To express the r.h.s. in terms of cylindrical coordinates, we recall that

Slg(a)] = 3 ﬁ

i

6(xi)
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where x; are the roots of g(x) = 0. Thus, in three dimensions, we have

-1

0(z,y,2) 1
N |2\ Y <) o P Y o 7 o
6(z—2a') |8(3,g0,z) 6(s—5")0(p—¢")o(z—2") 3,5(8 §)0(¢—¢)o(z—2").
Hence the Green function satisfies
12 / 47T / !
VEG(z —2') = —0(s = 8)d(p — ¢)d(z = &) (3.16)

where

V,Q_lé) (,8) 1 02 0?

705 \"05) T 2apn T oan

Note that in the following we will treat the unprimed indices as fixed parameters.
We will now specialise to the case where we wish to obtain the Green function in
a volume V' encompassing the full angular range 0 < ¢ < 27. Then any solution

can be expressed as a Fourier series in ¢/,

[N

o0 .
G(z,2") = G(s,0,28,¢,2) = 3 Fuls,p,z8,2)e™?.
'=—00

Substituting this into eqn. 3.16, we have

e} _Z.m/ / ]_ a a 1
m/§006 ’ { ,83 [8 ?F (S’SO’Z;S,7Z/) o le?Fm/(S,SO,Z;S,,Z/)
% 47
+@Fm/(8’ p, 78 Z/)} - _3—5(3 — S )5(90 - 90/)5(z — Z’),

We now use the orthogonality properties of the expime to obtain

2m 10 0 1
Z / ng’ i(m—m)e {_—/ lS/—SFm'(SagpaZ;s,aZ’)l _m/2ﬁFm'($7¢>Z;3,az,)

e oo s'0s' | 0
82 41 27 ime'
+@Fm’(37 0,28, z’)} = —?(5(3 —5)o(z — z’)/o do'e™? 5(p — '),
yielding
1 0 [,0F, m? 0*F,, 2 i
s 0s' l “os ] ~ gt e = 0l = )3l = e
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Thus we have explicitly exhibited the ¢ dependence, and can write

Fm(sa ¥, Z5 3’7 Z/) - fm(37 <5 3/7 Z/)eimap’

where f,, obeys the P.D.E.

L O [ '%1 e P 25 sy (3am)

505 |*om) ~ w7 T o T 7
Thus from our original P.D.E. in three variables we now have a two-variable
P.D.E..
To proceed further, we must say something about the boundary conditions, or at

the very least specify the volume V. We will assume that is covers —oo < z < o0,
and then introduce the Fourier transform (F.T.) of f,,, defined by

fls, 28 k) = /_OO dz' € (s, 2.5, 2)
]. (6.9] S T g
fl(s, z:8,2) = — dke ™% £ (s, 28, k).
2
T J—00
We apply the F.T. operator to eqn. 3.17,

o0 . / 2 2 o0 . /
/OO dz' e’ {l 0 l ’%] D+ 0 fm} = 25(8—8') /_Oodz’e“”(S(z—z’),

505 | 95 s 0z"? o
yielding .
10 | ,0fn m? ~ o = 2 ik
E@F@J‘ﬁm‘hm:?ﬂ*4ﬁ

where we have used the well-known properties concerning the F.T. of a derivative.

We have now exhibited the z dependence of the function, and may write

" 1

fm(37 <5 3/7 k) - Q_Gikzgm(sa 3,; ]{3),
T

giving

s' s’

1 0 [ Ogm m* A ,
- [883’]_ (ﬁ%—k)gm——,d(s—s).
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This is just a one-dimensional Green function equation, which we may write in

a more familiar form by substituting

r = ks

¥ = ks,

yielding

0 [x,agm(x,x’)] — (1 + = ) gm(z,2") = —4nd(x — o).

oz’ oz’ 272
This is just the modified Bessel equation, with inhomogeneous source. As we

noted earlier, the modified Bessel equation (like the Legendre equation) is of

Sturm-Liouville type:

% [p(x’)Tl +q(2')g(x, ) = —dmd(x — o)

with

m2
q(z') = -2 (1 + ﬁ) :

Thus we have finally reduced the problem to the solution of the Green function

for the Sturm-Liouville equation.

3.8.1 Green Function for the Sturm-Liouville Equation

We wish to determine the Green function to the equation

L )

i [P L ottt - o),

defined on the interval ' € [a,b], with homogeneous boundary conditions at a
and b. Note that we regard x as some arbitrary, fixed parameter.

The Green function must possess the following properties:
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1. For ' # =z, g(z,2') satisfies the homogeneous equation, i.e. the Sturm-

Liouville equation with no source on the r.h.s..

2. g(x, 2’0 satisfies the homogeneous boundary condition at ' = a and 2’ = b,

e.g. g(x,z') =0.

3. g(x,x’") must be continuous at 2’ = x. This is subtle; otherwise dg/dx’
would contain a d-function, and d?g/dz”? would contain the derivative of a

d-function at 2’ = x, which is more singular than the r.h.s. of the equation.

To see what happens at 2’ = x, we integrate the equation from x — € to x + €:

[ s {5 s awgton )} =t [ oo - ),

T—e€ % dx’ T—e€
leading to
dg(z,2)]"" Tte
) D 7 gt = -

Both ¢(z') and g(z,2") are continuous at 2’ = z, and therefore we have

lim T+€
e—0 _+ dz' q(2")g(x,2") = 0,
and we may write
lim [ dg(a,a)]""
e —0 {p(f,)T » = 4.

Thus function p(z’) is also continuous at 2’ = z, and thus

lim (dg(z,2' =x+¢€) dg(z,2’ =x—¢)
p(x)X e —0 { dr dz! = —dr

which we write as
[dg(x, x )] _ A4rm
de’ | ,._, p(x)’
i.e. there is a discontinuity in the slope of the Green function of magnitude 47 /p(x)

at ¥’ = x.
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Discontinuity in
slope

a X b
Thus we will write our Green function as

o a <7 <u:
g(ﬂf, xl) = Cl($)y1($,),
where y;(2') is a solution of the homogeneous equation satisfying the appro-

priate boundary condition at =’ = a.

o v <72 <b:
g(x, ') = Ca(x)ya(2')
where yo(2') is a solution of the homogeneous equation satisfying the appro-

priate boundary condition at z’ = b.
We now impose the conditions on the Green function at 2’ = x

e g(z,2') continuous at ' = x:
Ci(z)yi(z) — Co(x)yz(z) =0 (3.18)
e Discontinuity in slope is —47/p(x):

Cy(x)ys(2) — Cr(@)yy(7) = ——— (3.19)
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From eqn. 3.18, we have

G
Ca(x) e
Substituting into eqn. 3.19, we find
Ceh(e) o dn
y2(55) 1( )yl( ) p(x)
L Oyr) = o @)

where the W is the Wronskian,

Wiy (2), y2(x)] = 1 (x)ys(x) — ya () (2).

Note that this method only works if y; and o are linearly independent, since
otherwise the Wronskian vanishes.

Thus our general form for the Green function is

@)
@ Win@), (@) =7
Cdr (o)
(@) Wl (@), gola)

So, as we have already observed for spherical polar coordinates, the Green function

g(z,2") =

r<ax'<b

in the regions 2/ < x and 2’ > z comprises two different, linearly independent

solutions of the homogeneous equation.

3.8.2 Green Function for Modified Bessel Equation

We will now return to the case of the modified Bessel equation with d-function
source . . ,
e [p(x’)%] +q(2)g(x,2") = —4nd(x — 2).

A pair of linearly independent solutions is provided by the modified Bessel func-

tions I,,(x) and K,,(x). We will now consider the case where we require the
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solution over all space, i.e. x € [0,00]. The solution must be finite at x = 0, and
thus

y1(z') = Ln(x)).

If we further require that the solution be finite as 2’ — oo, then we have
y2(a') = K (2'),

which we can see from the limiting behaviour quoted earlier. In this case, the

Wronskian is (see Jackson)
1
WL (2), Ko@) =

and thus our general solution for the Green function is

Am K () I (2)
x —1/x
Am Ko (2) 1 (2) ’

r <2 <oo
x —1/x - -

0<a <z

gm(z,2') =

which we may express as

gm(z,2') = Anl, (2 ) K (2s)

where . = min(z, 2’) and x~ = max(z, z’).

3.8.3 Reconstruction of the Full Green Function
We reconstruct the full Green function in four steps:

1.

fn(s,2:8 k) = gn(s, s k)e* /2
— 2[m(k8<)Km(k$>)€Zkz
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2.
]. (0.9] T
A = —1kz RN
fm(s,z;8,2") = 27T/_ooalke fm(s, 28, 2")
]_ (0.9] . /
= -~ | ke (ks o) Ko (ks
3.
1y : / .
Fou(s, @, 2,8, 2) = —/ dk e*C= (ks ) Ky (kss)e™?
T J—0
1 0 . / (6.9] - /
4. Gla, o)== > @) [~ a1, (ks ) Kn(kss).
T m=—c0 -

Since we have evaluated the Green function with boundary conditions at infin-
/|—1

ity, this last expression is just the expansion of |z — x in cylindrical polar

coordinates.
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3.9 Expansion of Green Function in Spherical Polar Co-

ordinates

This is performed in exactly the same way as for Cylindrical coordinates. In

spherical polars, the Green function satisfiese

V%G (z,2) = —4—/7;(5(7“ —1")0(p — ¢')d(cosf — cos ),
r

where

1 0 0 1 0 0 1 0?
2 _ - 7 2 : 9/ ) .
v 2 Or! <T or' ) * r'2 sin 6’ 06’ <s1n 0o’ * 2 sin? §' O’

We will consider the case where we require the Green function over the full angular
range 0 < 0 < 7, 0 < ¢ < 27. Thus we can expand the Green function, as a
function of the primed variables with the unprimed variables fixed, in spherical

harmonics:
Gz, ') = > Frm(r, 0, ;7)Y (6, ¢).
U'.m'

Substituting this into the inhomogeneous equation we have
Z i a 12 aﬂ'm' * (9/ /)
i L2 or' "o v\ P
,m

Fy 1 0 <sin0’a l;km’> N 1 0%y,
r’2 |sin @ 00’ 00’ sin? @ 0’
A

= ——0(r— )6(p — ©')d(cosh — cos@').
r

Now the spherical harmonics are solutions of Laplace’s equation on the unit

sphere, and, from eqn. 3.1, satisfy

/

1 0%, 1 0 oy,

W 4+ 1) Yy + = (sin @ lm):o.
sin? @ 9’ T+ DY + sin 6/ 00’ <sm

Thus our Green function equation becomes

]_ a 28E/m/ E/m/ %
z,z,{ﬁar' lr’ or' ] S W+ 1)}Yl/m/(6/’¢) -

_%5(7“ —1")0(p — ¢')d(cosf — cos ).
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We now multiply by Y} (€', ¢’), and use the orthogonality properties of the spher-

ical harmonics:

10 OFm]  Fim

2 Or! l - or’ 1 o2 +1)

A Vi, )3 — 11)6( — ¢)d(cos 6 — cos §)
=~ (0, 0o (r —r")6(p — ¢@')d(cosf — cos

4
= _ﬁ}/lm(ea p)o(r —1').

We may then write
Fin(r, 0, 0;7") = gi(r, ") Y1 (0, ¢)

where g;(r, r’) satisfies

d 9 d
= (r’ ng(r, r’)) — L+ Dg(r,r") = —4md(r —1').

This is just the radial part of Laplace’s equation. To proceed further, we must
specifiy boundary conditions.

3.9.1 Dirichlet Green Function between Spheres at r =a and r =0
We require g;(r,r") subject to the boundary conditions g¢;(r,a) = ¢;(r,b) = 0.

1. a < 7" < r: The solution y;(r') of the homogeneous equation must satisfy

y1(a) = 0. Now the general solution is of the form
y1(7“') _ Aﬂ“’l —f—BlT’_Z_l,

and thus we have

yielding
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2.7 < 7’ < b: Then the solution ys(r') of the homogeneous equation must

satisfy yo(b) = 0, yielding

1 't
, JR—
ya2(r') = By [T/l—irl - bzl+1}
We now construct the Wronskian

Wiyi(r), y2(r)] = y1(7°)yé(7°)—yz(r)yi(;)1
_ —AlBQQH_l{l a ]

r2 b21+1 )

Noting that p(r) = r?, we observe that, once again, the Wronskian is independent

of the evaluation point, and we have general solution

2l+1 l
qa 1 T
) Ay (r - r’l“) By (m - b21+1> /
—dr i a < <
91(7“,7“) = ) z q2l+1 1 ol )
I S 2\ i T g2l /
—4m eS| ;o a<r <r
a

which we may write in the more compact form

4 20+1\ —1 20+1 1 l
gy = (1= ) = S ) (o — )
2l+1 b21+1 7“<+ rk b21+1

and hence

G(z,2') = ZZ gu(r, )Y (6", ") Y (0, ). (3.20)

Note that it is also possible to recover this result using the method of images, but

in this case an infinite number of image charges are required.
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Example:

Consider the potential inside an
grounded, conducting sphere of ra- a
dius b, due to a uniform ring of charge

of radius a < b, and total charge (), \\\b
lying in the plane through the equa- \ -

tor, and centred at the centre of the

sphere.

We can obtain the Green function by taking the a — 0 limit of eqn. 3.20:

L A r! (rers)t o,
Oled) =% 3 5 (5= i )0 int6. ),

The potential is then given by

1
41eg

' N L ) n9G (2, )
J, %' G(a, ' )p(a') - E/S:avds oE)—p =

In our case the surface integral vanishes, because the potential vanishes there.

¢(z) =

The (linear) charge density is given by
@
p(z') =

2ma?
Ezxercise: verify that the total charge is indeed (). Thus the potential is

6(r' —a)d(cosB").

. 1 / / r 12 Q r /
() —MEO / A d(cos #')dr' 1™ 2 55(1" — a)d(cos )
l l
4 9/ / Ym 6 T< . (/r'<7">)

In this case we have azimuthal symmetry, and the only non-vanishing integrals

arise from the terms with m = 0, for which

20+ 1
41

Yio(6, ) = Fy(cos ).
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Thus we have

o) = g0 =) E 00 - G
0 n M M
B %@nzo — ;Z!_ 5 {7“2;“ B va1>+1 } Pop(cos ),
where we have used
Pop1(0) = 0
Po(0) = (—=1)"(2n + 1)!!7

2nn

and r- = min(r, a), r~ = max(r, a).

3.10 Expansion of Green Function in terms of Eigenfunc-

tions

A closely related method to those discussed above is the expansion of the Green
function in terms of the eigenfunctions of some related problem. Consider the

solution of

V() + [f(z) + N(z) =0,
in a volume V' bounded by a surface S, subject to ¢ satisfying certain homogeneous
boundary conditions for x € S. In general, consistent solutions can be obtained
only for certain (possibly continuous) values of A, which we will denote \,,, the
eigenvalues. The corresponding solutions, the eigenfunctions, we will denote

on(x). The eigenvalue equation is then
Viu + [f(2) + AaJion = 0. (3.21)

The eigenfunctions form a complete, orthogonal set of functions (the proof of
orthogonality follows that for the Sturm-Liouville equation), and we will assume

that they are normalised:
/d3x O Pn = Omn-
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Then any function satisfying the same homogeneous boundary conditions may
be expanded as a series in the eigenfunctions. Consider in particular a Green

function, satisfying

VZ3G(z,2)) + [f (@) + NG(z, 2) = —4nd(z — 2/) (3.22)

where ) is, in general, not an eigenvalue. The corresponding eigenfunction expan-
sion is

Glz,a') = X an(z)en(2),
and, inserting in eqn. 11.11.1, we obtain

QQM@HV%%@U+f@%%@U+N%@ﬁ}:—Mﬁ@—ﬁﬁ

We now use that ¢, is an eigenfunction of eqn. 3.21 with eigenvalue \,, and obtain

> an(@)[A = An]n(2') = —4mé(z — ).
Using the orthonormal property of the eigenfunctions, we obtain

o ()
A, — A

an(x) = 47

and hence

This is often referred to as the spectral representation of the Green function.

Example: Green function in free space

Let us now specialise to Poisson’s equation, i.e. we set f(x) = 0 and A = 0 in
eqn. 11.11.1. We will begin by considering the solution in free space, for which
the most closely related eigenvalue equation is the wave equation

(VZ + k*)pp(z) =0
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where k? is the (continuous) eigenvalue, and the corresponding normalised eigen-

function is

with normalisation
| d’x oy (@ (2) = 3k — K.
Then the expression for the Green function is
ik (@'-x) ;12
e\ TL
G(z,2") = 47/073743T <—>

which we observe may be written

Example: Dirichlet Green function inside a rectangular box

We define the surface of the box to be the planes x = 0,a, y = 0,0, and z = 0, c.

The most closely related eigenvalue problem is
VZSO + k?mn@lmn = 07

where the eigenvalues and normalised eigenfunctions are
2 m? n?
2 2
klmn = T (;4—?‘1‘?
8 . lmx . mmy . nnz

Ormn(x) = sin sin sin )
mn (_) abe a b c

Thus we can immediately write down the Green function as

Cdmx . ommy . nwz | lwx’ . ommy . onnd
39 sin sin sin sin sin sin
G(z,2) = a b c a b c
Z,Z 2 7 7
mabe ;o [ m* n

2T p e
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Multipoles and the Electrostatics of

Macroscopic Media

The simplest source for an electrostatic field is a point charge; such a source is
sometimes known as a pole. The arrangement of two point charges, of equal but
opposite sign, is known as a dipole. The concept of a dipole plays a crucial role

in electrostatics:

e Even in the case of a neutral atom or molecule, the positive and negative
charges can become separated, e.g. by an applied external electric field. In
that case, the atom or molecule gives rise to an electrostatic field that can

be approximated by a dipole

e The concept of dipoles, and, more generally, multipoles, leads to an im-
portant method for obtaining the electrostatic field and potential far from a

charge distribution, the multipole expansion.

4.1 Introduction and Revision: Electric Dipoles

Consider two charges —q and ¢ at z; and zy respectively, and let a be the position

vector of ¢ relative to —q.
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Let 2’ be the mid point of the dipole, so that

= 2’ —a/2

' +a/2

g
[N}
|

Then the potential at the point P is

¢@>1(q+‘q)—1q( 1 1

Tdreg \lz-w | Jz-ml|) dre \|z-2—a/2] [z-2 +a/?]
We will now consider the case where the separation between the charges is much

less than the distance of the point P from the charges, i.e. |a| <| z — 2’ |. Then

we have

’CL’Q —1/2
z—2' ta/2|" = bz—ff+iri9%£—f%

~1/2
"1 a-(z—1a) |al?
= |z — 1+ .
& gl{ |z — 2|2 +M£—@P

Expanding as a series in |a|?/|z — 2|? using the binomial expansion, we obtain

!&—fi@ﬂF“=@—£T4%+<—9[i%ggﬁ?l+0<gggﬁ)}

Thus ,
d@—-l qa - (z — ')

dmey |z — a2

|
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We now take the limit [a| — 0, ¢ — oo, with ag = p fixed and finite. This defines

a simple or ideal dipole and we have

_ 1 p-(z—2
¢D(£) _ 47'('60 ’£_£/|3

e p is the vector moment or dipole moment of the dipole.

e ¢p(p) is the potential at « due to a dipole of moment p at 7.

We can obtain the electrostatic field due to a dipole by applying F(z) =
—Vop(x), and obtain

1 3(p-2z)z —r’py
R (11)

for a dipole at the origin.

4.1.1 Dipole in External Electrostatic Field

In this subsection, we will consider not the field due to a dipole, but rather the

energy and forces on a dipole in an external field F(z) = —V¢(x).

Potential Energy of Dipole in External Electrostatic Field

Recall from Section 3.5 that for a charge ¢ in an electrostatic potential ¢(z),

the potential energy is
Ulz) = qo(z)
Let us now apply this to the case of a dipole in an external field; once again, a

is the separation of the charge ¢ from —q.
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The potential energy of the dipole is

Up(z) = (—=q)¢(z — a/2) + q¢(z + a/2).
If the separation between the charges is small, we can expand about z to obtain

¢z +a/2) =
0 1 a;a; 82

1
bz )i2a18 ol )+2' 4 Ox;0x;

= )+ gg-wg +0()

o(x) + ...

Thus we have

Up(z) = qlo(z)+ +-a-Vo(z) + 0(d’)]

Now take the point dipole limit, a — 0, ¢ — 00, ag = p fixed. Then
Up(z) =p-Vo(z)

Aside: why did I take x to be at the mid point of the dipole? Because for a simple
dipole, all the corrections to the formula above involving even derivatives of ¢(z)
vanish. It just makes the expansion neater, but of course I could have performed

the expansion about any point between the charges.
Recalling that E(x) = V¢(x), we have
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Up(z) = —p- E(z)

Note that the potential energy of a dipole is a minimum when £ and p are

parallel

Force on Dipole in External Electrostatic Field

We will now consider the force on an electric dipole.
qE(x +a/2)

-q Py f’l ‘/ The force on the dipole is

. q
ﬁ(_ al2) Xv Fp(z) = —qE(z — a/2) + qE(z + a/2)

Once again, we can expand about 7:

Blx+a/2) = E(@)+ 3 (a- V)E +0(a).

We thus obtain

Fp(z) = qla-V)E(z) = (p- V)E(z) (4.2)
Now since E(x) is an electrostatic field, it is irrotational:
V x E(z) = 0.

Let ¢ be a constant vector, and let A(z) be an arbitrary vector field. Then we

have the identity
V(- A(x)) = e x (V x A(z)) + (¢- V) A(z)

which we can apply to equation (4.2) to obtain
Fp(x) =V(p- E(x)) = =VUp(z)

using V x F(z) = 0. Thus the force on a dipole is just minus the gradient of the
potential energy, and furthermore for a uniform external field, independent of z,

the force is zero.
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Torque on a Dipole in an External Field

We will now evaluate the torque, or moment of the force, 7 on a simple dipole
about its centre. This is just the moment of the forces acting on the two charges

about the centre of the dipole:

r = (ya) <+ B+ a/2) + (~5a) x (~a) Bl —a/2

= (50) % (B@ + 50+ V) E@) + E@) - 3(a- V) E@) + 0())
ie 7 = px E(xz) in the point dipole limit

e Note that the torque about some point other than the centre of the dipole
will be different.

e 7 =p X E(z) is true for dipoles other than point dipoles if E(x) is constant

over the dipole.

4.1.2 Force between Two Dipoles

Many materials are dipolar; the positive and negative materials are separated.
Here we will consider the force between a dipole p; at x; and py at x9. The force
Iy on the dipole at x3 due to the electrostatic field £, produced by the dipole p;

1S

Fo(zy) = (pyVy) Ei(zy) = (pyV,y) C {3 (Bl (&, @1)) (zy = 2)) = Pyl = 2, }

- |£2_§1|5

where V, means that we take derivatives with respect to x, (the position vector
of dipole p,), and we have used eqn. (4.1). As discussed above, we can express

this as
Foi(x2) = Vy(p2 - Er(22)).

Note that the force Fia(x1) is equal and opposite to Fp(z3).
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4.2 Multipole Expansion

In this section, we will see why the concept of dipoles, and more generally multi-
poles, is so important in electrostatics. Consider the case of a charge distribution,
localised to some volume V. For convenience we will take the origin for our vectors

inside V.
X-X P
7 We have that the potential due to the charge
X distribution within V' at a point P outside the
volume is:
L op(a)dV”

dmeg IV |z — 2|

¢(z) =

For r much larger than the extent of V', i.e. r > 1/ for all 2/ such that p(z’) # 0,

we can expand the denominator

- = 2w g 4

i {1_2_ N
= {1 (’2/7’)}

Thus we have

1 1 x4
- e O 12 3
o] o PO
Hence we can write
1 Q P-x 13 Tl 5
o= 2 . 1
o) m(ﬁ g L Qutg +00/)

where

Q = /V p(z)dV' s the total charge within V/
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P = /V p(z)z'dV"  is the dipole moment of the charge about the origin

Qij = /V p(z')(3zjx); — r?6;;)dV’  is the quadrupole moment of the charge.

e We have defined the moments with respect to a particular point, e.g. the
dipole moment is the integral of the displacement x’ times the charge
density p(2’). In general, the moments depend on the choice of “origin”.

What about the total dipole moment when the total charge is zero?

e At large distances from the charge distribution, only the first few moments

(Q, P, quadrupole moment, ...) are important.
e For a neutral charge distribution, the leading behaviour is given by the

dipole moment.

Example:

The region inside the sphere: » < a, contains a charge density

p(z,y,z) = fz(a® —r?)

where f is a constant. Show that at large distances from the origin the potential
due to the charge distribution is given approximately by
2fa’ z

Hz) = 105¢0 12

Use the multipole expansion in SI units:

6@ = o (2B v o(5)

Ameg \ 7 rs rs

In spherical polars (r, 6, ¢),
x = rsinfcosy ; y = rsinfsing ; 2z = rcost
The total charge () is

Q = /V p(z)dV = /o%/oﬂ/oa (frcos@(a2 — r2)) r?sinfdr dfde = 0.
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The integral vanishes because
/Wcosﬁsinedﬁ = /7T1 sin(26)df = 0
0 0 2 '
The total dipole moment P about the origin is
P = /V zp(z)dV = /V repp(z)dV

— /O%/OW/OG r(sind cospi + sinf sinpj + cosb k)
(fr cosf (a* — 7“2)) r?sin 6 dr df dep.

The x and y components of the ¢ integral vanish. The 2z component factorises:

_ o [T T 2 At — D dr = 2 2
P, = f/o dp /o sin 0 cos” 6 df /07“ (@ —r¥)dr = f 2n 3 35
Putting it all together, we obtain

1 8ma'f k-x 2fa’

o) = Arey 105 13 105¢ 1%

4.2.1 Multipole Expansion using Spherical Harmonics

To proceed further, we go back to our expansion of a pole in spherical harmonics

1 rl

— 47 Z Z =Y ((9/, SO/)}/lm(ea 90)'

|z — 2| I= m——l2l+1 pLrtim

We assume that the charge is confined to a sphere of radius a, and take the centre

of the sphere to be the origin for our vectors. Then for the case r > a, we have

/
T<:T

T> — T,

and we have

l

Vi
_ m dQl dl/2 6 ) .
oa) = 23 3 o S o [0l
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We now write
_ /dQ/dT/T/2 ljn(e/,wl)r’lp(ﬁl)

so that the expansion may be written

or) = -3 o im0 0)

601m2l+1 T’H_l

This is the multipole expansion using spherical harmonics. To make the connec-
tion with our previous expansion, it is useful to consider the few few terms in
Cartesian coordinates

1 1
- = d3 / A
wo = gz [ P = e

= —@ [ 4 pla) ' — i) = =\ = (P — P

o = @ [ pla) = | =P

i = A2 [ i) = oy Q- 2000 - @
¢ = —J; | &' p(a)7 (2 — i) = —EF(le—ins)

G0 = 1(/61356',0 (2)(32 (st

Note that the components for negative m can be trivially obtained using

G-—m = (—1)"q,.

In general, for the [-th multipole moment, there are (I + 1)(l 4+ 2)/2 components
in Cartesian coordinates, while only 2/ 4+ 1 components using spherical harmonics.
There is no inconsistency here - the Cartesian tensors are reducible under rota-
tions (i.e. mix with tensors having few indices under rotations) whilst the tensor

moments expressed in spherical harmonics are irreducible (i.e. the g, for fixed
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[ mix only amongst themselves under rotations); that is why we remowve the trace
in the quadrupole moment @);;, to give us 5 irreducible components.
We can express the electric field components trivially in spherical harmonics. In

particular, the contribution of definite [, m is

1 7+1 1
ET _—= — Ym 0, m- 1,0
02l +1" (6:¢)a ri+2
1 1 1 0
By — —— —y, (0,
f e0 21 + 11m 1v2 gg ™! (0, ¢)
1 1 1 wm
E, = — . Y., (6. 0).
4 602l+1QZ rl+2ging ! (0, ¢)

If we now consider the case of a ideal dipole p along the z-axis, then

B 3
qio = 47Tp

qgui = 1,1 =20

and we have

o 1213 3 pcostl  2pcosf
" e3\dr \dr 3 dmwegrd

1113 113 psinf
By = ——2p—| 2 ging = 227
f €3 a3\ 4 - 4Amegrs
B, = 0,

which reduces to the expression we derived earlier for an ideal dipole, eqn. 4.1.

4.2.2 Point Dipole vs. Dipole Moment

There is a danger in using the expression for the electrostatic field due to an ideal,
or point dipole. To see this, consider the electrostatic field E(z) due to a localised
charge distribution p(x). In partciular, consider the integral of E over some sphere

of radius R, the centre of which we will take as the origin of our vectors.
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We have
3 _ 3 P2
| drE=—[_ dvVé=—R[d%(z)n
where n is a unit normal outward from the surface of the sphere, and we have

used the generalisation of the divergence theorem.

Using Coulomb’s law for an extended charge distribution, we may write

R2
4meg

n

/dng = /d%'p(g’) /dQ

|z — o[

Now we can evaluate the x integration by writing the vector n = sinf cos gt +

sin 0 sin ¢j + cos 0k, and then expressing these terms in spherical harmonics as

87 (Yii(0 Y, (8
sinffcosp = — 8_7T 1(0, ¢) + 1, 1(6, )
3 2
87 (Yi(6,0) — Yi_1(0
sinfsinp = — 8w 10, ¢) it 1(0, ¢)
3 21
4
cosf = —WYN(Q’()O)
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Thus only the [ = 1 terms contribute, and using the orthogonality property of

spherical harmonics we have

/dQ Z , :4—7W—<n’
r — 1|

32—
where n' is a unit vector in the direction of /. Hence we have
R? redm
d3 E = — d3 PP ER !
/ r= 47‘(‘60/ ! r2 SQ'O@)
R? r
= ——— [ &2 =n/p(2 4.3
o ) (13)

where - = min(r’, R).

We now consider two cases

1. Sphere completely encloses the charge density. Then we have r- = r/, and

r~ = R, and we have, from eqn. 4.3,

[d2E = —= (4.4)
360
where P is the electric dipole moment. Note that this expression is indepen-

dent of the size of the sphere, provided it completely encloses the dipole.

/

2. Charge density completely outside the sphere. Then we haver. = R, r~ =1’,

and we have
[dxE = —2— [d*' = p(a)
= RE(0).
Thus the average value of the electric field over a spherical volume containing

no charge is just the value of the field at the centre of the sphere.

Let us now consider the corresponding expression for the integrated E in the case

of an ideal dipole, eqn. 4.1:

1 3(p-n)n—0p
3 _ 3 p-n)yn—p
/r<R dzE(z) = /r<R d x47reo r3

= 0 Ezercise: let p = pk, and work in spherical polars.
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For this to be consistent with eqn. 4.4, our expression for the electrostatic field

due to a dipole at xy must be modified
1 3n(p-n)—p 4w

E(x) = = — —pd(x — :
E(z) dire | |z — mof? 3P (z — o)

This expression only changes the electric field at the position of the dipole, and we
can then, with some care, use the expression as if we were using ideal, or point,
dipoles. The d-function contains information about the finite distribution of the

charge lost in the multipole expansion.
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4.3 Energy of Charge Distribution in External Electro-
static Field

The energy is given by
W= [d% p(z)o(x)
We now suppose that ¢ is slowly varying, so that

0%¢
ole) = 60)+x- Vot 5T aao i
1 oL;
= —z-FE0) — = e
o0) 2 EQ - 5 Sir
Now in the case of an ezternal electrostatic field, we have V - £ = 0, and thus we
may write
or; 1
o(z) = ¢— Zﬂf zj {893] A E}
5 OL;
= ¢o—z-E— 6%:[3%% 0ijr ]8x]

where the derivatives are evaluated at 0. Thus we have
1 OE;
W = [d%p(x){¢(0) —z-E — - 2[3%%‘ — 8]

o)
= 0000~ B0 P~ (X055 0

4.4 Electrostatics with Ponderable Media

So far we have only considered the case of electrostatics in free space. We will
now consider the case of macroscopic materials in the presence of electric fields.
Such materials are classified according to whether or not electrons, or charges,
can flow over long distances. In the case of conductors, charges can move freely
about the material, and, as we have already seen, generate an induced field that

exactly cancels any applied external field.
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In this chapter we consider the case of dielectics. Here the electrons are bound
to atoms, and have only limited freedom to move. The material might have an
inherent dipole moment, or a dipole moment might be generated by the presence

of an external electric field. The crucial property of a dielectric is that
VxE=0.
Thus

e We have a conservative electric force

e We can express the field as the gradient of a potential

In the following, we will assume the applied field induces a dipole moment, but no
higher moments. Now consider the potential at z due to the charge, and dipole

moment, of a volume AV at z’:

1 [p(@’)AV L P@) - (e~ AV] |

|z — 2| |z — 2/

Aqb(g? .I,) -

=’ dmeg
where x is outside the volume AV. The dipole moment per unit volume is called

polarization. We now pass to an integral in the usual way, and obtain

oa) = 1(@@5{M@ +£@»@—zq

4eg |z — 2| |z — 2|3

- | d*a! Lp(i@,’ +£(z’)-2’( : ,’)] (integ. by parts)

dmeg T—x z—z
1 1 1 P(z')-n
— d3 / N_V'. Pz ds'==/ =
ATeg Jo s |z — | plz) — ¥ - Ble)l+ Amey Jsav | — 2’|
This expression can be rewritten as follows
| pr(@) + ) | 1 o(z)
— d3 ! e < dS’ d
@ = e b T e o

where 0, = P - n is the surface density of the bound charge, p, = —V - P is the
volume density of the bound charge, and the “old” charge density p is called the
free charge density py to distinguish from the density of the bound charge.
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Thus Maxwell’s equation becomes
1
V-E=—[py-V-P]
€0
which we can write as
V-D=py

where
D=eqE+P

is the electric displacement. Note that —V - P is the polarisation charge
density.
We now suppose that the media is usotropic, i.e. no preferred direction. Then the

induced dipole moment must be aligned with £, and we set
P =exE
where Y. is the electric susceptibility. Thus we have
D =L +eox. L = €L

where € = €y(1 + x.). Note that €/¢y is the dielectric constant. Finally, if the

material is uniform, then y,. does not depend on position, and we have

D =¢E, with V-E=ps/e

4.4.1 Boundary Conditions at Boundary between Materials

We will now consider the boundary conditions at / Ny,
/ e

the boundary between two materials, of permit-

tivities €; and €z, and with electric fields £, D, E2’ D2

and F,, D, respectively. 1" ~1
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Tangential condition

We have that V x E' = 0, and thus, applying Stoke’s theorem to the closed curve

C' shown above, we have

yielding

which we can express as

(Ey — Ey) xny =0

where n,, is the normal from 1 to 2.

Normal condition

Applying Gauss’ law to the usual elementary pill-box we have

V-D=p = [D-dS=[p;dV

from which we find

(Dy = Dy) - nyy = 0y

where o is the macroscopic free surface charge density at the interface.

To summarise, at the interface between two dielectrics:
e The tangential component of F is continuous.

e The normal component of D has a discontinuity given by

(Dy — Dy) - nyy = oy
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4.5 Boundary-value Problems with Dielectrics

The method we adopt here essentially follows that of the solution of boundary-
value problems in vacua, with the boundaries given by conducting surfaces. The

method is best illustrated by examples.

Example:

A point charge ¢ in a material of permittivity €; a distance d from the interface

with a charge-free region of permittivity es.

The boundary conditions at the interface z = 0 are

aF.(0+) = &F.(0—) (normal on D)
E.(04+) = E,(0—) (tangential)
E,(0+) = E,(0—) (tangential).

In order to determine the potential in the region z > 0, let us try an image charge
¢ at z = —d. Then the potential at z is

/

1 q L+ q
dmey ||z —de,| |z +de,||

¢(£) ’z>0 -

We know that the potential in the region z < 0 must satisfy Laplace’s equation in

that region, and therefore, in particular, there cannot be any poles in the region
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2z < 0. Therefore, let us try the potential due to a charge ¢” at the postion of our

original charge ¢:
1 q//

Ares |z — de |

¢(£)’z<0 -

We now introduce cylindrical polar coordinates, so that
1 qI/
drea {p? + (2 — d)2}1/2
1 q N q
dmey [ {p* + (2 = d)?}'2  {p* + (= + d)*}/?

¢(p7 67 Z) -

2z <0

} z>0

We have two unknowns, ¢’ and ¢”, which we determine by imposing the boundary

conditions at z = 0. We begin with the tangential condition.
E, = —0¢/0p, and thus

1 qI/ p

—0—
P dreq (p? + d?)3/2 :
T qp q'p
=0
4meq { (p% + d2)3/2 * (p? + d2)3/2} : +
Thus the tangential boundary condition is
1 / 1 1/ 1/ /
e 4T = ¢'er =(q+q)e
To impose the normal boundary condition, we note that
1 _dq//
z=0-—
dreg (p2 + d?)3/2
Ez = )
1 d ,
—q) z=0+

4rer (p? + d2)3/2 (g

from which we find

q// + q/ — q
We can solve for ¢’ and ¢” from eqns. 4.5 and 4.6, yielding
q/ _ _(62_€1>q
€1 + €2
q/, _ 262

€1 + €2q.

We have that

(4.5)

(4.6)
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Thus we have a solution that satisfies the Laplace’s equation in z < 0, and Pois-
son’s equation in z > 0, and the correct boundary conditions at z = 0. Thus, by
our uniqueness theorem, it is the solution.

To see the form of the field lines we consider two cases, €, > € and € < €9; in
both cases the field lines for z < 0 are those of a point charge, of magnitude ¢”,

at q.

1. €4 > €.

Then ¢ is same

s1gn as q.

2. €9 > €.

Then ¢’ and ¢ have

different signs.

N7\

In order to compute the polarisation (bound) charge density, Tpol = —V . P we

observe that P, = egx;F;, © = 1,2, where ¢; = ¢y(1 4 x;). Thus we have

P, =(e—ea)E

="

Clearly the polarisation charge density vanishes, except at the point charge ¢, and

at the interface between the two materials. At the interface, there is a disconti-
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nuity in P, and integrating over the discontinuity we obtain
oy = —(Py — Py) - nyy, (4.7)

where n,, is the unit normal from region 1 to region 2, and P, and P, are the

polarisations at z = 0— and z = 0+ respectively. Thus we have

1 d , 1 dq’
op = — {(61 - 60)47T€1 (P + d2)3/2(q —q) — (&2 — 60)47‘(62 (P + d2)3/2}
. d €2 — €y ¢ €1 — €y, ,
_ 4ﬂ(p2+d2)3/2{ . (g —Q)}

dg
— (e — _ _
4 (p? + d2)3/2(eg + 62)61{ (2 —ea)at(a-a)latatea—a)l
g &l —e) d

27 61(62 + 61) (p2 + d2)3/2

Note that in the limit €3/e; > 1, the electric field in region z < 0 becomes very
small, and the polarisation charge density approaches the value of the induced
surface charge density for a conductor at z = 0, up to the factor of ¢y/€;. In that

sense, the material in z < 0 behaves as a conductor.

Example

Dielectric sphere, radius a, dielectric
constant €/¢, in uniform field along

Z-axis.
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We will work in spherical polar coordinates, and express our solution as an ex-

pansion in Legendre polynomials:
> At Py(cos 6) r<a

or.b.0) = { Su[Brt 4 Cr "1 Py(cos ) r>a
where we have noted that the potential must be finite at » = 0.
To determine the coefficients, we impose the boundary conditions. At large dis-
tances, the potential is that for a uniform field along the z axis, and thus our

boundary condition at infinity is

o(p,0,p) — —Egrcosf as r — o0

We now impose the boundary conditions at the surface of the sphere
Eyg(a—) = Ey(a+) (tangential condition)
coFr(a+) = €F.(a—) (normal condition)
The boundary condition at infinity tells us
B, = —E
B =0 l#1

To impose the other boundary conditions, we evaluate the components of the

electric field, beginning with FEj:

d
— S A=t —P(cosh) r<a
Ey = : ded )
— EZ:O[T_Z_2@PZ(COS ) — BlﬁPl(cos 0) r>a

From the generalised Rodrigues’ formula, we have

Pia) = (~1)'1- )22 ()

= Pl!(cosf) = —sinf Py(cos @)

COS

d
= @Pl(cos 0),
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whence
— > AP (cos 6) r<a
Ly = : -2 pl 1 :
—> Cir ™" "PF;(cosf) — B1 P (cosb) r>a

I
The radial component is straightforward,

— > Aplr'tP(cos 6) r<a
I

,r:

S Gl + 1)r 2P (cos ) — B1Py(cosh) r>a
I
Thus imposing the tangential boundary condition we have
S Aid 7 Pl(cos0) = Cra™" 2P} (cos §) + By P}(cosb).
I I

Using the orthogonality property of the Legendre polynomials, we have, for [ # 1,

2 (I+1) . 2 (4D
A -1 — O -2
I — D) o1 — 1)
= Alal_l = C’la_l_2
= A = Ola_Ql_l. (4.8)
For the case [ = 1, we have
Al = C’la_g — E(). (49)

The normal boundary condition yields
€0 {Z Ci(1 4+ 1)a"""?P(cos ) — B Pi(cos 6)} — —e> Ajld" P(cos6).
] ]

Once again, there are two cases

o[Cil+1)a 7% = —eAjlad™ 141 (4.10)
02010+ Fy) = —ed, 1=1 (4.11)

Substituting eqn. 4.8 into eqn. 4.10, we find

A=C=0, 141
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Finally, from eqns. 4.9 and 4.11 we find

—3E
A = 0
2+ €/eg
€/eg— 1Y\
C, = E
! (2+6/60)a 0
Thus we have
3
— Eyrcos 6 r<a
2+€/€0
¢(T767 C)O) - 6/60 J— 1 a3 :
—FEyr cos 6 + —cost r>a
2+¢€/ey) 1?

e Inside the sphere, the field is parallel to the field at infinity,

E -5 E.
— 24€¢/eg—

with |[E, | < Ey if € > €.

e (Outside the sphere, the field is equivalent to that of the applied field, together

with that due to a point dipole at the origin, of moment

e/eg— 1\
=4 E 4.12
p T€p (2 +€/€0) a Ly, ( )

orientated in the direction of the applied field.

The polarisation P = (e — ¢y) E is constant throughout the sphere,

3(e — Eo)E

P = :
T 2+€/€0_0

We can evaluate the volume integral of P, to obtain

4 .3(e—¢€)
dVP = —ma*>>— -~
r<a Ve 37TCL 2+ 6/60 —0

—1
= 4dmeg (6/60 ) CL3EO,
2+ -
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which is just the dipole moment we obtained in eqn. 4.12. Thus the dipole mo-

ment is just the volume integral of the polarisation.

Because P is constant throughout the
sphere, the polarisation charge density
—V - P vanishes throughout the interior.
However, because of the discontinuity in

P at the surface, we have a surface polar- -

isation charge density, whose magnitude

we can obtain from eqn. 4.7:

o, = P-e, (P vanishes outside sphere) -
—1
= 3¢ (6/607) Eycost

2+€/€0
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4.6 Electrostatic Energy in Dielectric Media

Back in the introduction, we computed the energy of a system of charges in free
space:
L

W = §/d z p(z)d(z). (4.13)
We obtained this expression by assembling the charges, one-by-one, from infinity
under the potential of the charges already assembled. In the case of dielectrics,
work is done not only in assembling the charges, but also in polarising the medium.
To see how to perform the calculation in this case, consider the change in energy

due to a macroscopic charge density dp(z),

oW = [ d*x5pp(z)d(x).

We now use recall that V - D = py, enabling us to write V- 0D = dpy. Thus we

have
oW = [d*zV-5D(x)
= [d*zE 6D,

where we have integrated by parts, assuming that the charge is localised so that

the surface term vanishes. Thus the total energy in constructing the system is
D
(3 ,
W= [d ["E-sD.

We now make the critical assumption of a linear, isotropic constitutive relation
between E and D,
D(x) = e(z) E(x).

Then we have E - §D = 1§(E - D), and thus
a1
lV—/dxAzf@}Q)

yielding
1 3
W = §/d zE-D.
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We can recover our expression eqn. 4.13 either by the substitution £ = V¢ and
using V - D = py, or by noting the linear relation between ¢ and p. The crucial
observation is that the expression eqn. 4.13 is valid only if the relation between D

and E is linear.

4.6.1 Energy of Dielectric in an Electric Field with Fixed Charges

As an important application of this formula, we will consider the case of a dielec-
tric medium introduced into an electric field £ () arising from a fixed charge

distribution ps = po(z). Initially, the energy of the system is
1
Wy = §/d3$20 - D,

with D, = €gL,; here ¢ is the initial permittivity of the dielectric, not necessarily
the permittivity of free space.

We now introduce the medium, of volume V;, with permittivity

) al@ zen
(2) {Go(x) gV

noting that the charge distribution is unaltered. Then the new energy is

Y

1
=5 | @ E()- D()
and the change in energy is
1 1
W=g [dzE D2 [duE, D,
With a little juggling, we can write this as
W= - /d3 (E-D,— E,- D) /d3 (E+ E,)- (D — Dy).

To evaluate the second term, we note that both V x F =0 and V x £/, =0, and
thus we may write £+ F, = —V®(z). Hence the second integral may be written

:__/d%;vcp (D — Dy) = /d%cbv (D — Dy)
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where we assume the integrand falls off sufficiently rapidly at infinity.
Now V - (D — Do) = ps(z) — por(z) = 0, since we required that the free charge
distribution be unaltered by the introduction of the dielectric. Thus the integral

vanishes, and we have
1
W= [dx(E- Dy~ E,- D).

We now spilt the region of integration into V; and the remainder,

1 3 1 3
W= [, dc(E Dy~Ey-D)+5 [ dw(E Dy~ Ey- D).

For v ¢ Vi we have Dy = ¢gE, and D = ¢ F, and the integrand vanishes, so that
1
W o= 3 ), @0k By~ aE,-E)
1
= — |, dr(a—a)E- By

We now specialise to the case where the original dielectric is indeed the vacuum,

and ¢p the permittivity of free space, and write
(61 - EO)E - E?

yielding

1 3
W:—E/Vldx]j-go.

We can interpret w = —%E - E, as the energy density of the dielectric. The
expression can be likened to that for the energy of a dipole distribution derived
at the end of Section 4.3. There we were considering a permanent dipole, whilst
here energy is expended in polarizing the dielectric, and this is reflected in the
factor of 1/2.

Note that the energy tends to decrease if the dielectric moves to a region of
increasing £, providing €; > €. Since the charges are held fixed, the total

energy is conserved, and we can interpret the change in field energy W due to
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a displacement of the dielectric body & as producing a corresponding change in

potential energy, and hence a force on the body of magnitude

-3,

where the subscript () denotes at fixed charge.

4.6.2 Energy of Dielectric Body at Fixed Potentials

We will conclude this section by considering the contrasting case where we intro-
duce a dielectric body into a system where the potentials, rather than charges,
are kept fixed. A paradigm is the introduction of a dielectric between the plates

of a capacitor connected to a battery, and hence at a fixed potential difference.

— | \ Fixed T
/ Potentials

Dielectric

In this case, charges can flow to or from the conducting plates as the dielectric
is introduced to maintain the potentials, and hence the total energy can change.
Again, we will assume that the media are linear.

It is sufficient to consider small changes to the potential d¢ and to the charge

distribution ¢, for which the change in energy 6W, from eqn. 4.13, is

1
oW =3 [ d*x (ppo + ¢opy).

For the case of linear media, these two terms are equal if the dielectric properties
are unaltered. However, in the case where the dielectric properties are altered

during the change, e(z) — €(z) + de(z), this is no longer true, because of a
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polarisation charge density generated in the dielectric. We have already considered
this problem for fixed charges, 6p; = 0. In order to compute the change of energy

at fixed potentials, we study the problem in two stages;

1. The battery is disconnected, so that the distribution of charges is fixed,
dpy = 0, and the dielectric is introduced. Then there is a change in potential

d¢1, and the corresponding change in energy is

| R 1
oWy = 5/oz zprody = —5/(61 —«)E - B,
using the result of the previous subsection.

2. We now reconnect the battery. The potential on the conductors, where the
only macroscopic charges reside, must regain its original value, i.e. d¢y =

—0¢1, and there is a corresponding change in charge density dpsy, yielding

1
oWy = §/d3$ (prdda + dadpay).

In this step, the dielectric properties are unaltered and the two terms are

equal, so we have

Wy = / &Pz p oy

= —/dgx proo1
= —26W;

Thus the total energy change
OW = oWy + oWy = —0W7,

which we write as
Wy = —=oWq,

i.e. the change in energy at fized potential is minus the change in energy at fized

charges. In this case, if a dielectric with ¢; > ¢y moves into a region at fixed
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potentials, the energy increases, and a mechanical force

Fe=+ (%—?)V

acts on the body.

32
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Magnetostatics

5.1 Introduction

The crucial difference between electric and magnetic phenomena is the absence
of isolated magnetic charges, or magnetic monopoles. Here the basic building
blocks are magnetic dipoles. For a magnetic field, or flux density, B, the torque

7 acting on a dipole of moment y is
T=pxB.

The other concept we need in the study of magnetostatics is the electric current
J, defined as the flow of charge per unit time per unit area, with normal in the

direction of J.

al - dQ -
J=—= J
o dCLJ_ dCLJ_dt

5.1.1 Current Conservation

Current conservation is represented by the continuity equation

dp

where p is the charge density. This statement just states that the rate of change

of charge in any volume V is (minus) the flux of charge across the surface of V,
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as you can see by applying the divergence theorem:

For steady currents we are considering in this chapter

V-J=0.

5.2 Biot-Savart Law

This describes the element of magnetic field B
at some point x due to an element of current
flow Idl at 2.

o
g — i x (-1
- |z — 2’

where, in SI units,
e [ is the current (Amperes),
e dl is an element of length in the direction of the current flow,
e k= po/4m, where pg is the permeability of free space.

For a point charge ¢ moving with velocity v, we can replace Idl by qu, and we

have .
g Poqux(z—1)
— Ar fz -2

Y

providing v is constant, and small compared to the velocity of light.
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We can apply the superposition principle to the magnetic field, and obtain for a

general current density

J(@') x (x — ')

B(z >z’ ————

Bl = 477/ iz — '
Example
Consider the magnetic field due to straight EQ\\ dl
wire carrying current /. Then the field a dis- I 1
tance R from the wire is tangential, and can A N
be written \\

B = 2 I o
= 47t /—oo (12 4+ R?) V12 + R B

I dl
g A, R
Am (12 4+ R2)3/2—

pol _ (7/2 Rsec? 0df ,uOI
— Mip

A /—W/2 sec3 0 L= 27TR_

5.2.1 Force on a Current in Presence of Magnetic Field

The element of force on a current element Idl at x in a magnetic field B(z) is
dF = 1Idl x B.

Thus the force on a closed loop of current /; due to magnetic field from closed

loop (s is

|x1 - x2|3

_ ,U()Il] j{y{dl >< dl >< §2)]

|x1 - x2|3

F,, = &[szﬂlx {%ﬂzx (@1_§2)}
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We can put this expression in a more symmetric form by writing
dly x (dly X 315) = (dly - 215)dly — (dl - dly)z,,,

yielding

Fro— {—:x TR RECERG (5.1)
N 4m %7{ 2,8 T2 T o)

We will now show that the second term vanishes. Consider the integration around

loop 1, for fixed x,. Then under a change x1 — 21 + dl,, we have
Tyy = Typ +dly.

Now consider the change in 1/|z,]:

( 1 ) 1 1
ol— | = _
@12| |£12 + ﬂﬂ @12|

— 1 {1 Ty dly 1}
|£12’ |£12’2

RPN dly

@12’3 .

Thus the integrand in the second terms of eqn. 5.1 is an exact differential, and

therefore the integrand around the closed loop vanishes, and we have

_ Holily /ﬂ1 ' dl?xm.

Fi9 = —
N 47 @12’3

Now Newton’s third law is satisfied explicity, and we have
Fro = —Fo.
For a general current density J(z) in a magnetic field B(z), we have

F o= [dr)(2)x B)
7 = [drzx (] xB).
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5.3 Laws of Magnetostatics in Differential Form

In analogy with electrostatics, our starting point is the expression for B due to

general current density

/f, x(z—a)

]:13 — '3
We begin by recalling that V x (pa) = Vy X a, where a is a constant vector.
Thus

Y;x<ﬂfﬁxif0:ZSL<mif0>qﬂf)

(z — )
Tz o <L
Thus we can write
B(z) = = &’z ’ 2
Bla) =V x [ @) (52
From eqn. 5.2, we immediately see that
V-B=0. (5.3)

This is another of Maxwell’s equations, and is just another statement that you
cannot have isolated magnetic charges, and that the total flux of B through any

closed surface vanishes

/S:aV@'B =0

To obtain another differential equation, we evaluate V x B. We begin by recalling

the vector identity
Vx(VxA)=V(V-4) - V4,

so that
J(z)) Lo 1
3 / g\~ 3 / 2
V x B v/d 47T/d J(z')V? .

-2 r—o
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Now
J(z)) 1
=2 ()Y,
Yo |z — 2| J2)- Y, (@—g’!)
V2 ! = —And(z —2'),
—\|z — 2| -
and thus
_ _ﬂ 3./ I . 3,/ / o
VB = R [ )9, () e | S
_ Py e .
= @) Ve (@)

For, for magnetostatics, we have V - J = 0, and thus

V X B = poJ (5.4)

This is the second fundamental differential equation. We can apply Stoke’s theo-

rem to a closed curve C spanned by a surface .S to obtain

[V xB-dS=[B-dl=p[J dS.
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5.4 Vector Potential

For static fields, the governing equations of magnetostatics are

V-B =0
V x

Ity |
I

foJ

For the case J =0, we have V x B
potential ¢,;.

0, and we can introduce a magnetic scalar

Much more interesting is the general case J # 0. We can show that if V.- B =0

is a star-shaped region,! then a vector potential A can be found such that
B=VxA

In the case where B is the magnetic field, we call A the magnetic vector po-

tential.

5.4.1 Uniqueness of A and Gauge Transformations

If Ais a solution of B =V x A, then A" = A+ Vf, where f is an arbitrary,

continuously differentiable scalar field, is also a solution, because
V x (Vf) =0.

Transformation of this form are called Gauge Transformations; we say that B
is invariant under gauge transformations. To simplify calculations, we often make

a specific choice of gauge.

Examples

1. We could require A;(x) =0 V.

TA star shaped region is one in which there exists a point which can be connected to every other point by a

straight line
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2. We could require
V-A=0 V.
This is the Coulomb Gauge.

Choosing, or fixing, the gauge reduces the number of degrees of freedom, clear in
example (1) above. All the fundamental forces of nature are described by Gauge

Theories, having the property of a gauge, or local, symmetry.

5.4.2 Solutions for the Vector Potential in Free Space

We will specify that we work in the Coulomb gauge, V - A = 0. Then the second

of our governing equation becomes
VxB=Vx(VxA)=V(V-A) - VA= ]
and thus
VA = —pod.
This is just Poisson’s equation, applied to each of the Cartesian components of

A, and from our investigation of electrostatics has the solution

Az) = Z—; | J(&) (5.5)

|z — |

Example

Potential due to a wire loop of radius a, carrying current I.
z
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The current is purely in the azimuthal direction, and in spherical polars, we can
write the current density as
r'—a
J, = Isin@'é(cos 9’)!.
a
You should convince yourself that this expression is correct. W.l.o.g. we will
consider the case where the observation point is in the x — 2z plane, so that, in

Cartesian coordinates, the current density is
J=—J,sing'i + J,cos¢'j.

Thus the vector potential, from eqn. 5.5, is given by

1
lz — 2|

Az

) = 22 [ deY vy’ {—J, singli + J, cos ¢j} X
0 j

The x component of A will vanish, since the expansion of 1/|z — /| is symmetric
under ¢’ < —¢'. Thus the only non-vanishing component of A is in the y-
direction, which coincides with e . Thus we have

d(r' —a) 1

cos ¢’ :
a |z — 2|

A, = Z—;I/dQ’ dr'r"sin /5 (cos )

Performing the integrations over r’ and 6’ yields

pola
A=

This is an eliptic integral, and its expression in eliptic functions is not particularly

2T
/0 dy' cos @' {a* 4+ r® — 2arsin @ cos o'} /2,

illuminating. Instead, we will perform an expansion in spherical harmonics:

S(r' —a)

a

P

1
A, = %?R/d&l' dr’ r'? sin 0'5(cos §')

l
P

1
4 — =Y (0, Y, (0
X W%%—Flrljl lm( 7@) l ( 790)7

where we write

-
cos ' = Re'¥ .
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Performing the delta-function integrations we arrive at
!

T
Ay = polaR Y 5 Yin(60,0) 37— /d@%ﬂ’ * (1)2,¢).
ILom T>
We now use the orthogonality properties of the functions expimep to write (you

see why we expressed cos ¢’ this way. .. ):

/d%)’@w n(m/2,¢") = { 2mYin(7/2,0)  m=1

0 otherwise
and thus l
X r
A, =21l —=Y;1(6,0)Y; 2.0)——.
© T Lo al:ZlTéH 11( 3 ) 11(7T/ 3 )2l+1

Now we have that

Yia(r/2,0) = J ¢ ;;()j(fll; Y pi o)

which vanishes if [ is even, since P!(0) has the opposite parity to P;(0). The
explicit evaluation of these integrals is performed in Jackson, so I leave it for
you to look them up there. However, the important feature is that even when
we have azimuthal symmetry, the vector potential and magnetic fields involve
the P! Legendre polynomials; this reflects the vector nature of the source in

magnetostatics, as opposed to the scalar nature of the source in electrostatics.

5.5 Magnetic Field Far from Current Distribution

Consider a localized current distribution J(z') , and the magnetic vector potential

produced at a point P(z) where |x| > |2/|. Then we can write

11 =z

z - x| |z

so that, in the Coulomb gauge

Aj(z) = W /fyj() S [da g (5.6)
|z|
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To study this expression further, we begin by proving a small identity. Recall
that for magnetostatics, V - J = 0, and thus for any two scalar functions f(z')

and g(z’) we have
= — [ &' f(2)g(2)\V' - J = [ d*' V'[f(2)g(z)] - J(2)

where in the second step we have integrated by parts, using the fact that the

surface integral vanishes for a localised current distribution. Thus we have
[ [f1-V'g+g] V'f]=0 (5.7)

We now consider the first term in eqn. 5.6. Applying eqn. 5.7 for the case f(z') =

1, g(2') = z}, we have
/dgx' [Jjéw + .I;Jj . 0] =0
= /dg.f,(]z' = 0.
Thus the first term vanishes. This is just a further restatement that there is no
“monopole” contribution to the multipole expansion for magnetic fields.

We now applying the identity to the case f = x}, and g = xg Then from eqn. 5.7,

we have

a /
/ﬁ’xjaf+xjgf]

Thus, going back to eqn. 5.6, we may write

o MO 1 3,/
Az(g) - 47‘(”$’3 J/dxjx

Lpo 1 3, / '
zmuﬁ”/ i
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Levi-Civita Tensor
To take the discussion further, we recall the definition of the Levi-Civita tensor

0 if any two if 7, j, k are equal
€ijr = 1 if (ijk) is an even permutation of (123)
—1 if (ijk) is an odd permutation of (123)

This tensor is usotropic, and totally anti-symmetric. In particular, we have
A X Bl; = €ijrA; By
There is the following well-known and easily shown identity
€ijk€itm = 0j10km — 0jmOkl,
which we will now use to write
apJ; — x;-Ji = (0i10jm — Oim0j1)x)Im

/
= €kijC€himT;Im

= eju(a’ X D

Thus we have

The vector

is the magnetic moment, whilst

is the magnetic moment density. Thus we can write
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po 1
Alz) = Ewm X x

This is the lowest, non-vanishing term in the multipole expansion of the magnetic

vector potential for a localised current density. Applying B =V x A, we have

B_ggr@imz—ﬂmk

= A4r

G
exactly analogous to the electrostatic field due to a point dipole.?
Example
For the case of a current confined to a loop, we have
1
m:§f£Xﬂ-

Furthermore, if we have a planar loop, x x dl is

normal to the plane of the loop, and we have

lx X dl = 1xdl sin &
2= 2
= da
so that
m = I1An

where n is a normal to the plane of the loop,

and A is the total area of the loop.

Example

We conclude this section by considering the case where the current distribution

arises from the motion of a number of charged point-like particles:

J =2 qw;d(z— ),

2Tt is possible to introduce a vector potential to describe electric dipole fields
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where v, is the velocity of the ith particle, which we assume is much less than the
velocity of light.

Then we have

—_

m=-> ¢T; XU,
)

Now the orbital angular momentum of a particle is given by

(\)

L, = M;x; X v,

where M is the mass of the i*® particle. Thus we may write

m =

L..
T i 2MZ_Z

In the case where all the particles have equal mass, we see that the magnetic

moment is proportional to the total angular momentum.



Chapter 2 15

5.6 Magnetostatics of Matter

5.6.1 Torques and forces on magnetic dipoles

First, consider a magnetic dipole in the uniform magnetic field B. Let us visualize
magnetic dipole m as a wire loop with area a carrying current I such as m = Ia.

The total force acting on the loop is zero:
F = 1I¢dlxB = —IBx $dl =0
The torque acting on the loop is m x B:
N = §a/ xdF = 2’ x (Ida' x B) =1 $da'(2/- B)— BI §da”* =1 $da’'(2'- B)

It is easy to prove that for an arbitrary constant vector a

fda' (2’ - a) = —%g x f(a’ x da') (5.8)

Indeed,

ax Yz x da') = flz'(a - da’) - da'(a- 2')]

$a'(a- do') = Jld(z/(a- 2)) — da'(a-2)] = — § da'(a - @)
and therefore a x f(z’ x dx') = —2¢dx'(a - 2). Taking a = B we get
N= - Bxf xd) = (3fa xda)xB = mx B

so the torque in a uniform external field is a cross product of the magnetic moment
and the field.

Let us now consider a small dipole in the non-uniform external field (the size of
the dipole < characteristic size of the field). The formula for the torque remains
the same: N = m x B where the magnetic field should be taken at the position

of the dipole. However, the total force is no longer zero.

F = I¢dlxB #0
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Since our dipole is small we can expand B(z’) in powers of /. For simplicity,

suppose that the dipole is located at the origin. We get

B(a') = B(0) + (2 - V)B(0) + ...

and therefore (d2’ = dl')

F = I¢dl' < B(0)+Ifdl' x (z'-V)B+0(z") = Ifda'(z’-V) x B
Next we use formula (5.8) with a = V and obtain
i _ I / / _
I§de'(a’- V) = Sf(a’ x de'y x V. = m x V
so finally
F=mxV)xB = V¥V(m-B)-m(V-B) = V(n-B)

because V - B = 0.
Since F' = —VU we see that the potential energy of a (small) magnetic dipole in

the external magnetic field is
U= —-—m-B

(similarly to U = —p - E for the electric dipole).

5.6.2 Maxwell equations in matter

We could, in principle, attempt to describe the magnetostatics of a material in
terms of the microscopic, or “vacuum”, fields. As in the case of electrostatics, this
approach is neither feasible nor desirable. At the microscopic level, the individual
atoms have magnetic moments and eddy currents are generated that we cannot
account for exactly. Rather, we discuss macroscopic quantities, including that part
of the magnetic field arising from these microscopic currents. In the following, we
will use the subscript micro to denote microscopic properties, with the remaining

variables denoting macroscopic quantities.
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At the microscopic level, we have V - B = 0. We can average this to obtain

mlCI’O
V- B=0

and hence we know that we can write the macroscopic magnetic field in terms of

a vector potential
B =V x A.

Suppose now that we have a collection of atoms of various types ¢, with magneti-

sation m,. Then the macroscopic magnetisation
7

where N; is the numer of atoms of type i/unit volume, and (m,) is their aver-
age magnetic moment. Note the M is analogous to the polarisation density of
electrostatics.

We will now consider the contribution to the vector potential at z due to an
infinitessimal volume AV at a’. There are two contributions

J /
AA(z) = “Oﬂmfﬁm#Mx(

|z —a'| |z —a'|

AV,

where the first term arises from the “free” macroscopic current densities and the
second is due to the macroscopic magnetisation described above. We now sum

over the volume elements AV and get

Alz) = o [ ;&)

|z —a]

1
3 /
47T/d ' ——— M x (z — ).

FRrli

There is a way to rewrite the second term in a more illuminating way. First, note

that , ,
PN R Clut 9 Ny NS VEVE v17 (NI S
/ !x—xP [ MY EErd

From the formula V x (fM) = f(V x M) — M x (Vf) (see the cover of Jackson)
for f =

T 1x| we obtain

1 M(x))
5 , N 3/ / ===
/dx (V ><]\_4@>|x_x/’+/dxzX(|£—£’|)7
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Using the divergence theorem for vector fields (again, see the cover)
3,/ / A
Jp @ (V) A) = [, nxAdS (5.9)
the second term can be rewritten as a surface integral

Lo M(2") x n
— ——=dS
A /’5=8V |z — 2|

Finally, we get

Mx(x—12") o J Lo K, (2
P ="—=_=L =" [ = __ —b =" 9
/x |z —a' [? 47T/ e 47T/5=8V!£—£’|

where J, =V x M is called a bound volume current density and K, = M X n a
bound surface current density.
If we take the surface to be an infinitely large sphere and assume that ~ K

vanishes at infinity ,we get
/
Alw) = 22 [ =2 {2,0) + ¥ x ).
Comparing with the fundamental equation of magnetostatics in vacua,
V X B = oy,
we have
V x B = ol + ¥V x M}.

It is now conventional to introduce the magnetic field H, where
1
H=—B- M.
Ho
In the context of media, the field B is known as the magnetic induction or
magnetic flux density. In terms of H and B, the fundamental equations of

magnetostatics in matter are

|§] <
Jssilve
I
|




Chapter 2 19

Note that H is analogous to D in electrostatics; £ and B are the fundamental
fields, whilst H and D depend on the medium.

5.6.3 Constitutive relation

In the case of (isotropic) diamagnetic and paramagnetic materials, where the
magnetic moment arises solely from the applied magnetic field, there is a simple

linear relation between H and B

M:XmH7

where y,, is the magnetic susceptibility. Then we may write
1
H = _(5 - NOXmE)
Ho
yielding
B =pH

where p = pg(1 + x,n) is the magnetic permeability.

For ferromagnets, the corresponding relation is non-linear and exhibits hysterisis,
i.e. the material retains a memory of its preparation.

B(M)

Remnant
magnetisation

H
/ B = F(H)
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5.6.4 Boundary Conditions at Surface Between Media

We will now obtain boundary conditions for the normal and tangential compo-
nents of the field at the boundary between two materials. Note that the followign
discussion is independent of whether or not there is a linear relation between the
H and B.

OA

n

7

Normal Condition
Apply Gauss’ Law to the pillbox shown
0= [dVV-B=[B-ndS= (B~ By)-noA

where n is a unit normal from medium 1 to medium 2, and J A is the surface area

of the pillbox. Thus we have

By =B;
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Tangential Condition

We now apply Stoke’s theorem to get the boundary conditions on the tangential

components:

JH-dl= [(VxH) da= [ J,da,

where S is a surface spanning C'.

Thus we have the tangential boundary condition

Hy—H,=Kxn = nx(H,—H,)=K

where K is the surface current density.

5.7 Methods of Solving Boundary Value Problems

We will now look at various methods of solving boundary value problems be-
tween different media. The method depends on nature of the constitutive relation

between B and H, and on whether there is non-zero current density.

5.7.1 Vector Potential

The magnetic field is always solenoidal, and therefore we can essentially always
introduce a vector potential A such that B =V x A.
The dynamical information for the magnetostatics of media is provided by the
equation

VxH=J,
We will now specialise to the case where we have a linear constitutive relation,

B = pH, enabling us to write
Vx A
o

X
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This can be written

which in Coulomb gauge (V - A = 0) becomes
V2A = _Nif-

This is analogous to the case discussed in Section 5.4.2, and the solution is that

of eqn. 5.5, with g replaced by pu.

5.7.2 Solution when ﬁ =0

In this case we have V x H = 0, and therefore we may admit introduce a scalar
potential ¢,; such that
H=-Vou.

Once again, we will consider linear media, so that B = puH. Then we find that

the scalar potential satisfies Laplace’s equation
v2¢M - 07

where we assume that j is piecewise constant, i.e has a constant value in each of

the different media we are considering.

5.7.3 Hard Ferromagnetic

In the case of a hard ferromagnet, we have J =0, and the magnetisation is non-
zero, and essentially independent of the magnetic field H providing it is sufficiently

small.
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M constant

Since J ;= 0, we can solve this problem using either a scalar or a vector potential.

Solution using Scalar Potential

The governing equations are

VB =0 (5.10)
VxH = 0 (5.11)
H - “B-u (5.12)

o

We will introduce a scalar potential for the magnetic field,
H=-Vou.

Then from eqns. (5.10) and (5.12), we have
Viou = —pu,

where

pyu ==V - M.

In the case where there are no boundaries, this equation has the solution

_1 3 1 PM
o = - [d'

|z — 2|
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1
— /d3 'V (|x — M) M (") (integration by parts)

— _Ez./d%’

M(2).
!z—z’l—@)

Note that if we are far away from a non-zero M, i.e. f > r’, then we have

ch———V( )-/d3x’f\_4(£’):41 m-z.

41 rs

where
m = [d*' M(z).

Suppose now that we had a hard ferrormagnet confined to a volume V', with
surface S. Then there is a contribution arising from the discontinuity in M at the

surface, which we can express as a surface magnetisation density,
oM = @ : Ma
and apply Gauss’ Law to obtain its contribution
M (2 ) 1 oM
M) L . 5.13
b SR 19

Note that for a uniform magnetisation, the bulk volume integral vanishes, and

the only contribution arises from the surface term.

Solution using Vector Potential

We now write B =V x A, so that we have

H = —V xA—M.
Moo
Thus eqn. (5.11) becomes

1
0=VxH=—Vx(VxA)-VxM.
Ho
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Introducing an effective magnetisation current
Iy =V x M,
we have, in Coulomb gauge,
V2A = —tod

Thus again each component of A satisfies Poisson’s equation, with solution

J
A= 4Py —=M
— 4ﬂ/ |z — 2|
In the case where there is a sharp boundary between two media, we again have a
surface contribution which we treat as for the case of a scalar potential, yielding
"< M M(z") xn'
/d3’ M o g M) x 0

|z — 2| Tan s |z — 2|

Example: uniformly magnetised sphere in a vacuum

&
Y e,
—=
A
8

Consider a sphere of radius a, with uniform magnetisation M = Mye,. We will
consider the solution using a scalar potential.
Since the magnetisation is constant throughout the body of the sphere, only the

surface integral contributes in eqn. (5.13) and we have
— g =2\
bu Am 7{ ]x —a |
_ Moa /dQ’ COS 6’
|z — 2|
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To proceed further, we expand in terms of spherical harmonics

-2 xl
1 Tl * / /
’ZC-Z” _471-;: Zl2l+1 l+1}/lm((9790)}/lm(6790)

Noting that cos 6’ = Pi(cos') = v4nY1(0', ¢'), and using orthogonality, we can
write .
or(r,0) = gMOCL 7“_2 = cos ),
where 7.~y = min{max}(r, a).
Inside the sphere, we have r- = r and r~ = a. Thus

1 1
O = gMOT cosf = gMOZ-

Thus we have
Hy = -V = —3M
B = po(H+ M) =2pM |
and we have that H (B) is anti-parallel (parallel) to M.

Outside the sphere,
3

1
O = gMo% cosf.

Since M is uniform inside the sphere, we can associate this with the potential due

to a magnetic dipole of moment

4 3
m = ma M.
- 3 -

Both the magnetic induction and the magnetic field are parallel to the magneti-

sation ) \ X
a :
Bouwt = poHouwt = —poVour = 3 ONOF(COS fe, + 5 Sin fep)

Sphere in External Field

Suppose now we add a uniform magnetic induction By = poHy. Then by the

principle of linear superposition, the resulting field inside the sphere is just the



Chapter 2 27

sum of the two solutions

2
By = Byt =M (5.14)

=
I
|
he
|
|
=

(5.15)

Suppose now that the field is not permanently magnetised, but rather has a linear

relation between B and H,
Bin = ,UHin

Then M is also linearly related, and from eqns. (5.14) and (5.15) we have

3 _
M:_<M MO)BO.
T po \p+2p0/)

For the case of ferromagnets described earlier, we do not have such a linear rela-

tion; indeed we have non-zero M for zero applied magnetic field. We can obtain
one relation between B;, and Hj, by eliminating M in eqns. (5.14) and (5.15),
whilst obtaining another from the hysterisis curve.

Example: spherical shell in uniform field

Consider a shell of permeability ;4 in a vacuum, as shown below.

[E—

Bo=HoHo
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Since the current density is zero, we can once again write H = —V¢,,. Further-
more, B = pH, and thus V - H = 0 so that the scalar potential satisfies

Vi =0,

subject to the boundary conditions at » = a and r = b. We are now experts at

writing down the solution in terms of Legendre polynomials.
O = —Horcos<9+z l+1P;(cos€) r>b

Py(cosb) a<r<b

¢M - Z[ﬁr+ I+1

=0

o = D, 5lrlB(COS 6) r<a
1=0

where we have imposed that there be a uniform field at infinity for the case r > b,
and that the solution is regular as r — 0.

We now impose the boundary conditions at the interfaces r = a and r = b

Bt is continuous

HI'is continuous

which become:

dom Oy
M M
Mog(m) = agbar (b-)
M M
g (a+) = —p(a-)
0P IPr

po= (a0 ) = p= M ay)

We now use these equations to determine the coefficients oy, 3;, v;, noting that

0
%Pl (cos@) = P}(cos#h).
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All the coefficients vanish for [ > 1 (ezercise), and we have (see Jackson)

0 — [ 2 + 1) 1)
2 + 1) +2) = 3 (' -1

5 [ i ] H
1 = - a3 0y
(24 + 1) (0 +2) = 35 (' — 1)

)2} (b” — a®)Hy

(5.16)

where 1/ = 1/ p.
For r > b, we have the uniform field together with a dipole of moment a4, parallel

to Hli

oym = —Horcos6 + 04_21 cos 6.
r
For r < a, there is a uniform magnetic field parallel to Hy, of magnitude —d;:

Oy = —(—0d1)r cosb.

From eqn. (5.16), we see that d; ~ 1/’ as ¢/ — oo: the effect of a shell of high

permeability is to shield the interior from the magnetic field.
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Time-dependent Phenomena and

Maxwell’s Equations

So far we have studied static (time-independent) behaviour of electric and mag-

netic fields. The governing equations are

V-D =p

VxE =0 (6.1)
and

VxH = J

V-B = 0. (6.2)

Electric and magnetic phenomena are completely separate, except for the fact

that current density is associated with the motion of charges.

6.1 Faraday’s Law of Magnetic Induction

Faraday (1831) observed that a current could be induced in a closed loop of wire

by varying the flux of magnetic field through a surface spanning the loop.



Chapter 2 2

\

B C
We define the flux ¢ of the magnetic field through the loop by

6= [,B-ds,

where S is any surface spanning C'.
N.B. Since V - B = 0, ¢ is independent of the precise surface.

The electromotive force, or voltage, across the curve C' is
£= 7{05 dl

Then Faraday’s law, in integral form, may be written

d¢

_= —k—
& dt’

where, in SI units, £ = 1. Note that the sign here is a consequence of Lenz’s law:
the induced current is in such a direction as to oppose the change of flux producing
it. You could argue that the whole application of electricity in the modern world
dates rests on Faraday’s law; the observation that a changing magnetic field can

produce an electric current.
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3

We can can generalise this integral equation as applying to any closed curve in

space, spanned by a surface,
¢ E-dl:—i/B-ds
c— = dt)sT —
We now apply Stokes’ theorem to the l.h.s.,
E-dl=[(VxE)-dS.

Specialising to the case where both C' and S are fixed in time, we have

GB
B-d — -d
= / s = ds,
and thus 5B
/(VXE) ds = —/Sa——t-_S,
yielding

B
S X E+ =25 dS = 0.

Since both C', S are arbitrary, we obtain the differential form of Faradays law,

This equation replaces the second equation in eqn. (6.1).

The eqns. (6.1) and (6.2) reveal an immediate inconsistency when applied to time-

dependent phenomena. Let us apply the divergence theorem to the first equation

in eqn. (6.2),
V (VX H) =V J.

The Lh.s. is identically zero, whilst the r.h.s. vanishes only for time-independent

problems; in general, we have the continuity equation
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To see how to resolve this inconsistency, let us return to Coulomb’s law

V-D=p,

and substitute into the continuity equation, to obtain
oD
V- J+V- B = 0.
We can make Ampere’s law (V x H = J) consistent with the continuity equation
simply by modifying through the substitution
L 0D
ot

|
l
|

giving

0

S

V x

=
[
|

+

D

t
6.2 Maxwell’s Equations

With this final modification of Ampere’s law, and Faraday’s law, we have the

completed the construction of Maxwell’s equations

V-D = p (ME1l) Coulomb’s Law
V x E+ aa—_f = 0 (ME2) Faraday’s Law
VxH = J+ %—% (ME3) Ampere’s Law + Mazwell
V-B = 0 (MEA)

The unification of electrical and magnetic phenomena through these equations
represents the crowning achievement of classical, 19th. century physics. The ad-
dition of the electric displacement to the r.h.s. of Ampere’s law was essential to

showing that the solutions admit wave propagation at the speed of light.
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6.3 Vector and Scalar Potentials

Maxwell’s equations comprise a set of coupled, first-order PDE’s. In particularly
simple cses, they can be solved directly, but in the case of both electrostatics

and magnetostatics we have seen the efficacy of introducing vector and scalar

potentials. We will now do likewise for the time-dependent case.

We introduce potentials so that the two homogenous equations (Faraday’s law

and the solenoidal condition) are satisfied automatically. Since

V-B=0

we have seen we can introduce a vector potential A such that

B=VxA

Substituting into Faraday’s law (ME2), we obtain

0
EF+ — Al =
VxE+ 5 [V x A] 0
0A
EF+—| = 0.
— Vx| Bt
We can now introduce a scalar potential ¢ such that
0A
E - = — .

Thus the electric and magnetic fields can be written

Ioy
I
<
X
|

E = -V¢——=

and ME2 and ME4 are automatically satisfied.
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The two remaining equations (ME1 and ME3) determine the dynamical be-
haviour, i.e. the dependence of A and ¢ on ¢t and z. To solve them, we need
some constitutive relation between (D, H) and (E, B). We will initially restrict

ourselves to the case of the vacuum, where we have

D = «FE
1
H = —B.
23 o=
Coulomb’s law, MEL, is thus
V-E=ple

whilst Ampere’s law, ME3, is

1 oF

—VxB=J —.

oY X b =dJ+¢€ ot
Thus, in terms of the potential (¢, A), ME1 becomes

Vot (V)= —ple (65)

Substituting for the potential in ME3, we have

| 96 A
%YX(YXA) = J‘I‘EO{—_E—W}
06 %A
2 A
— V[V-A]-V°4 = MOJJFMOGO{—YE—W}-

We now write eypg = 1/c? (we of course all no what ¢ will be!), and write

1 024 10
VA - a2 Y [Y A+ ga—ﬂ = —po  (6.6)

Thus we have derived two, coupled second-order PDE’s that are, with the def-
initions of the potentials in eqns (6.3) and (6.4), equivalent to the original four

Maxwell equations.
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6.4 Gauge Transformations Revisited

Is it possible to decouple these two equations?” One way to do this is through
a clever choice of gauge transformation. A gauge transformation exploits the
redundant degrees of freedom in the problem to simplify the problem.

Recall that the physical fields are not (A, ¢), but rather (B, E). A gauge transfor-
mation is a transformation of the (A, ¢) that leaves the physics unaltered. In this
section, we will derive gauge transformations for the complete Maxwell equations.
We have already encoutered gauge transformations in the context of magnetostat-

ics; the substition
A— A=A+ VA

leaves B = V x A invariant. In this case, however, E also depends on A, and the
above transformation will change E unless we make a suitable change ¢ — ¢'.

In terms of the transformed potentials (A’, ¢'), we have

oA
E e I ==
E - -v¢-%
0
= '——[A Al.
V' — o [A+ VA
But we have oA
E — -
E=Vo- 2,
and thus equating the two expressions gives
oA
/
bl -0
Vig+
oA
/ f— _—
=¢ = ot

where we have noted that the potential is only defined up to an additive constant.

Thus the gauge transformation of Maxwell’s equations takes the form
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A — 4’24—}-2/\ (6.7)
oA

6 — d=0-= (63

We will now discuss some particular choice of gauges.

6.4.1 Lorentz Condition

Suppose we can find a gauge transformation such that

10
voar 292

V-A+ 55 = 0. (6.9)

This is known as the Lorentz condition, and the dynamical equations assume

the form
1 0%¢
1 9%A
Wé—gaiz-wd- (6.11)

The A and ¢ fields have become decoupled, and the simplified equations are just
the wave equations, with a inhomogeneous source. But is it actually possible
to find a gauge transformation that satisfies eqn. (6.9)?

Let (A, ¢) be potentials satisfying eqns. (6.6) and (6.5), and let A be a gauge

transformation such that the transformed fields satisfy eqn. (6.9). Then we have

1 0¢
A+ 2 =
z_+623t 0
1 [0¢ O°A
— V 4+VA+62[(% (‘%2] 0

Thus we need to find A satisfying

1 %A 1 9¢
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Note that the Lorentz condition does not specify a gauge uniquely. Let (A, ¢)

satisfy the Lorentz condition. Now consider the transformation

A — A=A+VA

oA
, P — —_—
6 — o =o-.
Then the Lorentz condition transforms as
1 0¢ 1 0¢' 1 0?A
V-A+ —— V- A+ S =VA— ———
__+628t—>__+628t c? Ot?
Thus the new gauge also satisfies the Lorentz condition, providing
1 9?°A
VA— =—-=0
c? ot?

The Lorentz gauge is important because:
e The wave equation is manifest explicitly,

e (A, ¢) are treated on an equal footing and, when we discuss Special Relativity,
we will see that the Lorentz condition is Lorentz covariant, i.e. independent

of the choice of coordinate system.

6.4.2 Coulomb Gauge

We have introduced this gauge,
V-A

in the discussion of magnetostatics. It is not manifestly Lorentz covariant, but
has the property that the scalar potential satisfies Poisson’s equation (Coulomb’s
law!),

v2¢ = —p/Eo,

with solution

oat) = o [ & "‘;@_ :i)l (6.13)
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The vector potential satisfies the inhomogeneous wave equation

1 0%A 99
B — 0t

Note that the scalar potential ¢(x,t) is the instantaneous Coulomb potential

(6.14)

due to a charge density p(z,t), i.e. we do not take account of “causality” through
the use of a retarded potential.
The equation for the vector potential contains a gradient operator, VO¢/0t arising

from the solution of Poisson’s equation for the scalar potential, and this term is

It would be useful to completely decouple the equations governing the vector and

wrrotational,

V x

scalar potentials, as in the case of the Lorentz gauge. To accomplish this, we will
separate the current into an irrotational, or longitudinal, piece and a solenoidal,

or transverse, piece,

J=Ji+d; (6.15)
with

VxJ =0

V-J = 0.

We can always perform this separation, as will now be demonstrated. At first, we

do it for the Fourier transforms

/d3xe ’Eg (6.16)

ﬂ@zf@+f@% T = 6y~ S m, T =S

Going back to the coordinate space we obtain

A3k
Ji(z) = [y (8, -

8 3 e_iE'g
s
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d k k(@ kik; 0 0
_ [ Z=Y (5. — 2Ty —
0 0 2 s J()
B (8@- 0x; %V )/d y47r|g —y
and similarly

Oz; Oz dr|z — y|

Using the formula

VQ( ! )2—47”5@—@

[z — Y

it is easy to check the self-consistency J!(z) + J!(z) = J;(x).
Thus we have performed the decomposition of eqn. (6.15) with

1 V' J(2)
J = —— d3 P Y L\Z
ho= gV z— 2
J(z')
J = — d3 P Z\Z
Ji 47TV>< Vx/ x’$—£'|]
Now, from the continuity equation, we have
dp
V-J = 0.
Ji+ 57 o1
and substituting in eqn. (6.17) we obtain
1 1 0Op
J=-—V [dr ———".
= 47T—/ Yoot

—5,V°) [d’yJ(y)

11

3
&k ik(z-y)
83

(6.17)

(6.18)

We now identify the r.h.s. of this equation with our expression for the scalar

potential of eqn. (6.13) and observe that

J = bt
o Eovat

0¢

— h = 5V
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where we have used pgeg = 1/c¢%. Thus, returning to the equation for the vector

potential, eqn. (6.14), we find

VA - S—= = —uJy. (6.19)

Only the transverse part of the current is a source for A. Thus this gauge is also
known as the transverse or radiative gauge, and once again we have decoupled

the scalar and vector potentials.
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6.5 Green Function for the Wave Equation

In both the Lorentz and Coulomb gauges, we have reduced the problem of finding

the potentials to the solution of the wave equation

2
e A )] (6.20)
where f is some known source, and ¢, as we have intimated earlier, is the velocity
of wave propagation.
Such a hyperbolic equation, like the elliptic equations encountered in electrostat-
ics, can be solved by means of Green functions. In particular, we will find the
Green function G(z,t; 2/, t') satsifying

2
[v2 - ij—t] Gla, i, ¥) = —4md(z — )6t — ¥). (6.21)
C

The solution to the inhomogeneous wave equation, eqn. (6.20), for a general source

is then

V(x,t) = vo(x, 1) + [ d*2'dt Gz, t;2 ) f(', ¥
where 1) is a solution of the homogeneous equation. Note that this is essen-
tially an initial-value problem, rather than the boundary-value problem encoun-

tered with elliptic equations.

To obtain the Green function, we take the Fourier transform with respect to ¢:
1 .
Gz, t; 2. t) = — [ dwe ™g(z,w:; 2, t
gla,wia' ¥) = [dte™ Gla,t;2,¥)

Then taking the F.T. of eqn. (6.21), we find

2
<V2 2) g(g, W;ny t,) = —47T(5(£ _ z’)ezwt"
C

We now introduce the spatial Fourier transform,

g(g,w; 2’ t') /dgxei—' (xz,w; 2, 1),
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yielding
(_q2 + /{32)§(Q7 w,x, t’) - _47T€_ig.£l€iu)t/

_. . / y
e 1q-r elwt

ol ) —
= g(g,w; 2’ 1) = 47TW
where k = w/c is the wave number. We can invert this expression to obtain

Am o 4L
. /t/ — zwt d3 .
oo ¥) = e [de—m—im

In order to exhibit the behaviour of this integral, we consider a oordinate system
in which the z-axis is aligned with 2 — 2, and let § be the angle between ¢ and

x — 2. Thus

A7 ) o zq|£U X' cos
el wt c e
g(£7w7£7t) T (27_‘_)36 /O qq / d¢/ COSQ q —]CQ
N e
(2m)> 0T =k gl — 2| iglz — |
_ 47T ZWt / dq q eiq|£_£/|
2m)?ilz — 2'| /oo ¢* — K

The integrand has poles at ¢ = £k, and therefore we have to specify how to treat
the poles in order to evaluate the integrals. We will do this by displacing the poles

off the real axis as follows:

dr et dq q : :
(£) o iq|T—2'|
g (gﬂﬂaga ) (27'(') le ,’ /ooq ]{?QZFZT]B )

where 7 is small. We now write
¢ =k Fin=(q—kTFie)(q+k£ie),

with e = n/2k (n,k > 0).
We first consider the case of ¢(t), which has a pole in the upper half plane at
g = k + i€, and in the lower half plane at ¢ = —k — ie.
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k+i¢g

—

-k-1 €

We can complete the contour in the upper-half plane, where the contribution from
the semi-circle at infinity vanishes, and obtain
1

¢z, wia' 1) = ———e

iwt' +ik|T—T'|
z — 2| |

Similarly, in the case of ¢(~), we have a pole in the upper half plane at ¢ = —k+ie,

and performing the contour integration we obtain,

g(:lz)(x w: ZC t) #ezwt’ing—g'L
|z — 2|

We now invert the temporal Fourier Transform

G (z,t; 2, 1) /dw e ! z ! ’em/ik@_£/|.
r—

The w integration is straightforward, and we find

1

GO (z, t; 2 ) = e
r—x

0

1
t'—t)£-lz—2|| (6.22)
C

The Green function G is known as the retarded Green function, because a

change at time ¢ arises from an effect at an earlier time

t'=t——lz 2|
C
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It manifestly exhibits causality. G(~) is known as the advanced Green function.

We now construct the complete solutions as follows:

1. Retarded Solution. We imagine that, as ¢ — —oo, we have a wave iy, (z, t)
satisfying the homogeneous equation. The source f(z,t) then turns on, and

the complete solution is
V(@ t) = Yz, t) + [ & dt Gz, 152, t) fa#).

The use of the retarded Green function ensures that the observer only feels

the effect of the source after it is turned on.

2. Advanced Solution Here we measure a wave 1oy (x,t) as t — 00,
V(@ 1) = You(x,t) + [ d* dt GO (@, b2/, ) f(2/, ).

The use of G() means that, once the source ceases, the effects from the

source are no longer felt, or more precisely they are contained within ;.

Case 1 above is the more commonly encountered, for example in the case ¥, =0
so that there is no wave in the distant past, and a source f(x,t) switches on
at some time. Then inserting our explicit expression for the Green function, we

obtain ,
33 t /d3 ,f(ﬂ? tret)

lz—2f|
where the subscript ret denotes that the function f is evaluate at time

1

ty =t — —|z — 2.
C

6.6 Conservation of Energy and Momentum and Poynting
Vector

In this section, we will derive laws expressing conservation of energy and momen-

tum for electric and magnetic fields.
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The force acting on a particle carrying charge ¢, and moving with velocity v is
F=q(E+vxB)

The work done/unit time, or rate of change of mechanical energy, is then

d
%Emech = v-[¢(E+ v x B)]

= qu- b,

since the second term vanishes. Thus generalising to a current density J we

have

d
dt
We will now relate the rate of change of mechanical energy to the change of energy

Eueen = [ d*x ] - E. (6.23)

in the electric and magnetic fields. The starting point is Maxwell-Ampere’s law
(ME3), which gives

D
| dxJ-E=[dzE-|VxH- a__].
vooe = R G
We can use the vector identity V- (Ex H)=H -V x E— E-(V x H) to write
oD
3 — 3 . - Vv. =
fydod B~ [da{H-(VxE) -V [ExH -E- =

Identifying the 1.h.s. of this equation with the rate of change of mechanical energy
in eqn. (6.23), and using Faraday’s law (ME2) on the r.h.s., we obtain

iEmech:_/dgx{ﬂ'a—B‘i‘Z'(ExH)+E 8_D}

dt ot ot
We will now assume that the medium is linear, allowing us to write
0B 10
H — = -——|H-B
— Ot 20t - B]
oD 10
— Ot 20t (E-D),
and thus
d 1
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%E - D as the energy

density of an electric field. Likewise we will identify %Q - B as the magnetic

We have already, in Chapter 4.6, interpreted %EolE’Q =

energy density and hence their sum

u=3(H-B+E-D) (6.24)

as the electromagnetic energy density. With this identification, we now have

Poynting’s Theorem expressing conservation of energy

Wy xm)| (62)

—/Vd?)xi-E:/Vd?)x

Since this applies for any volume V', we have a differential energy continuity

equation

WAV ExH) =B (620

The vector

S=ExH

is the Poynting Vector. It only enters through a divergence in the above expres-
sions but, when we come to consider its properties under Lorentz transformations
later in the course, we will discover that it is essentially unique.

We can reduce the integral over the Poynting vector in eqn. (6.25) to a surface
integral using the divergence theory. Thus we can interpret the Poynting vector
as the energy flux across a surface, and the Poynting theorem in essence says:
“The rate of change of electromagnetic energy in a volume together with enerqgy
fluz across the boundary is equal to minus the total work done by sources within

the volume”.
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6.6.1 Energy Conservation in terms of the Fundamental Microscopic
Fields

The field energy density of eqn. (6.24) contains not only the fundamental fields,
but also the “derived” fields H and D. Thus they include contributions associ-
ated with the polarization and magnetisation of the medium which are in essence
mechanical, and should be associated with the J - E term.

Let Eecn be the mechanical energy in some fixed volume V. We have seen
that the work done per unit time per unit volume J - E is the rate of increase of

mechanical energy,
dEmech

at
In the case of a vacuum, we have

| dxJ-E.

1
3 _ - 3 ; .
| d*ru = 2/dm(H B+E-D)

_ % 3.2 | 212
= 2/Vola:(E + 2B
= FEfield

where now we have expressed the field energy solely in terms of the fundamental
fields. It is this expression that is more naturally associated with the field energy,
and Poynting’s theorem reads

d
%(Emech + Eﬁeld) - - %M :

19

(6.27)
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6.6.2 Conservation of Linear Momentum

Again we work with the microscopic fields. The force on a particle of charge ¢
18
F=q(E+uvxB).

Thus Newton’s second law may be expressed as

d
i Puca = [ P [pE + . x B

where P __ . is the total momentum of the particles in a volume V. To evaluate
this expression, we once again use Coulomb’s law (ME1) and Ampere’s law (ME3),

yielding for the integrand

E
pE—i—JXB:EQE(V'E)—B VXB—EQa
- - - — - 140 ot
We now use
0 oF 0B
gl B = gy x BrExgy
V-B =0
to write
pE+J % B =
9 9 0B 0
EO[E(Y'E%LCE(Y'_B)—CBX(VXB)ﬂLEXE—@(EXB)]

We now use Faraday’s law (ME2) to write

d d
“p =
i —meeh T ;€0

& [ v [EV-E+BY-B—Ex (Vx E)—Bx (VxB), (628

/Vd?’xgx@:

where we assume that the volume V is fixed. The second term on the l.h.s. we

associate with the momentum carried by the field

Pgaq = €0 /d%ﬁ x B, (6.29)



Chapter 2 21

which we can rewrite as

3 3
Phgg = * [ d* 025 xH = [dyg, (6.30)
where g is the electromagnetic momentum density given, up to a constant,
by the Poynting Vector,
= —S 6.31
9= 35 (6.31)
To proceed further, let us consider the r.h.s. of the momentum conservation law,

eqn. (6.28). Using index notation, we may write

OF; oE,,

[E(V-E)—Ex(VxE);, = Eia—xj — €ijkeiim 5"
OF; OE; OF;
- g% g, fofbatad
! Ox; ! 0x; o Oz

What we have done is to write the electric part of the integrand as a derivative. We
may treat the magnetic term similarly, and now introduce the Maxwell Stress

Tensor

1
ﬂj = € EZE] + C2BiBj — §(E2 + C2B2)5ij] (632)

Note that this tensor is symmetric.
We can thus write the momentum conservation law as
oT;:
[Bm n T Phaal = dPr—

which, after applying the divergenceb theorem, becomes

d
%[Bmech + Bﬁeld] - j{s*:av dA ,‘lenj (633)

where n is the outward normal to the surface enclosing V.
Note that Tj;n; is the flow of momentum per unit area across surface S into the
volume V, i.e. it is the force per unit area acting on the combined system of

particles and fields within volume V.
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Plane Electromagnetic Waves and Wave

Propagation

We begin by the considering the propagation of waves in a non-conducting medium.

Thus J = 0, we assume p = 0 and Maxwell’s equations reduce to

S o o o

In the case of plane waves, it is sufficient to consider those propagating with
a definite frequency w, and hence time dependence exp —iwt; essentially this is
equivalent to taking the Fourier Transform. We have a set of linear, homogeneous
equations and hence all fields have the same harmonic behaviour. Thus we may

write Maxwell’s equations as

|
o o o o
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We will now specialise to the case of a linear constitutive relation between the
fields: D = eE and B = pH. We will also assume €, i are real. Note that later
we will consider the complex case; taking them to be real corresponds to there
being no energy losses. Then the last two equations of eqn. (7.1) become
VXxE—-iwB =0
V X B+iwepnll = 0,

which, with the remaing two Maxwell equations, yield

V2E + el =

VB +w’euB = (7.1)

These are known as the Helmholtz wave equations. As is well known, they

support the plane-wave solutions

EY) | Eo) ikaio
(B)(Bo)e R

v=w/k=1/\/pe

where k = w,/u€, and

is the phase velocity.

We now recall the velocity of light in a vacuum is given by

C = ]./\//L()Eo.

Thus we can write

v=c/n

[LE
n=,—— 7.3

is the index of refraction. It is usually a function of the frequency, e.g. a prism,

where

and therefore the phase velocity is likewise frequency dependent - hence the name.
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7.1 Propagation of Monochromatic Plane Wave

We will now consider in greater detail a monochromatic plane wave of frequency
w, propagating in the direction n with wave number k. Note that complex n
corresponds to dissipation. We have seen that the solution of the Helmholtz

equations are
E(z,t) = E M

Bla,t) = By (7.4)

with
k* = pew?.
Thisis actually shorthand for

E(z,t) = R{Ege™ L

The imaginary part contains no physical information. It is important to remember
this when considering quantities that are quadratic or higher in the fields, such

as the energy density.

7.1.1 Energy Density for Monochromatic Plane Wave

Recall the expression for the energy density

1
¢E® + —B?

i
The real parts of the fields B and F must be taken before evaluating the quadratic

U:§

terms. In the case of the time-averaged energy density, we have the particularly
simple result

1 1
=—|el-E"+—-B-B” 7.5
(W)= |eE- £+ BB (7.5
where we use (...) to denote that the time average has been taken, and the

additional factor of one half arises from the observation

(cos® wt) = 1/2.
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Likewise, the time-averaged Poynting vector is

1
(S) = SEx H" = %E . E™n. (7.6)

This quantity is called the intensity of the wave.

7.2 Polarisation of a Monochromatic Plane Wave

Applying V- B =0 and V - E = 0 to the solutions of eqn. (7.4), we find

|3

By = 0
0B, = 0 (7.7)

Thus both £ and B are perpendicular to the direction of propagation. We say
they are transverse wave.

We now apply the remaining Maxwell equations

VXxFE—iwB = 0
V x B+ iwwpell = 0,

to yield

By = /uen x E,,. (7.8)
Setting ¢ = 1/,/1€ to be the volocity of light in the medium, we see that both ¢B
and F have the same magnitude.
N.B. Had we chosen to work with H, rather than B, then we would have

:EXEO

where Z =/ /€ is the impedence
We will now specialise to the case where n is indeed real. Then By is perpendicular

to £, and has the same phase.
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=> €,

The vectors E, B and n form an orthogonal triad, and it is usual to introduce three

mutually-orthogonal basis vectors €1, €2 and n and to write the electromagnetic
field as

Ey(z,t) = B KL o (B = ¢ /KL
By(z,1) = e B0 1 By = — ¢ BB (7.9)
Note that E; and Es can be complex to account for a phase shift between the two

plane waves.

The general solution for the wave equation is

E(z,t) = (e B + e_zEg)ei@z_m).
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Linear Polarization

82/\

—
€1

If F; and E5 have the same phase we talk about a linearly polarized wave;

the direction of the F field is constant, with the angle given by
0 = tan_l EQ/El.

Elliptical and Circular Polarization

If £4 and Es have different phases, we say the wave is elliptically polarized.
The direction of E is no longer constant.
A special case is that of circularly polarized waves. Here E; and E, have the

same magnitude, but differ by a phase of +7/2. Thus we can write
E(x,t) = Eyg(er £ Z'e_g)ei(@g_w’f)

where Ej is real. W.l.o.g., we tak € and € in the  and y directions respectively.

Thus taking the real (physical) part, we find
E, = Eycos(kz —wt) = Eycos(wt — kz)
E, = FEpsin(kz — wt) = £Esin(wt — kz).

At fixed z, this is just the equation of a circle.
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A\

B=wt

Kk

The different signs correspond to rotating to the left or rotating to the right; these
are more commonly known as positive and negative helicities.
Since it is possible to use any two mutually orthogonal vectors as polarization

vectors, it is usually for circularly polarized waves to introduce

i \/2 (61 + 262) (710)

with the properties

so that a general plane-wave solution is
E(z,t) = (Eie" + E_i)ei(k-g—wt)'

An important question is, given an electric field E(z,t), how can one determine
its polarization properties; one way of specifying the relative importance of the
different components is through the Stokes Parameters. This is described in
Jackson 7.2.
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7.3 Reflection and Refraction at Plane Interface between

Dielectrics

The laws describing the behaviour of a wave at the interface between two media

are well known:
1. Angle of reflection = Angle of incidence

2. sinf;/sin6; = n’/n (Snells’s law) where n’, n are the refractive indices of the

final and initial media respectively.

These are simple kinematic laws; we would like to determine dynamic properties

- intensities and phase changes.

We begin by writing

Incident wave:  E; = Eje'ML

Iy
I
S
”r
&
X

Reflected wave:

CRS
I
5
™M
=
Eo
X
g
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Refracted wave: Er = itk 2 —wt)

Ej e
&:F Er

where k? = k? = pew? and k? = p'e'w?

Boundary Conditions at Interface

We first observe that the boundary conditions must be satisfied Vz, y at all times
t. Thus all fields must have the same phase factor at z = 0. N.B.: We have
implicitly assumed this in saying that the frequency in z > 0 must be the same
as that in z < 0.

Thus k;-x =k, -x = kp-x at 2 = 0. The k’s lie in a plane - plane of incidence.

From the figure, we see that

|z||ki| cos(m/2 + 6;) = —|z]||ki| sin 0;
-z = |z||k|cos(m/2+0,) = —|z||k,| sin 0,

T
|=
|

&

and thus we have

0; =0,
Similarly,
|k;|sin®; = |kp|sinfp
— pesin®; = p'e sinfr.
and thus
sinf; we n

sin 67 JL€ n
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Thus both laws are purely kinematic properties.

The boundary conditions themselves are

Elis continuous
HI s continuous
Dt is continuous
B+ is continuous

Applying to the fields at the interface, we have
(Eo+Ef — Eg) xn =
(kX By ke x B) = ke x B xn =
(B + Ep) — € Eq] -
ki % B+ kr x Ej — kr x Ef| -

|3
I

S o o o

|3
I

We we now consider two cases; where the electric polarization vector is normal to

plane of incidence and where it is parallel to plane of incidence.

7.3.1 Normal to Plane of Incidence

The z axis is normal to the interface, and we choose the x axis to be in the plane of

incidence as shown. Thus the electric field is along the y axis. The first boundary
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condition eqn. (7.11) yields

Ei+ Ey — EI =0. (7.15)
We now turn to the second second boundary condition eqn. (7.12). The first term
yields
1 : 1. . .
[k x B xn = —[Ej(n- ki) = ki(n - Ep)|
B T e T

1 .
= —FEj|ki|cosb; = chos 0, E.
e X N

We treat the other two terms similarly, and we find

/
(B — %)w&cos@i — wECOSHTE_g =0,
€ (i r ¢ T
cos b); . (E; — Ej) — 7 cosrE; =0 (7.16)

The remaining boundary conditions yield no new information, so combining eqns. (7.15)
and (7.16) we find

yielding

_ |€pcosfr i tanb;
% . 1 ey’ cosb; o 1 w1 tan Op (7 17)
i 11 cos b o M tand; :
EO 1 + E_/LH/W;; 1 + W' tan Op
ET 2 2 718
Ei fpcoslp # tan0; )
0 1 + ?ﬁ?&f 1 + ' tan Op

For visible light, we can usually put u = ¢/, giving
By sin(0r — 0;)
Ey  sin(0; + 07)
Eg 2 sin O cos 0;
Ey  sin(0p+6,)

This is just Fresnel’s formula for light polarized perpendicular to plane of inci-

dence.
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7.3.2 Electric Field in Plane of Incidence

Here we use boundary conditions eqns (7.11) and (7.13) to yield

/
r 1 — e’ cos b € tanb,;
Rt 719
T 7 cos o € tanb; :
EO 1 + E%%O;Tgf 1 + € tan O
T 2, /L n e
Ly _ € _ 2y (7.20)
7 " cos 6 € tanb; )
EO 1+ %?;Tgf 1+e’tan9T

If 4 = 4, then €/€’ = sin® O7/ sin? B; = n?/n'?, and we have
By tan(0; — 07)
Ey — tan(6; + 07)
EOT 2 sin 01 cos 0;
E} sin(6; + 07) cos(6; — O7)

Incident Wave Normal to Interface

In this particular case, we find

/

Eg 1- E_lff n—n' if !
_— = 1 =
Ey 14 /e n—+n pe=H
€p
ET 2 2
By 14 jen L+n//n
ep

In this formula we assume that the directions of Ef and E} are the same. (contrary

to Eq. (7.42) from Jackson where the directions of E} and E} are assumed to be
opposite).
Thus we see that, if both refractive indices are equal

E;y =0

Ey = Ej
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as expected. If the second media is a conductor, n’ — 0, so all of the wave is
reflected, with
Ej = —26 (7.21)

7.4 Brewster’s Angle and Total Internal Reflection

7.4.1 Brewster’s Angle

In the case of polarization in the plane of incidence, we have

r € tanb;
& 1 € tan O

T T tand,
EO L+ ¢ tan O

There is an angle for which no wave is reflected, given by

€ tant;

€ tan Op

Setting u = p/ = 1, so that €/€ = n?/n"?, we find

n

0; = tan"! (ﬁj : (7.22)

This is Brewster’s Angle. If we have a plane wave of mixed polarization incident
at this angle, the reflected radiation only has a polarization component perpen-
dicular to the plane of incidence. It is a simple way to produce plane-polarized
light.
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7.4.2 Total Internal Reflection

If light passes from a medium of higher optical density to one of lower optical
density, the angle of refraction is greater than the angle of incidence.

Hence there is a 6; for which 87 = 7/2, given by
sinf; = sinig = n'/n (7.23)

From Snell’s law, we have in general

2
cosOp =1 —sin?fy = 41— n—sin2«92-

TL/2
sin 6, 2

= J1—-(—].
sin 4

For 6, > 1y, cosfr becomes purely imaginary. Thus the refractive wave has a

phase factor

_ ez’ka(n/n’) sin 9i€—sz\/(sin 6;/ sin i0)2—1'

i(kpasin Op+kpz cosOr)

We see that the refracted wave propagates parallel to the surface, and is ex-
ponentially attenuated with increasing z. The attenuation occurs over only a

few wavelengths unless 0; = 1.
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Note that the time-averaged energy flux across the interface is

(5 m) = SR [n- (Brx Hp)].

Now Hp = (kp X Er)/p/w, and thus

n-(Eprx Hp) = n-|Er x (kr x Bp)] /p'w
= |Erf*n - kr/u'w,

whence

1
S-n) = SR[BrPn-kr) /e
1 /
= §§R [|ET|2]<:TCOSQT] Jpw

= 0,

since cos O is purely imaginary; there is no time-averaged energy flux across the
interface.

The principle of total internal reflection has many applications, most notably
in fibre-optic cables. The analysis presented here assumes, of course, that the

material is wide compared to the wave length of light.
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7.5 Dispersion

So far, we have been investigating the propagation of waves of a fixed frequency.

The wave number is related by
k* = pew’.

Suppose now we consider a wave having a spread of frequencies. In general,
the values of y and, in particular, € are frequency dependent, and thus different

frequencies have different propagation properties. This is call dispersion

7.5.1 Simple Model for Dispersion

Consider an electron of mass m and charge —e, bound to a (fixed) nucleus by a
harmonic potential with resonant frequency wy, and a damping term with damping
constant . In the absence of an external electric field, the electron will undergo

damped simple-harmonic motion about an equlibrium.

Nucleus

We now apply an external electromagnetic field (£, B). Then the force on the

electron is
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Providing the velocity is small compared to that of light, the magnetic force will
be negligible; recall that ¢|B| ~ |E|. Thus the equation of motion of the electron

1S

(d2 d 9 ) ()

m(——=z +v—z + wixr) = —eF(t).

dt?— 7dt— 0= —

The dipole moment of the system is just p = —ex. We now assume that the

external field has frequency w, so that the time dependence is
E — &e_th.

Thus the displacement will have the same frequency dependence, and we have an

equation of motion

m(—w? —iwy + wi)x = Ey,
yielding a dipole moment
ey 2 . 1
= Wy —w —wy) .
p m( 0 7)

We now consider the case of N atoms/unit volume, each having Z electrons of
which f; electrons have resonant frequency w;. We will take this as a model for a
linear medium, in which the polarization P arises solely from the applied external
field. Thus, recalling that
P =ex.E
we find
e(w) Ne?

o + Ye + o %:f](wj w’ — iwy;)

with 3; f; = Z. We will rewrite this expression as

(W} — w?) + 1wy,

(wjz —w?)? + wayJZ'

€

Ne?
—=1+—>
€Epm j

: (7.24)

We have thus seen how even a simple model gives a frequency-dependent permit-

tivity.
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7.5.2 Permittivity in Resonance Region

In general, we can assume that the damping factor v is small. From the form of
eqn. (7.24), it is clear that at very log frequencies, the susceptibility is positive and
the relative permittivity greater than one. As successive resonant frequencies are
passed, more negative terms contribute and eventually the relative permittivity
is less than one.

Particularly interesting is the behaviour in the neighbourhood of a resonance.

A

Ree

Here the real part of €(w) is peaked around wj, and furthermore displays anoma-
loous dispersion in which light of higher frequency is less refracted than light of
lower frequency.

The presence of an appreciable imaginary part of €(w) near w = w; represents
absorption; energy dissipated in the medium. To see how this arises, consider a

wave propagating in the z-direction. We will write the wave number as

k=0+ia/2; amplitude ~ e /2.
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Thus « clearly represents absorption of the wave. Setting u = p, and recalling
k? = \/uew, we have

(8% — a®/4) +iaB = (/) 'w’e/ e
which gives
B2 —a?/4 = ‘;’—223%6/60
af = °CJ—22% eleg |

Note that if @ < (3, we have

where

g = %\/%e/eo

7.5.3 Low Frequency Behaviour and Electrical Conductivity

In a conductor, some of the electrons can move freely. Thus there are some
electrons with resonant frequency wy = 0, whose contribution to the permittivity

1s
N€2f0
mw(vyy — iw)’

e(w) =€(w) +1

where € represents the background permittivity coming from all the other modes.
We see from this that e(w) is singular as w — 0, and we will now relate this
property to electrical conductivity.

Our starting point is the Maxwell-Ampere law (ME3):
oD
zXﬂ:l—{—a—?. (7.25)

We will now impose that J and E are related through Ohm’s law
J=0E

where o is the conductivity. If we assume the usual frequency behaviour exp —iwt,

and assume the background permittivity is a constant €, = €(w), eqn. (7.25)
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becomes
(7.26)

yxg:—w[eﬁﬁ]ﬁ:
w

An alternative procedure is to ascribe all properties, including current flow, to

the dielectric properties of the medium. In that case we have

Né? fy
mw(y — iw

Vx H=—iwD = —iw [eb + )] E. (7.27)

Comparing eqns. (7.26) and (7.27), we find

. . Netfy
io/w=1 ,
mw(yy — iw)
1.e.
N 2
o= e—fo'. (7.28)
m(yo — iw)

Note that we can rewrite this expression as

o)
o= :
1 —wr
where )
Nf()e
oy = )
myo

and 7 = v~ 1. Essentially, we have
o N fy is number of free electrons per unit volume.
e v/ fo is damping constant, determined experimentally.

For good conductors vq/fy ~ 4 x 1013571, If we assume f; ~ 1, then w7 is small
rights up to the microwave region w ~ 10''s7!; o is real.

Note that if wyy > 1, then ¢ is purely imaginary, and we have a phase shift
between I and J.
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7.6 High-Frequency Behaviour and Plasma Frequency

Suppost that w is much larger than the highest resonance frequency. Then we

have
Ne? (w? — w?) + iw;
- 14— ) J
€/€0 + €om z]: 15 (u)J2 w?)? + w2%2
G ,
Py ZJ: fjw /w
= 1-wh/w? (7.29)
where N 762
5 e
— 7.30
Wp - ( )

is the | plasma frequency |, so called because all the electrons essentially behave

as if free.
Recalling that

where c¢ is the velocity of light in vacua, we have

2

ck = \Jw? — wh

whence
w(k)? = ws + K. (7.31)

Such an expression, describing the relationship between wave number and fre-

quency, is known as a |dispersion relation| Similar expressions occur in many

places in physics, including special relativity and sound propagation.

In a typical dielectric, when w? > w?%, the dielectric constant is slightly less than,
but close to, unity.

In a true plasma, such as the ionosphere, all the electrons are essentially free, and
the expression eqn. (7.29) is valid for a range of frequencies, including w < wp.

The wave number k is purely imaginary for frequencies less than the plasma
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frequency. Thus a wave incident on a plasma are attenuated in the direction of

propagation, with intensity

T o 6—2\/w123—w2,z/c w—0 e—2wpz/c

7.6.1 Model of Wave Propagation in the Atmosphere

The above plasma model for the ionosphere is modified considerably through the

presence of the earth’s magnetic field. In the model we now construct, we assume

propagation parallel to the earth’s field By. We assume that there is a force acting

on the charges due to a propagating electric field, but that the only magnetic force

is that arising from the earth’s field; recall once again that c|B| ~ |E].

Thus the equation of motion for an electron of charge —e and mass m is
m%:—egx&—eg.

Once again, we consider a monochromatic plane wave with time dependence

e—iwt.

It is convenient to consider the case of circularly polarized waves, for which we

introduce the complex polarization vectors

1
€ = %(ﬂi@)

e = k (Normal in direction of k).

Thus we have
T =Xxy€y + x_€_ + T3€3,

so that the equation of motion becomes

A’z d*x_ d’xs dx dx_ dxs
g T gE C e Wb et ety

First, it is easy to see that since e3 X €3 = 0, the motion along the Z direction is free:

6] = —e[Bre +E e Je ™.

m

xr3 = x30+wv3t. Since the forces acting in XY plane are periodic, the motion of the

charges in the XY plane will be periodic, too: z,(t) = z e ! x_(t) =x_e ™.
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Now
G Xer = %(e_sxgﬁe_sxz)

= —é(e_l +ie),
yielding

B XE& = Ty

€3 X € = de_ (7.32)
and thus

—w’m[riey + o€ ] +iweBy[—izies +iv_e_ ] = —e[Eies + E_e_].

Looking at the individual components, we find

—w*mr, +weByr, = —eF,
—wma_ —weByr. = —eE_
which we may write
€
T+ —

E..
mw(w £ eBy/m)"
We now introduce
wp = eBy/m,
the frequency of precession of a charged particle in a magnetic field.

Recalling that p = —ex, we have a dipole moment of the particle

—e2

= b
b mw(w +wg)

Thus, recalling the expression for the plasma frequency eqn (7.30), the polariz-

ability may be written

whence
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Thus, in this highly simplified model, we see that the permittivity depends on
the polarization of the incident wave. Indeed, for certain ranges of w we find that
the permittivity can be negative, and hence one or both polarizations no longer

propagate.

7.7 Superposition of Waves and Group Velocity

So far we have considered monochromatic waves, but have seen that, if the medium
is dispersive, different frequencies will travel with different velocities. In the sec-
tion, we will describe how, for a general plane wave, the rate of energy flow is in

general different from the phase velocity, or velocity of propagation of a particular
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frequency component. To simplify the discussion, we will consider the problem in
one dimension.
We will write a general wave in terms of its physical components. The dispersive

properties are encompassed in the dispersion relation
w= w(k)

where w(—k) = w(k). The general solution is then

where the amplitudes A(k) are given by
A(k) = /o:O dru(x,0)e ™
For a monochromatic wave, of wave number kj, we have
u(w,0) = e*or

yielding
A(k) = 2m6(k — ko).

In practice we virtually never deal with pure monochromatic plane waves of fixed
frequency kg, but rather with pulses, centred about a frequency ky. In particular,
we will consider the propagation of a Gaussian wave packet, of width Az, centred
at £ = 0. Then

1 14 —2? JAAx? ikox
u(z,0) = A © e’
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AX

This satisfies

(2") = [dx|u(z,0)%2>

1/2
— < 1 >/ /dxe—xz/QAxQxQ

2w Ax?

< ]_ )1/2 ( 2) d /d _$2/2Ax2
= | — —2)———— [ dxe

2w Ax? d(1/Ax?)

= A%

showing that the width is indeed Az.

The amplitudes of the various componenents are given by

1 1/2 2/4A .2 (k k) .
A(k) = (27?A$2> /dxe e

e~ (ko=k)?/4(1/20)" (exercise)

By analogy with the width of the wave packet, we see that the amplitude A(k) is

centred at k = ky, with width
1
Ak = ——.
2Ax
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In fact, more generally we have
AzAk > 1/2 (7.34)

Thus we have the important observation that a short pulse, even of “fixed” fre-
quency kg, contains a spread of monochromatic components. This expression, of

course, is more familiar from Heisenberg’s Uncertainty Principle.

7.7.1 Group Velocity

To see how this spread of frequencies effects the propagation of a wave, we con-
sider the simple case of two monochromatic waves, of the same amplitude and
of neighbouring frequencies (ki,w;) and (kg,ws), where ki, ko ~ k. Then the

resulting “wave packet” propagates as

U(Zl?,t) — A [ei(klx—wlt) +€i(k2x—w2t)}
_ Aei[(kl—i—kg)x/Q—(w1+w2)t/2] {ez’[(kl—kg)x/Q—(wl—wg)t/2] +ei[(kg—i—kl)x/Q—(w2+w1)t/2]}

= 2Acos

k1 ; kzx W ;w2 t} pil(krHha)a/2— (@i +w2)t/2]

We have written the wave as a slowly moving amplitude factor with velocity

_wl—wg d_w
ok —ky dk

Vg as ko — kq, (7.35)

ko

known as the |group velocity |, and a rapidly moving “phase” with velocity

w1 + wo w
= — k k1. 7.36
P ke kT (7.36)

Since the energy density is associated with the amplitude of the wave, we see

that, in this approximation, energy is transmitted with the group velocity, given
by equ. (7.35) with ko the central value of the wave number.

We now recall the relationship between w and k

ck

ot (7.37)

w =
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where n(k) is the index of refraction, and c is the velocity of light in a vacuum.

The phase velocity can then be written
wlk) ¢

Up = 2 = %
This can be either less than or greater than the speed of light; for most media at

(7.38)

optical frequencies, n(k) > 1. We can rewrite the group velocity using eqn. (7.37),
regarding k = k(w), and find

dn dk
n(w) + wo— = o
N dw c
Vg=—| = ———.
7 dk |, n(w) + wit

Providing dn/dw > 0, we have v, < c. However, if dn/dw < 0 (anomalous

refraction), v, can be greater than c.

7.7.2 Propagation of a Gaussian wave packet in the dispersive medium

First, let us recall the propagation of a Gaussian pulse in a linear medium without
dispersion
2
ug(x,t) = (5)1/4 exp{ — % + iko(z — vt)} (7.39)
where L = Az+v/2 is the width of the Gaussian wave packet.
Suppose at t = 0 we switch on the dispersion so that w = w(k) (some non-linear
function). What will happen with the pulse?

Starting from ¢ = 0, the solution of the wave eqn is
u(x’ t) _ §R/— A(l{i) o iw(k)t+ikz

A solution of the second-order duifferential eqn is specified if we know both u(x, 0)

and u(x,0). It is easy to prove that

Ak) = [ da e—ikx[u(az,owﬁu(az,on (7.40)
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The initial condition should be taken from the form of a non-dispersive Gaussian
pulse (7.39) at t = 0:

u(z,0) = wug(x,t) = ( ! )1/4 exp{—$—2+ik0x}

wL? 2172
1\ 1/4 : 2
ii(z,0) = dup(z,t) = (@) (kov + ?—f) exp{ _ % n ikox}
From Eq. (7.40) we obtain
k k — ko)2L?
Ak) = (4nz?)* [1 + 2 exp{ —~ (—0)} (7.41)
Wk 2

A typical behavior of w(k) is given by eq. (7.31). For simplicity, we will consider

an approximate model of the behavior of frequency in the vicinity of wy in the

form 22
w(k) = wy (1 + QT) (7.42)
where wy = vk is the center of our Gaussian wave packet.
We obtain
dk kw (k—kg)2L® ,
1) = R(4 L2 1/4 bk <1 O) ——— _—iwit+ikx
u(x,t) (4w L) 5 (1T Foor e e

The term % is approximately 1 in the vicinity of kg so

2(47TL2>1/4 e—iwot(1+ﬁ)+ikox exp{ (z — u)0612]43075>2

VIZ + iwoalt 2L2(1 + dwy L)

12
The peak of the pulse (7.43) is located at z = wpa?kot = it moves with the it

u(z,t) =R

} (7.43)

Owr
Ok lk=ky"

The wave packet spreads as it moves:

group velocity wya?ky =

V2Az(t) = L(t) = JLQ -

(for a proof, see Jackson). This is a general feature of non-linear Gaussian wave

packets: for the same reason (wy = \/(m2c¢t/h%) + k2) wave packets corresponding

to relativistic particles broaden with time.
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7.8 Causality between F and D and Kramers-Kronig Re-

lations

When €(w) is frequency dependent, there is a non-local temporal relation between
D and E. To exhibit this, we write D and E in terms of their temporal Fourier
components

o dw =

D(x.t)= [ - Dlx.w)e ™.

For a linear medium

D(z,w) = e(w)E(z,w),

and thus

We now use
B(x.w)= [ df Bz,t)e"".

to write .
_ o0 —iwt [ 1wt /
D(z,t) = o /_OO dwe(w)e /_Oodt e“" E(x,t).

To display the non-locality, we write
e(w) = € [(e(w)/e0 = 1) + 1] = €o[xe + 1
and thus

1 (0.9] . /
D(x,t) = € {E(x, t) + o /_OO dwdt' ey (W) E(z, t’)} :

By a change of variable 7 =t — t/, we can rewrite this as

D(z,t) = € {E(g, t) + /OZO drG(T)E(x,t — 7')} (7.44)

where .
G(r) =5 [ dw xe(w)e ™. (7.45)
We have essentially just used the convolution theorem of Fourier transforms, and

have exhibited the non-local connection between D and E.
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To explore the nature of this connection, we consider a simple one-resonance

model for y.(w)
wp

Xelw) = wi — w? — i’

where wp is the plasma frequency. This has poles in the L.h.p. at

w:—z'z:izyo
2

where
vy = wp —7°/4.

A

-ioyl2+ v

To evaluate G(7) we use contour integration, noting that there are two cases

1. 7 < 0: circle at co vanishes in lower half plane.

2. 7 > 0: circle at oo vanishes in upper half plane.

Thus G(7) vanishes for 7 < 0. By the residue theorem

W2
G(r>0) = 2—P><27Tz'>< >

™ residues
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_ sin vyT
= w%e 77/27,

70
and thus

G(r) = w%e—wﬂnyﬂe(f). (7.46)
0

We can make two observations
e There is an oscillatory frequency ~ wy.

e The damping factor 1/ is that of the oscillators.

Thus non-locality is confined to a region 7 ~ vy~ .

7.8.1 Causality

Because G(7) vanishes for 7 < 0, D only depends on the values of E at earlier
times, i.e.
D(z,t) = |E(z,t) + [~ dr G(1)E(z,t - 7)| .

We can thus write the dielectric constant as
e(w)/eg =1+ /OOO drG(T)e™".
Since G(7) is real, we have
e(—w) = ().
Furthermore, if G(7) is finite V7, €(w)/€o is analytic in the upper half plane, since

integral is convergent there. We can therefore apply Cauchy’s theorem for any z

in the upper half plane

e(w')/ep — 1
Ww—z

1 /
e(2)/eo = 1+%7{dw

If we assume that e falls off as fast as 1/w?, the contribution from the semi-circle

at infinity vanishes, and we have

e(w’)/eo—l.

1 oo
e(z)/60:1+2—m/_oodw i

— Z
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W

X

=\

We now consider a pole just above the w-axis, by writing z = w + 70. Then

1 .
—w’—w—i5:P<w’—w>+m(5(w,_w)
whence . W)/ .
4 —p [C gy B 0T L
e(w)/eo +7m' /_OO W o

Thus taking the real and imaginary parts, we find

Refeg = 1+ P/ g S/

u) — W
/60—1
Se/ep = ——P/ a2 s (7.47)

These are the | Kronig-Kramer | relations; they relate absorption (imaginary

part of €) to dispersion (real part of €) through analyticity.
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Wave Guides and Cavities

In this chapter we will consider propagation of waves in hollow, metal wave guides

and cavities.
e wave guide: ends are open

e cavity: ends are closed

8.1 Boundary Conditions at Surface of Conductor

Recall that at the boundary between two media, 1 and 2, we have

(Hy— Hy) xn = K

(By—Bi):n =0
(Da—Dy)-n = o
(By —Ej) xn =

Inside a conductor, the electrons are completely free, with infinitely fast response,
such that B = E = 0.
Thus our boundary conditions just below the conducting surface reduce to
Hxn = K
B-n =0

1
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|3
I
Q

D
B x

I3
[

Thus just outside the surface of the conductor, we have that

e B is tangential to the surface.

e [/ is normal to the surface.

The case where we do not have a perfect conductor is discussed in detail in
Jackson, chapter 8.1. Note that in these cases we have energy losses associated

with the absorption at the boundary surface.

8.2 Propagation of Monochromatic Wave

We consider the propagation of monochromatic waves in a hollow cylinder, of

arbitrary cross section, which we take to be uniform along, say, the z-direction.

We assume a harmonic time dependence e ™, so that Maxwells equations become

VxE = iwB
V-B =10
VXxB = —iuewkl
V-E =0

Thus, in the usual way, these equations reduce to

(V? + pew?) { % } =0 (8.1)

Because of the cylindrical symmetry in the problem, we expect to find waves
travelling in the positive or negative direction, or standing waves. Therefore we
look for solutions of the form

E(£7 t) } _ { E(-f,y) }e:tikziwt
B(z,1) B(z,y) |
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Note: this does not mean that the propagation vector is in the z direction as such.

We now write

V?=V7+ V2
where
0? 0?
2 _ -
Vr = 0x? * Oy?
82
2 _
Vi = 9.2

Then our wave equation eqn. (8.1) reduces to
V2 4 (e — KB = 0 (5.2

and similarly for B.

We now write £ and B in terms of components parallel and transverse to z, i.e.
L= FE + E, etc., and show that it is only necessary to solve for the longitudinal
components F, and B,.

We start with two of Maxwell’s eqns

VxE = wB
VxB = —iuewk. (8.3)

% |

Writing the first of these in terms of longitudinal and transverse components, we

have
If we now consider the transverse and longitudinal components, we find
Ve X By = whB; (8.4)
ZT X Ez +zz X ET - ZWBT (85)
From the second of these, we find
szz XET - Zz X [YT X Ez+2z X ET]
= V,[V. E]-VIE,
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THen, using the z-dependence of | B, we find
WY, x By = V[V, - E] + KE;. (8.6)
To proceed further, we use the second equation of (8.3), which becomes
Vyx Br = —ipewE,
Vyx B.+V,x Br = —ipewEy.

Substituting in eqn. (8.6), we find

iw[—ipewlb, — Vi x B,] = k2ET +V, [V, - E
yielding

ET = (ILLEW2 - k2)_1[zT(2z ) Ez) - ZW& X YTBZ]
ET = (ILLEW2 - k2)_1[zT(zZ ) Ez) + ZEW& X ZTEZ] (87)
with an analogous equation for By.

Thus we can see that we have expressed the transverse components entirely in

terms of longitudinal componenets.

8.3 Classification of Modes

We have now shown that the propagation of the waves can be solved solely by

solving the two-dimensional wave equation

(8.8)

(V2 + pew® — &) { Be,9) } — 0,

B.(z,y)

subject to suitable boundary conditions. In the case of perfectly conducting walls

S, the boundary conditions are

nxElg =0
n-Blg = 0.
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It can be shown that these boundary conditions are equivalent to

E. =0 (8.9)
OB,
o =0 (8.10)

Thus we are in principle simultaneously solving two boundary-value equations
subject to each of the above conditions. However, in general the eigenvalue equa-
tion (8.2) will have different eigenvalues for the two different sets of boundary
conditions. Hence we cannot satisfy both simultaneously unless one is trivial.

Thus we classify the solutions as

Transverse Magnetic (TM)

Here B, = 0 everywhere, and E, = 0 on boundary. The differential equation
(8.8)a with the above Dirichlet boundary condition determines E, in the wave
guide. If we know F., the transverse fields can be obtained from Eq. (8.7):

1k - lew .

ET = _QVTEz; HT = —263 X ﬁTEZ (811)
Y Y

Transverse Electric (TE)

E, = 0 everywhere, and % = 0 on boundary. Hre we must solve the Eq. (8.8)b
with Neumann boundary condition. The transverse fields are
. B T
BEr = — e xVoH., Hy = SVH. (8.12)
g Y

Finally, we must consider

Transverse Electric Magnetic (TEM)

Here we have B, = E, = 0 everywhere, so that the only non-trivial components

are those in the transverse direction. Then Maxwell’s equations reduce to
VX Epgy = 0

V, X Epy = wBrewm.
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In addition, we have
Vi Ergy = 0.

Combining the first and third of these equations, we find
YQTETEM =0,
and comparing with the wave equation (8.2), we find
K = pew’.
This is just the infinite-medium value. Similarly, we find
Brem = £y/pieez X Eqpyy-

Thus we essentially have plane-wave propagation.
We see that Ep,, obeys Laplace’s equation. Furthermore, the walls of the wave
guide are an equipotential. Thus the only solution inside a single, hollow perfect

conductor is the trivial one.

TEM modes cannot propagate inside a single conductor

They can, however, propagate inside a coaxial cable.

8.4 Modes of a Waveguide

We begin by discussing TM modes, for which we write
Ez _ gb(x, y)e:tikz—iwt.
Then ) satisfies
(V5 + pew” — k)¢ = 0,

subject to ¢ = 0 on the boundary.
We now introduce

7 = pew® — k7,
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so that our eigenvalue equation becomes
(V7 +7%)¢ = 0.

In general, the boundary equations require that 72 be positive, yielding a discrete

set of eigenvalues {v,}, with corresponding wave number
k2 = pew?® — 73 (8.13)

If k3 > 0, k) is real, and the propagation is oscillatory. If it is negative, the wave
number is imaginary and the wave will no propagate.

We define the cut-off frequency wy by

A
Wy = 8.14
e (8.14)

where
o w < wy: wave cannot propagate
® W > wy: wave can propagate

Finally, it is worth noting that the group velocity of the wave in the wave guide

is always smaller than the speed of light. We first note that we may write

kyx = peyw? — wi.

We recall that the phase velocity

v, = w/k
1

1
VIELT — w2 fw?
c
V1 —wi/w?

which is always larger than the velocity of light, and diverges as w — w.

In contrast, the group velocity

dk\ 1
Vg = <%> = cy/1 — wi/w?,
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which is always smaller than the infinite-space velocity of light, and vanishes as

w — wy. In this limit the wave no longer propagates. Note that

_ 2
Uplyg = C.

8.5 Modes of a Rectangular Waveguide
A

a

For the sake of illustration, we will consider the case of TE modes. In Cartesian

coordinates, we have to solve the eigenvalue equation

2 2,
{@—1‘8—?}—#7]7#—0

subject to

ov(0,y)  Y(a,y) 0

ox ox
2u(r.0) _wlwt)
oy Oy '

This clearly has eigenfunctions for H,

b ) = oo () con (222)
a
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with eigenvalues
, m2  n2
L R
We denote the modes TE,, ,,. The lowest non-trivial mode is TE; ¢ if @ > b, with

cut-off frequency given by

Yio =7"/a”

For this mode, for wave propagating in the positive direction, we have

H, = Hycos <E> ihroz—iwt,
a

We can obtain the transverse components of the field from eqn. (8.12)

1ka L v AN

wafl A AT
Er = Hysin (—) et “e,,
— 7 a —

with £ = ]{3170.
The analysis of TM modes proceeds likewise. However, here the lowest propa-
gating mode is TM;;, with a higher cut-off frequency. Wave guides are often

constructed such that TE; o is the only propagating mode. Recalling that

Fa = Ve (w? — o3)

we can show k) /,/pew as follows:
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> W

TE TRy TRy
™,

w

8.5.1 Energy Flux along Waveguide

The time-averaged energy flux is given by the real part of the Poynting Vector

1
S=—-FEx H*.
Let us evaluate this for TE modes
1 1
S = SEx H' = S(Ep x Hy — Hiéy x By).

Since H. = 9(z,y)e ™k we get from Eq. (8.12)

whkp , B wkipt W,
5= 2—742THZX(€3XYTHz)_?Hz€3X(63XYTHZ) = 2—7463|E:¢|2—2?¢ Vi

Taking the real part, we get
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This is in the z-direction, and we see that energy propagation is along the waveg-
uide.
Similarly, for the TM wave E. = ¢(z, y)e “*** one obtains

wke

%g - —’vT¢’2
The total power transmitted by the TE wave is

k
P=R[ S e.dd =37 [dA(T30) - (Vr0)

where A is a cross-section through the wave guide. Recalling Green’s identity, we

have
)
[T+ Vg Ty dd = f v

Because of the boundary conditions, either g—f: or ¢ (for the TM mode) vanish on

the surface. Thus

P = ”k“/ Y V2 dA

_ Wk,“ 2 2
= i el a,

using wave equation
(V7 +7%)¢ = 0.

Thus we have

2 1/2
M W WX *
P = — - —= dA 8.15
= () ( wz) [ A (8.15)
where we represented k as w,/pey/1 — ‘;j—é and ? as pew?).

Similarly, for the TM modes we get

P= 2\5% (wi)? (1 - )1/2/ & b dA, (8.16)

From Chapter 7, we have that the field energy per unit length is given by

1 1
W) = 3B B 4 pH - H)A = 7 [ (B Byt pHy - i ot - 2] dA

M 2 2 2 2 _ M 2 2 2 2
= alnes” &) JIVRP + plul]dA = (55 (ne? + k% +97) [ |l dA
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where we have used the fact that [ |V, |* = 42 [ |1]? since V34 = —~%). Finally,

we obtain
,u cw?

(U) = tﬂdeA /WdeA

Using eqns. (8.15) and (8.5.1), we find

P/U = \/lﬁe ( - ﬂ) - =v,  (8.17)

Thus we see that the energy propagates with the group velocity. N.B. you
should convince yourself that this expression has the correct dimension.

For the TM wave, we get

2
(U) = ZWA/W¢!dA

yielding the same result (8.17) for group velocity.

8.6 Boundary Conditions at Surface of Good Conductor

At surface of infinitely good conductor, we have

n-b =0
nxkE =0
n-D = X
nxH = K (8.18)

where X is the surface charge density.
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conductor

In the case of a conductor of conductivity o, we have

J=0kL.

We cannot have a surface current, since that would imply an infinite tangential
E. Instead, we have
nx(H—H)=0.

where we use the subscript ¢ to denote fields inside the conductor. (As o — oo,
we recover our surface current as a volume current over the thin layer close to the
boundary).

We obtain the results for finite conductivity by successive approximation. We
assume that initially £ is perpendicular, and H parallel, to the surface just out-
side the conductor. Then H |

conductor become

surface = H I and Maxwell’s equations within the

1 0H

VX . _L = 0
— T e Ot
oD,
H = —

. If we assume harmonic time depedence, these reduce to

H = ——VxE,
eW T
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VxH, = ob,—iwek,.

Thus if ¢ is sufficiently large, these reduce to

H = ——VxBE,
H, Y X Ee

1
E. = ~VxH,

o

We now assume all variation to be normal to the surface. (Spatial variation of the
fields on the normal direction is much more rapid than in the parallel direction

so we can neglect V, in comparison to V). Then we have

0
V=-n—
A% n o
and our equations become
H. _ i 0L,
— pew= 0§
B = —tnx %k

We immediately see that n - H. = 0, consistent with our boundary assumptions.

Furthermore, combining these two equations we obtain

' 0*H,
Ho=-——nx[nx =1,
— pewo™—  —  0&?
yielding
0? 21
a—ggi + ﬁ& =0,
where

2 1/2
0= ( ) ,
HeWT

is the skin depth. Thus, combining this we the condition n - H. = 0, we find

H, = Hye" <", (8.19)
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Thus the magnetic field is tangential and falls off exponentially as we go into

the conductor. We can differentiate this, to obtain

E. = ‘2‘—“(1—2')(@;1”)@—5/%%/5. (8.20)
Ee =5 H

Thus E, is also tangential to the surface, but of much smaller magnitude.

We now go back to our boundary condition
nx (E—E)=0.
Since F_ has a small tangential component, so does &' just outside the conductor.

E” = g:(l — Z)(TL X HH)

Thus there is a non-zero component of the Poynting vector into the conductor,

and hence a net flow of energy, given by
dP 1
() = RIEXH] (-n

It can be demonstrated that this power is dissipated into heat as ohmic losses in
the skin of the conductor.

Applying this to our wave guide, we see that we have an energy loss/unit length

given by
dP o 2 1 2
= e I = g
2
_ L(i) %dl wa‘a‘ (TM)
200 \wp) IO | Ly (1-2) In x Vyu? + S|g2 (TE)

8.7 Resonant Cavities

A resonant cavity differs from a wave guide in being closed. Thus, rather than

having wave propagation, we have standing waves.
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As before, we can have both TM and TE fields. However, now the z-dependence

is of the form, for the case of TM modes,

= ¢(x,y)[Asinkz + Bcoskzle,
0

= |
||

Then the transverse part of the wave is

1
Er = ?[YT(Zz -E.) —iwe, x V,B.]

- %zﬂﬁ(x, y)[Acoskz — Bsinkz].

Now the boundary condition Fr =0 at 2 =0,z = d yields A = 0,k = pn/d and
thus

E. = ¢(z,y) cosp%lr (8.21)
pT . pmz
& = —W S11 72T¢ (822)
We can obtain Hyp similarly, yielding
Hr = = cosPle, x Voo, (8.23)

7 d

A corresponding analysis for the TE modes yields

H.=1vY(z,y)(Asinkz + Bcoskz)
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so Br = —'i;’—é”(A sinkz + Bcoskz)e, x V. From the boundary conditions

Erl,_gq=0 we get

Hz - w(xny>81n%
Bp = ——psin® e x Vi
pr prz
& = d—fYZCOSTzT'w. (824)

The function ¢ (z, y) now satisfies the wave equation

Vo + [pew® — [(%)2] =0

where 5 o
9o P

v = pew? — o
We can solve this eigenvalue problem as for propatation along a wave guide, but
now the eigenvalues 7, determine not the cut-off frequencies but the allowed
frequencies:

1 p?m?
2 2
w)\p = @ {'}/)\ + ?] (825)
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Example: cylindrical cavity, radius R

A y4

AN
|

>
y
X

We work in cylindrical polar coords #(s, ¢). Because of cylindrical symmetry, we

seek separable solutions to the two-dimensional wave equation of the form

Y(s, ) = P(s)e™™M?
where m = 0,1,2,.... Then we have

92 10 s  m?
(@*ga” ‘?)W—O-

This is just Bessel’s equation (see last semester), with solution

w(S, ‘:0) = Jm('YmnS>eﬂm@-

In the case of a TM mode, where 9(s, ) =0 at s = R, we have

/YmnR = Tmn,
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where z,,, is the n' root of Jm(x) = 0. Thus the resonant requencies are given
by

= [

The solution for TE modes is similar and the resonant frequencies are given by

1 2 2
2 = [xm” pﬂ] (TM mode). (8.26)

1 [22 p?r?
2 o mn
wmnp = E [ R2 7 (TE mOde), (827)

where 2/ is now the n'! root of J/ (z) = 0.
Note that for TM modes we have p = 0,1, 2, ... whilst for TE modes we have p =
1,2,3,.... Furthermore, the smallest z/ . < min(z,,,), and thus for sufficiently

large d the dominant mode is
TE1’171.

We can compute the energy loss is a resonant cavity in a similar manner to that

for a wave guide.
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Radiating Systems

In this chapter, we will study radiation of varying current distributions. We will

begin by working in Lorentz gauge, where the equation for the vector potential is

From Chapter 6, we recall that this has the retarded solution
_ @ 3.0 34! 1oyl (+) RS
é—4ﬂ/d£€dtl(£,t>XG (£7t7§7t)7

where
|z — 2|

G (z, t;2' 1) = St —t+

|z — | c )
We now consider the case where the fields arise from a current with harmonic
time variation

J(@,t) = J(z)e ™"
More general time dependence can be studied simply by taking the Fourier trans-
form. The potential corresponding to this current is then

Alat) = 50 [dl ata(@)e = 6w i, ¥

™

= A(z)e ™,

with

/ BT ’ |e”€|£_£/|.
x—
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where k = w/c is the wave number.

d

O

/_\_/

A

We will now consider the form of the field a distance r away from a localised,
time-varying source of extent d. We begin by introducing the wavelength
2 27c
A= —=—
k w
where A > d.

We now consider the form of the potential in three different regions:

1. d < r < A - the near zone
'| ~ exp2mir/A ~ 1, and we have
1

z—a

Then expik|z — x

Ale) = 12 [ da' J(a)

/’ )
The field is of the familiar form which we can expand as a series in, say,

Legendre polynomials.

2. 7> )\ > d - the radiation zone

The the exponent is rapidly oscillating, and we can write

z—2| = [27 -2z -2/ + 27

2
~ r—@-g’jt(’)(@l )

r
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Thus, to leading order in 1/r we have

ikr
Al) =3 BOE [ ol J(al)e et (9.1)

— = At T

where n is a unit vector in the radial direction. Thus we have an outgoing
spherical wave. We can compute the magnetic and electric fields through
H = —V x A (9.2)
Mo~

E = @V x H

— k
which also fall off as 1/r, corresponding to radiation. (Hereafter Z; = \/7 =
HoC).
Since kn - ' < 1 - recall that d < A - we can expand the exponent in
eqn. (9.1) yielding

eikr —ik)"
Aw) = 20 s T 1o 50y

— = A7 r T nl

)" (9.3)
Successive terms are O((kd)"), which dies off with increasing n.

3. r ~ X\ Here we need to expand the solution in terms of the vector multipole

expansion, discussed in detail in Jackson, 9.6.

An analogous analysis for the scalar potential yields

M@ﬂz/f’/ﬁ qay+@—f!

.f—ﬂf

—9).

C

Keeping the leading term yields

Ba,t) = (i =t~ /o).

where ¢ is the toal charge of the source. If the source is localised, and isolated,
no charge can flow in and out, and thus the total charge is constant in time- the

monopole part of the potential is static, i.e. has no time dependence.



Chapter 2 4

9.1 Electric Dipole Fields

If we keep only the leading term in eqn. (9.3), we have
ikr
Ale) = 2= [ &' J(a). (9.4)
In fact, as discussed in Jackson, this is the leading [ = 0 term in the vector
multipole expansion of the vector potential, and thus valid everywhere outside the
source as part of the multipole expansion. We will now show that this corresponds
to a dipole term. We begin by recalling the continuity equation
dp
ot

which with our assumed time dependence becomes

+V-J=0

—iwp+V-J=0.
We now use integration by parts to write

[da' S = [ &2 (L V) =~ [dld (V)

= —iw [ &% p(a)) = —iwp
enabling the potential to be expressed as

iﬂow eikr

A(z) =

— = 4T r —

where
p= [ d*x 2/p(')

is the electric dipole moment.

The magnetic and electric fields are simply obtained from eqn. (9.2).

1 Ckz eik‘?“ 1

g L 4 = ok 1 9.5

_ Mozx_ 47T(QX]—9) r ( ikr) 99)
iZo 1 9 eikr 1 ik ikr

B = SOV H = (B xp) x o+ 30w)n = )5 5)e")
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In the spherical coordinates it takes the form (n x p = —psin 00)

pck2 . etk 1
H = — 0 1—— 9.6
— AT S r ( ikr)gp (9:6)
g =7 [ — k? e sin 06 + (2 cos B + sin Qé)(i — %)eikr]
= e r r3 2

It is interesting to examine their limiting forms

e Radiation Zone: r > )\ > d:

ck:2 eikr w2p eik‘r
H = —(nx = — —psinf
— 4 (_ Q) r 47‘(’690 r
ikr
E = ZyHxn = — ﬂcuzpsinee )
— - = A1 r

Both these field manifest clearly the characteristic properties of radiation:

— The fields fall off as 1/r.

— The electric and magnetic fields are normal to the direction of propaga-

tion n.

e Near Zone: A\ > r > d:
Here the leading behaviour of the fields is given by

1 1

E = 3n(n-p) — pl =

E 47T60[ n(n-p) = pl3
1 k

H = — iy

T 47T€0Z0(EX]_9)T2

Thus at very short distances, there is essentially an electric dipole field with
time dependence exp —iwt, and a magnetic field suppressed by kr/Z, that

vanishes as k — 0

In order to show that this solution does indeed correspond to radiation, we will

look at the time-averaged power flux in the radiation zone. This, of course, is
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just given by the Poynting Vector, and we have
dP 1

- — — 2 . *
"5 = SrReln-Ex H

There is a net flux of power away from the charge distribution, independent of r -
radiation. For the case where all components of p have the same phase, we have
the characteristic expression for dipole radiation,
dP o C2Z()
dQ  32m?

k*|p|?sin* 0

The total power transmitted is just obtained by integrating eqn. (9.7) over the

unit sphere, and is independent of the phases of p:

CQZ()]C4
P = 2,
or 2

Centre-fed Linear Antenna

Once again we assume that the dimensions of the antenna are much less that the

wavelength. The antenna consists of two conductors of length d/2, along the z
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axis. The linear current density in the wires is

-1 %)

where we again suppress the time dependence.

e

e,

This current flow gives rise to a line charge density A through the continuity

equation

I
iwA(z) = %
yielding '

A(z) = 2;—20sgn(z).

This charge density has a non-zero dipole moment

d/2 211y
b= /_dmdzzmg
11od
= —e..
2w —

N.B. if we had current flowing in opposite directions in the two arms of the

antenna, there would have been no dipole radiation term.

Thus, from eqn. (9.7), we see that this apparatus gives dipole radiation, with

power distribution
dP  Zyl g
aQ  128x?

(kd)?sin® 6
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Zolg(/{:d)2
p = 290\ .
4871 (9 8)

If we identify the power radiated with energy dissipation through an effective
resistance, the coefficient of I3/2 is eqn. (9.8) is the radiation resistance - the

factor of 2 arises from time-averaging, in the usual way.

9.2 Dipole Fields Revisited

In this section we’ll derive the formulas for the dipole radiation again - this time

without Fourier transformation [dwe ! implied.

The general formulas for vector and scalar potentials due to an arbitrary source

are:
1 p(x't,)
t) = dPr ==
$at) = oo [da T =
o 3 /l(glvtf)
Alx,t) = — |d’2'=—=———+ 9.9
where t, =t — @ is the retarded time.

To study the behavior of these expressions in the radiation zone |z| > [2/|, we
choose the origin somewhere inside the radiating body and expand the denomi-

nators in a usual way:

1 1 n-x
=—(1-——+4+.. 9.10
P T( =) (9.10)
where r = |z| and n = 7 is the propagation vector for our would-be shperical

wave. We need also to expand the retarded time in powers of %/:

|z — 2| r n-a
tp=t—=—=loy T 12
c c c
so that
/ ﬁ'x’- /
p(',t,) = p(2', to) + —=p(a',t0) + ... (9.11)
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where tg = t— is the retarded time for our origin. The parameter of the expansion
(9.11) is % < 1 (see previous Section). Indeed, p ~ Weparp Where wepa, are the
characteristic frequencies of the emitted radiation, hence %;Q; ~ %“J = % < 1. )
Substituting the expansions (9.10) and (9.11) in the expression (9.9), one obtains:

S, / ﬁgl

_ 3,/ / n-x . , _
0w, t) = o [Pl to) + = ol )1 = = = )
A~ St
_ Q@ _n 2_9(0)+” 2_9(0)+___
Amegr  4megr? 4degre

For the vector potential in Eq. (9.9), the first term in the expansions (9.10) and
(9.11) is sufficient:

3/ ~ 3.
/d ]x—x’| 4ﬂr/dx(]x to)

In the previous Section, we demonstrated that

[d2' (' 1) = p(t)
so the dipole potentials in the radiation zone take the form

T )0 )

t) = &z’ [p(2',t
Oa,t) = o [Plp(@ 1) +
e Bl
_ @ neplo)  7oplh)
47T€07’ 47r60r2 4degre

J(l’ t) top(to)
A 3 / ~ Ll

(9.12)

Next we calculate the electric and magnetic field in the radiation zone. Discarding
terms ~ -5, one obtains after some algebra (note that V f(tg) = f(to)Vty and
zto = —% :

n .
Ve, = ~ (i plto)
0 pop(to) 140
8tA( 1) Amr Vxd= WTCQ x b(to)
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Thus, the dipole fields in the radiation zone are

E(w.t) = g ito)) = B0)] = {50 (0 x (k)
Ho .. n
B(z,t) = — ty) = —E(z,t 9.13
Blet) = —2pfty) = Bz (9.13)
If we choose the frame with OZ axis collinear to p(ty), the fields take the form
pop(to) sin 6 pop(to) sin

E(r,0 = —0 B(r,0 = — 9.14
_(/r7 ) 90) 47T r ) - (/r7 Y 90) 47_‘_0 r 907 ( )

The Poynting vector is then

1 fo .. \\oSin®f
S=—-ExB = 1" (it
- ,uo_x— 167T2C(p( 0) 2 "
= the total radiated power takes the form
- Ho .. 2
P = [S-ndA = —(p(t 9.15
J8-ndA = 2 (i) (9.15)
For a single point charge g p(t) = qz(t) so we get the Larmor formula
2 2
foq’a
P = 9.16
6me ( )

Later, we will reobtain Larmor formula using the Lenard-Wiechert potentials of

the moving point charge.

9.3 Magnetic dipole and Electric Quadrupole Radiation

The next term in the multiple expansion is

ikr
Alw) = 05 (S —ib) [ ol S o,

== dr r \r
where the additional term is to ensure the expansion is valid at all distances. To
exhibit the form of this potential, we express the integrand as pieces symmetric
and anti-symmetric in J and &', by writing

(n-2)J = ~[(n- )]+ (n- D)) + (&' x J) % .

n-z)d =g 5 n (9.17)
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We now introduce the magnetisation density

1

M = DR J.
Then the second term gives rise to a vector potential
ikt e ( 1 )
Alz) = — l1——|nx 9.18
Alz) = —— ) nxm, (9.18)

where m is the magnetic dipole moment.
As an example of magnetic dipole radiation, consider the circular loop of radius
b with current

I(t) = I coswt = RIe ™

The magnetic dipole moment of this loop oscillates in time as

m(t) = mcoswt = Rrb*Ie ™!

Let us calculate the magnetic vector potential due to this setup. W.l.o.g. we
can assume that the point z lies in the X Z plane. The general formula for the
magnetic vector potential has the form

—dwer’

Az 74 dl'-~ et (9.19)

x—x|

/

Expanding t,» ~ ty — '—xl (where tg =t —

L) and - x’| ~1(1 + 1 ) we get

Cc

,UOb[ ezk:r

b o
é(g) / d¢ ( él sin gb’ + éz COs gb’)(l + ~sin @ cos gb/)e—zkbsm&cosqﬁ

Since kb = 27T < 1 we can expand the exponential in the r.h.s. of this equation

4 r

and get

,UOb] etkr o

A(z) =

b
Az 1 / d¢'(—é1sing’ + éycos@')(1 + —sinf cos ¢’ — ikbsinf cos ¢')
T r

Performing integration over ¢’ we obtain

_Z']{Z,LL()[b2A 1 zkr
Alz) = — (1 — =—)e™ sinf (9.20)
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For our setup é» = €, so the final result for the vector potential takes the form

Z']{?,LL()??A”LA 1 ikr -
Ax) = - éy(1 — %)e " sin @ (9.21)

which coincides with Eq. (9.18).
Let us find now electric and magnetic fields of the magnetic dipole radiation.
Taking the curl of Eq. (9.18), we find

— {k2(@ X m) X @eikr + [3n(n - m) —m] (i - %> 6’“} . (922)

—  Ar r rd  r2

The field H due to the magnetic dipole is of the same form as the field £ due to
the electric dipole (see Eq. (9.5)). Similarly we have

ZO ) eikr < 1 )
E=——%k 1] — — 9.23
E =D em ™ (1- 1), (9.23

so that the electric field due to a magnetic dipole is of the same form as the
magnetic field due to an electric dipole:
: €om . Mo
Hmag'dlp()le = 7 el.dipole; Emag.dlpole = THel.dipolea
Since the radiated power is proportional to n - (E x H),
2 4

2
Pmag.dipole o m el.dipole _ HOTIV"W 9924
rad — 9 9% rad - 3 ( : )
p=C 127c

In order to get an estimate of the relative strength of the electric and magnetic
dipole radiation, consider a physical dipole made from two charges ¢ and —q
separated by distance d which rotate with angular velocity w around the center

of the dipole. The magnetic moment of this system can be approximated by an

oscillating current I = 7 = ? so we get an oscillating magnetic moment m = d%‘”.
The ratio of powers for this example is
P, w2d? 0P
SN = — (9.25)

P, rmel 4c? c?
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where v is the linear velocity of the rotating charges. We see that for charges
moving with non-relativistic velocities the electric dipole radiation is the most
important part while the magnetic dipole radiation is of the size of the relativistic
corrections.

The interesting part is the quadrupole moment, obtained from the symmetric

part of eqn. (9.17). We use
) .
5 P {(n )]+ (- 'y = —% [ pa'(n- o),

using the same tricks we encountered earlier, and write

- :LLOCk eikr 1 3./ N /
Alw) = P2 (1 o) [ @il pla)al (0 o). (9.26)
In the limit » > A, we find
H = ikn x A/po
E = ikZy(n x A) xn/u. (9.27)

If we now recall our expression for the quadrupole moment

Qup = [ dwp(2)(Brozs — r00p)
then we find that H can be written

Z'Ck3 eik‘r
- _="
H=-5———nxQn
where Q(n) is defined by
Qo = %: Qapnp.
The power dissipation is
dP C2Z()

Eo[n x Q(n)] x n|*.

dQ 11527
We encountered a simple model of a quadrupole moment in the multipole expan-

sion last term:

Q33 - QO
Qu=Qn = 1 (929
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which is clearly traceless. Then the angular power distribution is

dP 2 70k"
= 65120 Q2 sin” 6 cos> ), (9.29)
.
and the total power radiated is
CZZOICGQZ

For quadrupole radiation, we have a four-lobe pattern of power distribution

The complete description requires the full multipole expansion which is beyond

what I am going to do in this course.

9.4 Radiation from a moving point charge

9.4.1 Lenard-Wiechert Potentials

Consider a point charge moving along the trajectory r = @(t). What are the

electric and magnetic fields due to this charge?
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As usually, it is convenient to start with the potentials. In the Lorentz gauge

)

r— 1]

or,t) = — /d3 AT 5t —t+
TEQ

r — 1] c
r— 1]

A(r,t) = E/d?’x/ J(r) ot —t+ ) (9.31)

r— 1] c

For a point charge

p(r,t) = qo(r —a(t)), J(r,t) = qu(t)o(r — (1))

At first, let us find the scalar potential

gt far O =P gy =T
47eg / / ]r — r’] g * c )
5(¢ —t + =L 1 St —t,)
= dt dt = y
4meg / ]7’ — u( / t [T =a(e)] )|) [r —a(t)]
C t/:tr
q , ot —t,) c

::La;dﬂz—wWM—aﬁowz—ww>‘dz—wmw—ym»«z—wm»

where v(t) = 24(t) is the velocity of the particle and ¢, is the solution of the

equation ¢(t —t.) = |r — w(t,)| = 0.
Similarly,

Alr,t) = B (2,) .

ST m S e =) ot - (r— (i)
The potentials
4 ¢
W) = ey dr = @)~ 26) - (£ = @(6))
Ar,t) = SV(r) (9.32)

are called the Lenard-Wiechert potentials for a point charge. The corresponding

electric and magnetic fields are (see Jackson or Griffiths)
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q S o002 2 - o
El) = g, @ apli® ~ )+ X (@ xa)
B(r.t) = > x E(r.t) (9.33)

where v = v(t,), a = a(t,), =r — W(t,), and @ = < — v(t,) (as usually, ¢ = %)

9.4.2 Power radiated by a point charge

The electric and magnetic fields due to a point charge moving along an arbitrary

trajectory w(t) are given by Eq. (9.33)

E(r.t) — q Ul A2 _fﬂ) L a ¢ xA(ﬁHx a)
dreps? (S -u)3 Areps (S - u)3

B(r.t) = 7 x E(r.1). (9.34)
c

where ¢'= 7 — W(t,), © = ¢ — U, and t, is defined as a solution to the equation
c(t —t,) = <. As usuallly, velocity and acceleration in Eq. (9.34) are taken at
t = t,. The first term (~ ) is called the velocity field and the second (~ @) is
called the acceleration or the radiation field.
The Poynting vector is

G- ExB- L Ex(exB) = L(F%—(c-B)E]  (9.35)

10 HoC HoC

Some of the energy is radiation; another part is just a field energy carried along

by the particle as it moves. To calculate the power radiated by the particle at

time t,, we draw a large sphere with radius ¢ = R, wait for ¢t — ¢, = %, and

integrate Poynting vector over the surface. Since the velocity field is ~ 1/R?

the corresponding P,.q is ~ R2% = Ri so it does not contribute to the radiated

power at large R. The power due to the acceleration field (~ 1/R) is finite:

Paq ~ RQ% = 1. We get

Erad(r7 t
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s X Bra(r ) =0 = Saq= 2. (9.36)
HoC

For simplicity, consider the charge which is instantaneously at rest at ¢ = ¢,. Since
U(t,) =0, u(ts) = < so the Eq. (9.36) reduces to

2 2 2 1.2
= S MG \2r 2, o Mog a“sin® O,
Stad = —(—— — (- = 9.37
¢ ,LLOC(47TR) o= (¢-a)] 1602¢ RZ ° ( )

The total power is given by the following Larmor formula

2 2 . 2 2 2
_{a g _ Hqa sin” 6, _ kg a
Paa = §, S~ da = <5 | T REsinfdfdg = = (9.38)
which we have already obtained using the electric dipole radiation, see the Eq.

(9.16).
We have derived the Larmor formula under the assumption that v = 0 but one can
demonstrate that it holds true as long as v < ¢. In the general case of arbitrary
velocity, the radiation is given by the Lienard formula

2,6

g™y’ 5 (0-d)?
Pra — - 9-39
d 67c (a c? ) ( )

_ v
c?

where v =1/

9.4.3 Electromagnetic fields due to a point charge moving with con-

stant velocity.

Potentials

For a point charge moving with constant velocity v the trajectory is w = tv so

the retarded time is

c(t—t)=|r—tw| = 1r*—2tr v+t =(t* - 2t, +t2)

t—r-v— (A —r-v)? — (=) (A —1?)
2 2

= t, =

cc—v
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The Lenard-Wiechert potentials (9.32) take the form
1
1 (9.40)

1) =
qc qac /2 2 2 9v(2,2  9y—1/2
— — t—or-v)?2— (2 — 2
dreg[ctt — (2 —v)t, —r-v]  4dmeg ¢ vr )" — (¢ = v7)(c )]

and
Alr1) = S0(rt) = "5t — (@ =)t -]
c
= BE(@t—vr- o) = (@ =)@ =) (941)
Let us demonstrate that ¢(r,t) can be rewritten as
2
q U™ 9 o\ —1/2
t) = 1—-—= 0 9.42
o) = 1= ) (9.42)

where R = r — tv and @ is the angle between R and v. (R is the distance to the

position of the moving charge at the time of measurement of the fields).

We have
(Ft—v-r)? = (=) =17) = [Pt —v- (R+tw)]? = (¢ =) [ — (R + tv)’]
?— )R + (v- R)’

(¢ =v*)t —v- R = (¢ =) [(¢* = ") = 2tv- R— R)* = (c

and therefore

2
\/(c2t —v-1)?2— (2 =) (At —1r?) = Rc$1 — 2—2 sin® 0

(9.43)

Fields

For @ = tv (and a = 0) the electric field in Eq. (9.33) reduces to (recall @ =

2) _ Q(CQ — U2> S’ — v (944)

dreg (s —v-Q)3

and B(r,t) = £ x E(r,1).
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It is easy to see that (=r —w(t,) =r —vt, = R+ v(t —t,))

= vs =c(r —tv) —|r—twv=clr—twv) —ct —t)v=(r—tv)c=cR

Similarly, we get

s —v-d=c(t—t,)—v-[R+(t—t,)] = (=)t —t,) —v- R

and

[cc—v- P =[(=v*)(t—t,) —v- R

= (=)t —t,) —2(c —v?)(t - tg)y R+ (v-R)

= RY(AE-1)+ (v R)? = R2*(1 - 2—2 sin® ) (9.45)

so the electic and magnetic fields (9.46) take the form

qc <7
E1t) = oo wap© ~v) (9.46)
_ q(c* —v?) cR _ qR 1— Z—j
dreg  (R22 — R%sin® )32 dmweoR? (1 — v sin2 9)*/*
: 1
B(r,t) = =°x E(r,t) = —~v X E(r,t)
C C

Let us demonstrate that the fields (9.46) are Lorentz transforms of the usual
Coulomb field of a point charge (E(r,t) = -2, B =0).
TEQ —
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Special Theory of Relativity and

Covariant Electrodynamics

Central to Newtonian Mechanics is the concept of an inertial frame; a frame in
which a body, acted on by no external forces, moves with a constant velocity. A
transformation between two inertial frames is known as a Galilean Transfor-
mation.

Aside: a practical definition of an inertial frame is one moving with constant

velocity relative to the distant stars (Mach’s principle).

11.0.4 Galilean Transformations

Consider two inertial frames K, K', moving with a relative constant velocity v.

The coordinates in the two frames are related by

t =t
' = z—ut (11.1)
Now consider the interactions of an ensemble of N particles at positionsz,;;¢ =1,..., N,

acting solely under the influence of a central potential Vi;(|z; — 2,[). Then the

eqn. of motion of particle ¢ in K is

dv.
mi—t = =2V, Vil — z)).
J

1



Chapter 2 2

Suppose now that we look at the equation of motion in K’. Then we have v} =

v, — v, and
dv,
mi—r = =3 Vo, Vi(lzi — 25))-

J
Now under eqn. (11.1),

g 0

ox.  Ox;
and we have

/ o
|, — 5| = [z, — x4,

) by | ')

and we see that the eqn. of motion in K’ is of exactly the same form as that
in K - we say that classical Newtonian mechanics transforms covariantly under

Galilean Transformations.

11.0.5 Maxwellian Mechanics under Galilean Transformations

We have seen that electric and magnetic propagation in a vacuum satisfies the

wave equation
vt > U( t)=0 (11.2)
— == | ¥(z,y,2zt) = 0. .
62 at2 Y y? Y
Let us now consider the transformation of this equation under eqn. (11.1). We

have
0 8:1:;- 0 n ot’ g
0x; 0x; (91:;- Ox; Ot
0 0
Z]a—x; +0= 8—:13;
ot ot oz, Ot ot
0 0

= 0

Thus the wave equation (11.2) becomes

/ 1 a / a /
A (G (G el <o
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1 92 2 1

2ot T 2= S o 2 —

This equation is clearly of a different from to equation (11.2). The wave equation

1.e.

does not transform covariantly under Galilean Transformations. For sound waves
there is no problem; they propagate in a medium, and it is natural to formulate
the wave equation in a frame in which the medium is at rest. Thus the natural
question arose - Is there a frame in which the “ether” is at rest”?. Of course, we
all know the answer (Michelson-Morley) that the velocity of light is the same in
all frames, and the resolution of this nasty transformation property is the Special

Theory of Relativity.

11.1 Postulates of Special Theory of Relativity

1. The same laws of nature hold in all systems moving uniformly with respect

to one another.

2. The velocity of light has the same value in all systems moving uniformly
with respect to each other, independent of velocity of observer relative to the

source.

11.2 Lorentz Transformations and Kinematic Results of

Special Relativity

We will now derive the relationship between coordinates in two frames K, K’
moving with constant velocity v relative to one another. W.l.o.g. we will let the
origin of the coordinates coincide at ¢t = ¢’ = 0.

We suppose that a flashlight is rapidly switched on and off at the origin at ¢ =
t' = 0. Then, by postulate 2, observers in both K and K’ see a spherical shell of

radiation expanding with the velocity of light c¢. The wavefront satisfies

In K: A — (PP + 2 =0
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In K- C2t/2 o (x/Q T y/2 T Z/2) =0

Thus we see that, under such a transformation, the quantity ¢*t*>— (2% +y?+2%) = 0
remains invariant. The emission of the light, and its subsequent absorption at
some later times, are each events. We have considered the case where the events
are separated by something travelling at the speed of light. More generally, we

have

As? = 2t — (22 4 > + %) (11.4)

is invariant under transformations between inertial frames. This is the interval
between the two events.

To consider the form of the transformations satisfying eqn. (11.4), we will spe-
cialise to the case where the axes in K, K’ are parallel, and the frames are moving
with a relative velocity v = ves. Because the transformations must reduce to
Galilean transformations in the limit of small relative velocities, we need consider

only the linear relations

t = amt+biz
2 = ast+ byz

r o=

y =y (11.5)
The transverse dimensions do not change (see the gedanken experiment of Taylor
and Wheeler discussed in Griffiths textbook).

Because the frames are moving with relative velocity v, we have that the event

2 = 0 corresponds to z = vt, yielding
a9 — —Ubg.
We now impose invariance of As?:

At? — (27 +y* + 2%) = Aant + bix)? — (agt + bow)? — y? — 2%,
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which we can expand as
A1 — a? + a3/c?] — 22[1 4 bic® — b3] + 2zt]aghy — cayby] = 0.

This is true Vz, t, so equating the coefficients to zero yields

2 2,2 _
aj —az/cc =1
2 212
2
agbg = C albl.

Solving these simultaneous equations we find

ct' = et — gz]
c
7= qlz— Bct]
c
¥ o=z
y =y
where
_ (11.6)
T J1—v2/c? '
We can write this in an axis-independent form as
ct' = ~y(ct — px))
) = (x| — Bet) (11.7)
LA )
where
g = v/c
yo= (1=-67)7
x-v
) o (11.8)

In vector form, this is

a = £+75_21(ﬁ-£)é—7é0t- (11.9)
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Alternative Parametrisation

Introduce g = tanh (, so that v = cosh (. Then, for frames moving parallel to the

x axis, we have

ct’ = ctcosh( — zsinh(
27 = zcosh( — ctsinh(, (11.10)

which has the form of a “rotation” on the complex angle ¢ = i(
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11.3 Kinematical Properties of Lorentz Transformations

Given two events (ct1, z;) and (cts, z,), Lorentz transformations leave the interval
As? = Aty —1)” = (x, — 1))
invariant. Thus we can classify the interval by the sign of da?, as follows

e As? < 0. This is timelike separation. We have c|ty — t1| > |z, — x|, so that
the two points can communicate by a signal travelling at less than the speed

of light, and indeed a frame can be chosen such that |z, — 2| = 0.

e As? = 0. This is lightlike separation. We have c|ts —t1| = |z, — ], so that
the two points can only be connected by a signal travelling at the speed of
light.

e As? < 0. This is spacelike separation, with c|ts — t1| < |z, — x,|. The two
space-time points cannot communicate, and indeed a frame exists in which
t1 = to.

11.3.1 Light Cone

Points that can be connected with the space-time origin by a light signal are said

to lie on the light cone.
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ct

Points within the light cone can be causally connected with the origin, whilst
those outside cannot. The forward (¢t > 0) and backward (¢ < 0) cones define
absolute future and absolute past, and the ordering is preserved under Lorentz

transformations.

11.3.2 Simultaneity, Length Contraction and Time Dilation

Consider a rocket moving with constant velocity v along the = direction relative
to the lab frame K. Let us denote the rest frame of the rocket by K’. We assume
that the axes of the frames are parallel, and the origins coincide at ¢ = 0.

On the side of a rocket is a meter rule. We also have, in the lab. frame, a high

density of observers, each with a very accurate clock synchronised in the frame
K.
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y y
Vv
—_—
X
X,
Z Z

Simultaneity

At time ¢, an observer in the lab frame, co-incident with one end of the meter
rod, records his position (ct,z,), and an observer coincident with the other end
does likewise (ct,z,). Thus (ct,z;) and (ct,z,) denote two events, which are
simultaneous in the lab. frame.
In the rocket rest frame K’ we have
] = v
Ty =y
cty = 7
Ty = 7

(11.11)

We immediately see that ¢} =t iff 1 = x9; in general the points as not simula-

taneous in the rocket rest frame.
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Length Contraction

In the rocket frame, our meter rule has length 27, — 2. However, from eqn. (11.11),

we see that in the laboratory frame the length is given by

r) — xh = (w1 — 3),

1.e.

Since 7 > 1, we have that lengths are contracted

Time Dilation

We now imagine that the clocks in K, K" are synchronised at ¢; = ¢} = 0 as the
rocket passes origin in frame K. An observer at some point x in K records the
time to at which rocket passes z, and an observer in K’ records time ¢, at which
he passes the laboratory observer. The rocket observer is always at xf, = 0, so we

have

0 = ~(z — Scts)
== = [fcty

From the third eqn. of (11.11), we have

cthy = y(cty — Bx) = y(cty — B*cty)

13
ty = —.
g

Thus we see that time is dilated.
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11.4 Proper Time

We now generalize the discussion to the case where the rocket is moving with a
velocity v(t) along some path relative to the lab frame K. We will now introduce
K’ as the instantaneous rest frame of the rocket.
Consider two closely separated points on the trajectory, with coordinates in the
two frames {(ct, x), (c[t+dt], z+dzx)} and {(ct’, 2’), (c[t'+dt'], x'+dz")} respectively.
The interval between the points is the invariant, and we have

CthIQ o @I? — C2dt2 . d_ﬂf2.
But de’ = 0 in &', and furthermore dz® = v?dt?, and thus

cdt’ = cdt\/1 — B(t)?,

where

Then the elapsed time in the rocket between two events is
to
g—ﬁzzfﬁl—MW<@—n.
The proper time 7 is the elapsed time in the frame in with the object is at rest.

Thus
cdt = ds

where ds is the interval introduced earlier. In this case we have
dr = dt\/1 — [(t)>2. (11.12)

Note that proper time can only be defined for time-like quantities.

11.5 Addition of Velocities

Suppose now that a projectile is fired with velocity u’' from the rocket, relative to
the rocket. Then the co-ordinates of the projectile in K’ satisfies

dx’
=

!
u



Chapter 2 12

while in K we have
d_g

%.
Using the inverse Lorentz transform we have

g:

T = %[xh + Bet']

dﬂfﬂ dt’
— = P
Yl - ar at

dx) dt’
= Y [—| + BC] 5,

dxH dt’
& dt
dat’ dt’
where we use || to denote the component along v. We also have

ct = 7ylct’ + B]]

dt’ dt’

dt’ c
dt a ’Yv[c‘i_ﬁum

— Cc = ’}/c|:

Combinding these two results, we find
Uh +v

T+ Bl e (11.13)

U=

Similarly

de, dx'| dt
Uu = — = . —
STodt Ay dt’
yielding
u|
U, = .
Y(1+ Buj/c)

In vector notation, this becomes

(11.14)

UT|+'U
l+v-u/c

/
uy

uy =
=T (1 te-u/d)

As expected, this reduces to the Galilean result u = u' + v for the case v/, v < c.

(11.15)
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11.6 Special Relativity and Four Vectors

We can formulate this picture in a much more convenient fashion through the

introduction of four wvectors.

To see how these work, let us return briefly to

Galilean transformations, and rotations in Euclidean space.

11.6.1 Vectors, Tensors and Rotations in R?

Consider two co-ordinate systems P, P’ whose origins coincide, but which are

related by rotation through an angle 6.

Z,Z
A

The coordinates of a point in the two systems are related through

2" = Ria, (11.16)

where R is a rotation matrix. You will note I have put the indices upstairs on

the vectors - I will return to this later. For the specific case of a rotation through
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f about he z axis, the rotation matrix is

cosf sinf 0O
R=1| —sinf cosf 0
0 0 1

Quantities that transform as

8x/i

1 D AT

A (11.17)

are called vectors.

A simple example of a vector is dx, which transforms as

8x/i

dax" = ——da’,

Scalars

A scalar is a quantity which transforms as f/ = f.

Co-vectors or Forms

Let us now consider how the gradient of a function transforms:
af oz’ Of
ox't Oz Oxd’
This is an example of the transformation property
B; = or i
ax/z
which is different to that of eqn. (11.17). Quantities that transform in this way

are known as covectors or forms, and we put their indices downstairs.

Vif =

(11.18)

Summarising, we have

3

Vector: A" = 92 Aj

Ozl
Scalar: ' = f (11.19)
Covector: B] = g;f B;
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Finally, we have that a tensor is an object that transforms as a vector on each

upstairs index, and a covector on each downstairs index.

-/ -/
ox’" 0x" oxF oz o

O/i’j'... - OV
1]’ - . . e e e « .. 177
KU ori Ori or'¥ O k...

11.6.2 Metric Tensor

The length of a vector is a bilinear, and independent of the choice of frame.

Define the inner product of two vectors by
XY =g; XY
The tensor g;; must be isotropic. There is only one isotropic rank-two tensor:

gij = Oij-

We call g;; the |[metric tensor|.

We can use the metric tensor to raise or lower indices:

X = gyX’
XY = XY, = XY

We only have the luxury of indentifying vectors with covectors in Cartesian co-
ordinates in Euclidean space, where the components of the two are numerically

equal.

Example

Show that in spherical polars

gi; = diag(1,7%,7*sin*0).
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11.6.3 Minkowski Space-Time

We will now apply the above ideas to Lorentz transformations of four-dimensional

space-time. We will introduce “ct” as the coordinate x(, and write a|contravariant

four vector as
o' = (ct,x,y, 2) = (2%, 2, 2%, 2P) (11.20)

The “length” of the vector is the interval left invariant under Lorentz transfor-

mations. More generally, we define the inner product of two vectors by
Ty = gy, (11.21)

and we immediately see that

g = diag(1, -1, -1, —1) (11.22)

e Note that it is conventional to use Greek Letters for the components of a

four-vector. Four vectors are not underlined or printed in bold.

e In some areas of physics, time is introduced as the fourth component of the
vector. Furthermore, the metric can be defined such that the spatial compo-
nents are positive, and the temporal component negative. The convention I
am using is probably the most widely used, and essentially universal amongst

particle physicists.

e The summation convention is as follows - A index can appear no more than
twice. Any index appearing twice must have one upper index and one lower

index, and that index is summed over.

The |covariant four vector| or form can be obtained as before by using the

raising and lowering properties of the metric tensor
_ v
T, = G’

In our example we have that z, = (ct, —x, —y, —2) - the components of a covector

are numerically different to those of the vector.
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11.6.4 Lorentz Transformations and Four Vectors

Let us return to our two frames K and K’. The relation between vectors in the

two frames is given by

't = av = LF a” (11.23)
Let us assumed a similar transformation law for the covectors
2 =L"x,.
I pv
Since z,x" is invariant we have
oy, = L' L a"x,,

and since this is true for all vectors, we have

L/‘VLM" =9, (11.24)
where
1 if v=
5o=1" " V=° (11.25)
0 if v#£o
Note that 5
o __ g
Lu = o (11.26)

the characteristic transformation property of a form.

Thus the various quantities we will encouter in the remainder of this course are

e Contravariant Vectors:

AF = Lr AY
e Covariant Vectors:
! 14
Bu = Lu B,
e Tensors:
wv'.. o rv pPT O ...
C Do = L uL V...LP,LU O o



Chapter 2

e Scalars:
A-B=ADB"=g,A"B"

Finally we have the relation

g

Juwg”’ =9,

11.6.5 Derivatives

As we have noted earlier, these transform as covectors

Do = a:<av>

Ox” 0x0 —
0 0
oY — — ~V]).
0%, <8x0’ Z)
Suppose now that we have a four vector A*. Then
AO
8O‘Aa:8aAo‘:a—+V-A.
ot — —
The Laplacian is defined by
« 82 2
0=0,0"= 2 V.

11.7 Relativistic Dynamics

18

(11.27)

(11.28)

(11.29)

In our introduction to Lorentz Transformations, we found that the canonical def-

inition of the velocity did not transform as a vector under a Lorentz tranforma-

tion, eqn. (11.15). Is it possible to find a definition of a velocity that does indeed

transform covariantly under Lorentz transformations, yet reduces to a Galilean

transformation for v < ¢?

In order to construct a four velocity, we need to take the derivative with respect

to a Lorentz Scalar that can play the role of time. Such a scalar is provided by

the Proper Time dr, defined by

cdr? = ds?,
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where ds is the Lorentz-invariant interval. The proper time is clearly a scalar,

and therefore a natural definition of the four velocity is

—ar
- dr

(07

v (11.30)

Recalling that the proper time is related to the lab. time by
dr = dt\/1 — [B(t)?

we have
1 d

— ﬁa(ct,@ = 7(67 y)a

,UOé

yielding

v = (ye, ), (11.31)
whose spatial components clearly reduce to our familiar definition of velocity in
the non-relativistic (NR) limit.

11.7.1 Four Momentum
The definition of a Lorentz-covariant four momentum is now straightforward:
pl' = mv" = (mye, myv), (11.32)

where m is a Lorentz scalar that we will call the rest mass.
The spatial components of p* clearly reduce to our usual definition of momentum.
To interpret the temporal component, we will look at its NR limit:

_ 1 1

p’ = myc=mc{l —v*/c?} Vo2 {m02 + §mv2 + (’)(1)4/c2)} :
c

The second term in braces is clearly the kinetic energy. The first term we identify
as the rest energy, and write

' =E/c
where F is the energy. Thus the four momentum contains both the energy and

the three momentum.
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The “length” of p* is a Lorentz scalar

P, = M2 — m2y20? = m2a2e [1 _ v2/c2}
— 223y = 2,
Thus we have
p'p, = p* = m*c? (11.33)

confirming that the rest mass is a (frame-independent) scalar.
Finally, if we now go back and write eqn. (11.33) in terms of our old-fashioned
three vectors we have
2 .2 22
?E —p° = m'c
= E? = m*c + . (11.34)

For a particle at rest, we have perhaps the most famous equation in physics.
The use of four-vectors is essential to solve problems in special (and general. . .)
relativity. Whilst simple kinematical problems can be solved using three vectors,

it is very clumsy indeed.

11.8 Covariant Formulation of Maxwell’s Equation

Before considering Maxwell’s equations in totality, we will return to the charge

conservation.

11.8.1 Continuity Equation and Four Current

Charge conservation is expressed through the continuity equation

dp

o TV =0 (11.35)
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We can write this in a more manifestly covariant form as

10
EE(PCWFY'J—O-

It is therefore tempting to try to introduce a four-current
J' = (pe, J) (11.36)
in terms of which eqn. (11.35) can be formally written
o, J" =0.

However, it remains to be shown that the J* thus constructed does indeed trans-
form as a four vector.

Consider J* defined through eqn. (11.36) under a transformation to a frame K’
moving with velocity v along the x axis. Then, if J# we indeed a four vector we

would have

pc = vlpc—ng
C
J. = v[J. — vp)

To=J,
Jo=
In the NR limit
J = J—pv}
po=p ’

as expected.
Consider now the case J, = 0. Then we have
T, = —yup }
Ff=nw |
The second equation would appear to violate charge conservation. However, let
us consider what happens to a volume element under this transformation. In the

frame K, we have
dV =dxdydz.



Chapter 2 29
However
dr = ~(dz' +vdt)
dt = ~(dt' + %daz’)
dy = dy
dz = d2.
Thus for measurements made at the same time (dt’ = 0)
dV = dx dy dz = ~vdx'dy'dz' = ~vdV’,
and the total charge in dV' is
PV’ = o'y dV = ypy iV = pdV

Thus both the charge densities and volumes are not separately conserved under
this Lorentz transformation, but the chage itself is.
There is much experimental evidence that p' = ~vp, and we will postulate that

JH in eqn. (11.36) is indeed a four vector, and that

8" =0 (11.37)

11.8.2 Units

At this point, Jackson changes from SI to Gaussian units - the aim being to avoid
carrying superfluous factors of ¢. In my youth I did everything in SI units, and
then in units in which ¢ =1 (a huge simplification!). But to avoid confusion (!),

I will also make the switch so as to be in keeping with Jackson.

Gaussian Units

V-D = 4mp (11.38)
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47 10D

H = —J4+ -— 11.39
VxH c S c Ot ( )

10B
VxE+ (11.40)
V-B =0 (11.41)
D = el =E+47P (11.42)
H = Bju=B—4rM (11.43)

You will notice that in these units 9/0t has an associated factor of 1/¢, correspond-
ing to our definition of a four vector. Also, € and u are the relative permittivity
and permeability respectively.

11.8.3 Potentials as Four Vectors

We introduce vector and scalar potentials so as to satisty the homogeneous Maxwell

equations
B=VxA
10A
EF = —V¢o—-— 11.44
— — c Ot ( )
In a vacuum (e = p = 1), the inhomogeneous equations become:
10V - A
2 v-4a
— = —4
Vo + T e
1 0°A 10¢ AT
2 4
A——=——— A+ ——| = ——J.
vid 2 Ot? le —+cat] cl
In the Lorentz gauge, we have
10¢
V-A+-—=0
VoAt c ot ’
and the dynamical equations become
1 0%
2 _
“aep T A
1 0’°A 4
via_ 194 An, (11.45)

— 2 Ot? c—
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We now recognise the operator on the l.h.s. of these equations as the four-dimensional
Laplacian introduced in eqn. (11.29), and the r.h.s. as the temporal and spatial
components of the current J* of eqn. (11.36). We will therefore introduce a four-

vector potential

At = (¢, A), (11.46)

so that both equations in (11.45) can be unified in the manifestly covariant form

oar = 2 g (11.47)
C

Furthermore, the Lorentz gauge condition is also manifestly covariant:

d"A, = 0. (11.48)
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11.8.4 Field-Strength Tensor

In order to formulate the full Maxwell’s equations in covariant form, we need
to return to the relation between the fields (£, B) and the potentials (¢, A) of
eqn. (11.44). We need to find a covariant relation between electric and magnetic
fields, and the four vector A*, and indeed express the fields themselves in covariant

form. Let us write out a couple of these components explicitly

B — 0A, 04, 043 B 0A?  9A? B A3
=" Oy 0z 0z 0x3  Oxz Oz

E
— Jor ¢ Ot orl 020  Oz; Oz

N.B.: I am using a slightly confusing notation: F, to denote the i component
of a three vector, where we do not need to distinguish between covariant and
contravariant vectors. The equivalent four-vector components are given by

E' = E.

{)

E = -E,

We can see that (F, B) are related to a second-rank tensor, and there are six
independent components of the two fields.

For a general second-rank tensor 7", we can write

T = TH 4+ T

sym anti—sym-

The symmetric part has ten components, but the anti-symmetric part has the six
independent components that we could associate with fields £ and B. Thus we

introduce the anti-symmetric Maxwell Field-Strength Tensor

Fr = 0rAY — ¥ AP (11.49)
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Writing out the components of F* explicitly, we have

0 —E, —E, —E,
E, 0 —-B. B,
E, B. 0 -B,
E. -B, B, 0

P = (11.50)

We see that F and B are not components of four vectors, but rather of an anti-
symmetric, second-rank tensor. Note that we can lower the indices in the usual
way

Fov = GuagusF*”,
so that the components corresponding to I change sign, whilst those correspond-
ing to B are unaltered.
Finally, we will introduce the dual field-strength tensor. But as a precursor we

will return to the Levi-Civita tensor.

Levi-Civita Tensor

This is the four-dimensional version of the ¢;;;, encountered in 3-D Euclidean space.
It is defined by

1 if p,v, p,0 is an even perm of 0,1,2,3
e"P? =< —1 if p,v,p,o is an odd perm of 0,1,2,3 (11.51)

0 if any two indices are equal
Lowering the indices in the usual way, we immediately see that

vpo

Note the very useful relation

€M oo = —2 (810", — 6,167 . (11.52)
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11.8.5 Dual Field-Strength Tensor

The dual field-strength tensor is defined by

[V 1 vpo

FH = 56“ P F e (11.53)
The elements of F* are related to those of F* through the substitution

E— D
§—>_E7

so that

v =

Thus F" reverses the roles of the electric and magnetic fields.

Finally, using eqn. (11.52), we have

< Qv 1 ~
F = Zeé"F,
2

1
v F)\
- Z ere ECuvAt !

= —Fm (11.54)

11.8.6 Maxwell’s Equations

Let us return to Maxwell’s equation in a vacuum

V-E = 4mp (11.55)
10B
vk c Ot ( )
Z! 10F
VxB = Xj4 oF (11.57)

B it
— c— ¢ Ot
B = 0. (11.58)
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These are all first-order differential equations expressed in terms of &/ and B. Thus

we might suspect that the covariant form of Maxwell’s equations will contain terms

of the form
0,F,.
Looking at eqn. (11.55), we see that it may be written
0 JO
Y pi—agl
ox’ e
Recalling that E* = F°, and noting that F'% vanishes, we can rewrite (11.55) as
4
0,/ =20 (11.59)
c

Turning now to the second inhomogeneous equation, eqn. (11.57), we see that it
may be written
0 - 47 . 10
OZ]k_.FkO — _Jz __Ez
© B c ot

where we use B¥ = F*0. To put this equatlon in a form analogous to eqn. (11.59),
we perform a clever piece of manipulation:
(Vidh RO (KOij o
1 .
= 56“”] F

= 1]
= —FY

where in the second line we have used that one of p or ¥ must be the temporal

component, and the other a spatial component. Thus eqn. (11.57) can be written

o .. A 10 .
__'FZ] — _Jz FZO
oxJ cot
o . 0 - 47T
Sy LTy R & 11.
:>ax] +8x0 J (11.60)
= 0,F" = 7JZ. (11.61)

Thus we see that both the inhomogeneous Maxwell equations can be written in

the unified form
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4
g, = == g (11.62)
C

Turning now to the homogeneous equations, we see that eqn (11.58) can be written

o -~
—F" =0
Ox/

g~ 0,
Eqn. (11.56) takes the form

60@'jk£Fko+lgﬁio — 0

oxJ cOot

9 . 9 -

— _FY _ i0 —
— 8ij +8x0F 0

— 9,F" = 0.

Thus the two homogeneous Maxwell equations can be written in the unified form

0,F" =0 (11.63)

Eqns. (11.62) and (11.63) constitute the covariant formulation of Mazwell’s equa-
tions.

Note that we can rewrite eqn. (11.63) as

1
SO Fy = 0

— "0, F,, = 0,
which we can express as
0 F s + 0,F,, + 0,1, = 0. (11.64)

This is known as the Jacobi Identity.
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11.9 Energy and Momentum Law

The Lorentz force law in Gaussian units is
d 1
d]t? {E +-vx B }

In order to write this in a covariant form, we introduce the proper time
dr =~ ldt,

and write
dp dp dr 1 dp
dt  drdt y dr

Thus the force law may be expressed as
@ = vq {El + 1EOijkvak} .
dr c
We now introduce the four-velocity V* = (y¢, yv), yielding

dn’ . . .
d_];)- — %{%FZO T EOijVjBk}

- %{voFi0 + eV B}
- %{VOF"O T F”Vj} (using eqn. (11.54)).

Thus the Lorentz force law becomes

dp' .
% - %VMF”‘. (11.65)

The analogous equation for the energy is

d dt d
Emech Emech E
dt drdr =%

Thus we have

d Emech

— FiO )
dr Ty

= qF"V,
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yielding

d Emech q
- = =~V F".
dr ( c ) c !

Identifying E™!/c with the component p°, we see that both this equation and

the Lorentz law, eqn. (11.65), can be expressed as

dpt  q
= =21y pmw 11.66
dr C ( )

and Newton’s second law is in a manifestly covariant form.

Lorentz Invariants

There are two invariants we can construct from the field-strength tensor

1.
FWFW — FOiFOi T E]FU T EOFiO
= —2(E* - B?)
Thus .
E? = B = CFu " (11.67)
is a Lorentz Scalar.
2.
e Fy =2F,, F" = —8E - B.
Thus

_4EB = F;wﬁwy (1168)
is a Lorentz Scalar

This are the only Lorentz invariants.
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11.10 Transformation Properties of EM Field

Since F'*" is a second-rank tensor, we can immediately say it transforms according

tO 8 ' a v
T x
F/’LW _ Faﬁ
folne ox’’
which we can write as
F' = AFAT, (11.69)
where
Al — ox'™
v Qav

Specifically, let us consider a boost from K to K’ where K’ has velocity v in

x-direction w.r.t. K, and origins coincide at t = ¢’ = 0. Then

v =8 00
A=]| T8 00

0 010

0 001

where 8 = v/c and v = (1 — 3?)"'/2. Using this expression in eqn. (11.69), we
find

0 —Ey —y(Ey — BB3) —v(E3 + $DB2)

o Ey 0 —y(Bs— BEz) ~(B2+ BE3)
v(Ey — BB3) (B3 — BE») 0 —B

V(B3 + 8B2) v(B2+ BE3) By 0.

Writing out the individual vector components, we find
Ei = E1 ; Bi = Bl
Ey = y(Ey—BBs) ; By = (B2 + (E3) (11.70)
Ey = y(E3+B8Bs) ; By = (B3 — BE»)
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We can express this in (three) vector form as

B = y(B-pxE)~——p(§ B), (11.71)

where § = v/c. Thus the £ and B fields mix under a Lorentz transformation.
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11.10.1 Electric and magnetic fields due to relativistically moving

point change.

Consider a charge ¢ moving along a line at velocity (in K') v = ve;. The charge

is at rest in the frame K’.

y y
®
P \Y
\ X ’

Z Z

At t =t = 0, the origins of the two frames co-incide. We have an observer P at
impact parameter b (i.e. distance of closest approach) as shown above.

We will begin by looking at electric and magnetic fields at point P in frame K’
at time ¢’

P has coordinates

¥ = —ot
y =0
7 =0
Thus, from Coulomb’s law
E} = —qut'/r® ; E), = qb/r"® ; E} = 0

By = 0 ; By, = 0 ; By = 0.
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In order to express this in terms of coordinates in K, we note that r? = b? + vt

But we have
ct’ = ~v(ct — fx) = yct.
Thus
P2 = b2 4222

and we have

El _ qu’Ut
L= (b2+vzv2t2)3/2
;o q
by = (b2+0272t2)3/2
E, = 0.
We now use our transformation laws eqn. (11.70) to write
. ;o qyvt
By = By = _(b2 + v242$2)3/2
I Yqb
by = by = (b2 + v2212)3/2
Ey = vE;=0

By = BE; = BB,
Thus in the laboratory frame we see a magnetic induction.

Note that in the limit v — ¢, we have § — 1 and the magnetic induction equals

the transverse electric field. In the Galilean limit v — 0,

v vqb vqb
By = —
c (0% + v2212)3/2 c(b? + v212)3/2
. p . 0N
— cr

where we have used vb = vrsin 6, which we observe is just the Biot-Savart Law.
Finally, let us look at the field lines. We have that
Es b

By ot
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so that the electric field is still a central field in the frame K. If we now look at

the magnitude of the field, however, we find

_ 4 2 | 2,2\1/2
Bl = (b2 +v272t2)3/2(b +uttt)
Setting b = rsinf, vt = —r cosf, we have
|E’ _ ygqr f)/q(l + ’)/COS2 9)3/2.

r3(1 + 2 cos? 0)3/2 T2

So the lines of force, whilst central, are no longer isotropic - they are predomi-

nantly transverse in strength.

11.11 Plane Electromagnetic Radiation and Doppler Shift

Let us look at the propagation of a plane wave in vacuum. Our starting point is
the Jacobi identity eqn. (11.64). Applying 0“ we find

8“804Fm + 8580‘FW + 8780[Fag = 0. (11.72)

In the absence of sources,
4
O"F,, = —J, =0.
c

Thus the last two terms on the r.h.s. of eqn. (11.72) vanish, and we have the plane

e.m. waves satisfy

OF,, =0 (11.73)

In complete analogy to the three-dimensional NR formulations, we note that this
admits the solution
Fu = fue™™ (11.74)

where
kok® = k* = 0. (11.75)
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Writing k% = (w/c, k), we see that eqn. (11.75) is just

k2:w2/c2

which is our usual relation between wave number and frequency.
We will now look at the transformation properties of the solution. We will let the

solution in frame K be
F,uy _ fuyeik-x
whilst that in K’ be
' et k2
F w = fuwe .
The solutions in the two frames are related by
F;W = A/fAV"FpJ.
This can be satisfied Vz iff
E-o=k-x

showing that k£ and %’ are indeed four vectors. Because of this, we know that &,

and k), are related by

|/\ = 7[]‘3”—5/430]
ko = 7[ko — Bk
E, =k, (11.76)

Introducing 6 as the angle between k and v, we can use the second eqn. of (11.76)

to compute the Doppler shift:

/

- Y lg — gCOS@]@] =y [f — BCOSQE] :
c c c c c c
Thus we have the Doppler Shift formula
w' = yw(l — Bcosh) (11.77)

where 8 = v/c. This is modified from the usual Galilean formula through the

factor of 7.



Chapter 2
11.11.1 Aberation
This is the change in direction of a wave vector between the two frames.

M . %

V _—=
\Y

We can calculate this from

K k
tang = il _ K]
| I

By our Lorentz transformation formula

w
ky—B—
C

w

= ’Y;(COS@ — )

/
I

= v :fywcosﬁ—ﬁq
c

C

Also we have
@i = ki — k:ﬁ = <£>2 (1 —cos*f) = <£ sin9>2,
and thus y
k| = Esine.

Thus, taking the ratio, we find

, sin 6
— 11.
tan S(cos0— ) (11.78)




Summary of First Three Chapters

Introduction

There are two founding principles of electrostatics:

e Coulomb’s Law: .
1 21
Iy = a1

TEQ

rg —mf?
e Principle of Linear Superposition

The resultant force on a test particle due to several charges is the

vector sum of the forces due to the charges individually.

In the case of a continuous charge distribution, these two principles yield

1 p(r")(r —r")dV’
E — i i i

Gauss’ Law

If charge density p(r) is the sole source of the electrostatic field E(r), the flux of

FE out of a closed surface S bounding a volume V' is given by

/Q@:MCQ:Q in SI units
S €0

where () = total charge within S. This can be expressed in differential form as
Maxwell’s First Equation (ME1)

Y'E:P/Eo-

39
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Scalar Potential

It is easy to show V x E = 0, and for such fields
E(z) = -Vo(z),

where ¢ is the Scalar Potential.

Laplace’s and Poisson’s Equation

ME1 can be expressed in terms of potential as
Vip(z) = —p()/e0

Uniqueness Theorem

The solution ¢(z) of Poisson’s or Laplace’s equation inside a vol-
ume V' bounded by surface S satisfying either Dirichlet or Neumann
boundary conditions is unique (Dirichlet) or unique up to a constant

(Neumann).

This is perhaps the most important theorem in the course, which we will use

implicitly in much of the following.

Boundary conditions at Surface of Conductor

Throughout the body of a conductor, F vanishes and at the surface

¢(x) = constant

so that F is normal to the surface. The surface charge density o is related to

the discontinuity in the normal electrostatic field

E-n=o0c/e.

40
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Boundary-Value Problems in Electrstatics

We explored variety of ways of obtaining unique solution.

e Method of Images
Here we introduce an tmage charge outside the region we are seeking a solu-
tion such that image system satisfies boundary conditions of original problem.

Two crucial things to check
— Only additional charges are introduced outside the region so that Pois-
son’s equation is unaltered.
— Image system satisfies correct boundary conditions.

Then by uniqueness theorem, image potential is the unique solution in

region of interest.

e Solution in terms of Green Functions.
The Green function G(z, ") for Laplaces or Poisson’s equation in a volume

V bounded by surface S satisfies

V?G(z,2") = —4m6® (z — o)

subject to
G(z,z") = 0 for 2’ € S - Dirichlet
oG ' 4
% = —g for 2’ € S - Neumann.
Poisson’s equation has formal solution,,
— 1 3,0 ! /
22 = e |, &' Gz, 2 )p(z') +

1 : n00(2) n0G(z, z')
E/S:avds {G(%@)W - ¢(£)T}

Green functions can be obtained using, e.g., method of images, or in terms

of orthonormal eigenfunctions.
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e Expansion of Solution in Orthogonal Functions.
Equations of Sturm-Liouville type have a set of solutions which are orthog-
onal and complete, subject to certain specific boundary conditions. Then any

square-integrable function can be expanded in terms of these eigenfunctions.

e Separation of Variables in Cartesian Coordinates
This provides a powerful method of seeking solutions of Laplace’s equation,

and indeed often generates a set of useful basis functions.
Writing ¢(z,y, 2) = X ()Y (y)Z(z), Laplace’s equation can be written

1EX P 12
X de? Y dy? 7 d2?

=0,

each term of which is separately constant. There are eleven coordinate sys-

tems admitting such a separation!
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Boundary-value Problems in Curvilinear Coordinates

Here we seek factorisable solutions in spherical polars and in cylindrical polars

Spherical Polars, Azimuthal Symmetry

We seek solution of form
U(r)
,

¢(r,0,¢) = P0)Q().

e In case of azimuthal symmetry (no ¢ dependence), the general solution

assumes the form

o

o(r,0) = (Alrl + Blr_l_l) Py(cos @),
1=0

where Pj(cosf) are the Legendre Polynomials, satisfying Legendre’s
equation
dP

— (1 = )=
dx( x)dx

e P(cosf) form a complete set of orthogonal functions. Note that they are not

d

+i(l+1)P=0.

orthonormal.

e Important expansion for construction of Green functions

LSS Pleosn)
——— =Y —=Pi(cos
@—f’ zz()7’l>+1 l K

where r- = max(r,r’) and - = min(r, ).

Spherical Harmonics

Where there is no azimuthal symmetry, we have the Generalized Legendre

equation
d% [(1 - x2>d};§;x)] n [l(z +1) — 5 T—nx2] P(x) = 0.
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e Convenient to combine ¢ and # functions into solutions on unit sphere de-
scribed by Spherical Harmonics Y},,(0,¢), with general solution

oo

l
o(r,0,0)=> > {Almrl + Blmr_l_l} Yim (0, 9)

= m=-1
e Important, and very useful, result:

1 l
—xS % S T 0 Yinl0,0),

|£—£’ =0 m=—1

where we have factorised the (0,1) and (6’,4') behaviour.

Laplace Equation in Cylindrical Polars

Here we seek factorisable solutions of form

¢(p, 0, 2) = R(p)T(0)Z(2).

e Gives rise to Bessel’s equation

R 1dR :
i +(1—V—)R:O

dz? ' xdr x2

e Solutions are the Bessel Functions J,(z) and N,(x), which are linearly
independent. A further set is provided by Hankel Functions.

Expansion of Green Function in terms of Orthogonal Functions

e Because any function can be expanded in set of orthogonal functions, we can

expand Green function.

e Green Function for Sturm-Liouville Equation

o e 2N ) = i — ),

defined on the interval 2’ € [a, b], with homogeneous boundary conditions at

a and b.
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e Green function

_Am () (+') a<az <z

@) Win(). (@) * =
@)
(@) Win(@) ()] =7 =P

g(x, x/) -

where
Wiyi(2), y2(r)] = g1 (x)ys(x) — ya(z)y) (2).

is the Wronskian, and y; and gy are solutions to the homogeneous equation

e Spectral Representation Expand Green function in terms of the eigen-

functions of some related problem. Consider the solution of

VA(z) + [f(z) + AJ¢(z) =0,

in volume V' subject to 1 satisfying certain homogeneous boundary conditions

for x € S. Find set of eigenfunctions 1,,, with eigenvalues \,,.

Green function satisfies

V2G(x,2) + [f(2)) + NG(z, 2") = —4md(x — ')

where A is, in general, not an eigenvalue, and we can write

Gla,2)) = dr'y Wt(i)fniz’)




