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Chapter 6

Time-dependent Phenomena and

Maxwell’s Equations

6.1 Maxwell’s Equations

6.1.1 Faraday’s Law of Magnetic Induction

So far we have studied static (time-independent) behavior of electric and magnetic fields.

The governing equations are

∇ ·D =ρ

∇× E =0 (6.1.1)

and

∇×H =J

∇ ·B =0. (6.1.2)

Electric and magnetic phenomena are completely separate, except for the fact that current

density is associated with the motion of charges.

Faraday (1831) observed that a current could be induced in a closed loop of wire by varying

the flux of magnetic field through a surface spanning the loop.

We define the flux φ of the magnetic field through the loop by

φ =

∫
S

B · dS, (6.1.3)

where S is any surface spanning C.

N.B. Since ∇ ·B = 0, φ is independent of the precise surface.
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B

S

C

The electromotive force, or voltage, across the curve C is

E =

∮
C

E · dl. (6.1.4)

Then Faraday’s law, in integral form, may be written

E = −kdφ
dt

,

where, in SI units, k = 1. Note that the sign here is a consequence of Lenz’s law: the induced

current is in such a direction as to oppose the change of flux producing it.

One could argue that the whole application of electricity in the modern world rests on

Faraday’s law; the observation that a changing magnetic field can produce an electric current.

We can generalize this integral equation as applying to any closed curve in space, spanned

by a surface, ∮
C

E · dl = − d

dt

∫
S

B · dS. (6.1.5)

We now apply Stokes’ theorem to the l.h.s.,∮
E · dl =

∫
S

(∇× E) · dS. (6.1.6)

Specializing to the case where both C and S are fixed in time, we have

d

dt

∫
S

B · dS =

∫
S

∂B

∂t
· dS, (6.1.7)

and thus ∫
S

(∇× E) · dS = −
∫
S

∂B

∂t
· dS, (6.1.8)
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yielding ∫
S

(∇× E +
∂B

∂t
) · dS = 0. (6.1.9)

Since both C, S are arbitrary, we obtain the differential form of Faraday’s law,

∇× E +
∂B

∂t
= 0

This equation replaces the second equation in Eq. (6.1.1).

6.1.2 Maxwell’s modification of Ampere’s law

Eqs. (6.1.1) and (6.1.2) reveal an immediate inconsistency when applied to time-dependent

phenomena. Let us take the divergence of both parts of the first equation in (6.1.2). This

gives

∇ · (∇×H) = ∇ · J. (6.1.10)

The l.h.s. is identically zero, whilst the r.h.s. vanishes only for time-independent problems.

Recall that, in general, we have the continuity equation

∇ · J = −∂ρ
∂t

. (6.1.11)

To see how to resolve this inconsistency, let us return to Coulomb’s law

∇ ·D = ρ, (6.1.12)

and substitute into the continuity equation, to obtain

∇ · J +∇ · ∂D

∂t
= 0. (6.1.13)

We can make Ampere’s law (∇×H = J) consistent with the continuity equation simply by

making the substitution

J→ J +
∂D

∂t
(6.1.14)

that results in a modified equation

∇×H = J +
∂D

∂t
. (6.1.15)
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6.1.3 Set of Maxwell’s Equations

With this final modification of Ampere’s law, and Faraday’s law, we have completed the

construction of Maxwell’s equations

∇ ·D = ρ (ME1) Coulomb’s Law

∇× E +
∂B

∂t
= 0 (ME2) Faraday’s Law

∇×H = J +
∂D

∂t
(ME3) Ampere’s Law + Maxwell

∇ ·B = 0 (ME4)

The unification of electrical and magnetic phenomena through these equations represents

the crowning achievement of classical, 19th century physics. The addition of the electric

displacement to the r.h.s. of Ampere’s law was essential to showing that the solutions admit

wave propagation at the speed of light.

6.1.4 Vector and Scalar Potentials

Maxwell’s equations comprise a set of coupled, first-order PDE’s. In particularly simple

cases, they can be solved directly, but in the case of both electrostatics and magnetostatics

we have seen the efficacy of introducing vector and scalar potentials. We will now do likewise

for the time-dependent case.

We introduce potentials so that the two homogenous equations (Faraday’s law and the

solenoidal condition) are satisfied automatically. Since

∇ ·B = 0 , (6.1.1)

we can introduce a vector potential A such that

B = ∇×A . (6.1.2)

Substituting into Faraday’s law (ME2), we obtain

∇× E +
∂

∂t
[∇×A] = 0

=⇒ ∇×
[
E +

∂A

∂t

]
= 0.

We can now introduce a scalar potential Φ such that

E +
∂A

∂t
= −∇Φ. (6.1.3)

Thus the electric and magnetic fields can be written
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B = ∇×A (6.1.4)

E = −∇Φ− ∂A

∂t
(6.1.5)

and ME2 and ME4 are automatically satisfied.

The two remaining equations (ME1 and ME3) determine the dynamical behavior, i.e. the

dependence of A and Φ on t and x. To solve them, we need some constitutive relation

between (D,H) and (E,B). We will initially restrict ourselves to the case of the vacuum,

where we have

D = ε0E ,

H =
1

µ0

B .

Coulomb’s law, ME1, is thus

∇ · E =
ρ

ε0
, (6.1.6)

whilst Ampère’s law, ME3, is

1

µ0

∇×B = J + ε0
∂E

∂t
. (6.1.7)

Thus, in terms of the potential (Φ,A), ME1 becomes

∇2Φ +
∂

∂t
(∇ ·A) = − ρ

ε0
(6.1.8)

Substituting for the potential in ME3, we have

1

µ0

∇× (∇×A) = J + ε0

{
−∇∂Φ

∂t
− ∂2A

∂t2

}
=⇒ ∇[∇ ·A]−∇2A = µ0J + µ0ε0

{
−∇∂Φ

∂t
− ∂2A

∂t2

}
.

We now write ε0µ0 = 1/c2 (we of course all know what c will be!), and write

∇2A− 1

c2

∂2A

∂t2
−∇

[
∇ ·A +

1

c2

∂Φ

∂t

]
= −µ0J (6.1.9)

Thus we have derived two coupled second-order PDE’s that are, with the definitions of the

potentials in Eqs. (6.1.4) and (6.1.5), equivalent to the original four Maxwell equations.
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6.2 Gauge Transformations Revisited

Is it possible to decouple these two equations? One way to do this is through a clever choice

of gauge transformation. A gauge transformation exploits the redundant degrees of freedom

in the problem to simplify the problem.

Recall that the physical fields are not (A,Φ), but rather (B,E). A gauge transformation

is a transformation of the (A,Φ) that leaves the physics unaltered. In this section, we will

derive gauge transformations for the complete Maxwell equations.

We have already encountered gauge transformations in the context of magnetostatics; the

substitution

A −→ A′ = A +∇Λ (6.2.1)

leaves B = ∇ × A invariant. In this case, however, E also depends on A, and the above

transformation will change E unless we make a suitable change Φ −→ Φ′. In terms of the

transformed potentials (A′,Φ′), we have

E = −∇Φ′ − ∂A′

∂t

= −∇Φ′ − ∂

∂t
[A +∇Λ] .

But we have

E = −∇Φ− ∂A

∂t
, (6.2.2)

and thus equating the two expressions gives

∇
[
Φ′ +

∂Λ

∂t
− Φ

]
= 0

=⇒ Φ′ = Φ− ∂Λ

∂t

where we have noted that the potential is only defined up to an additive constant.

Thus the gauge transformation of Maxwell’s equations takes the form

A −→ A′ = A +∇Λ (6.2.3)

Φ −→ Φ′ = Φ− ∂Λ

∂t
(6.2.4)

We will now discuss some particular choice of gauges.
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6.2.1 Lorentz Condition

Suppose we can find a gauge transformation such that

∇ ·A +
1

c2

∂Φ

∂t
= 0. (6.2.5)

This is known as the Lorentz condition, and the dynamical equations assume the form

∇2Φ− 1

c2

∂2Φ

∂t2
= − ρ

ε0
(6.2.6)

∇2A− 1

c2

∂2A

∂t2
= −µ0J. (6.2.7)

The A and Φ fields have become decoupled, and the simplified equations are just the wave

equations, with a inhomogeneous source. But is it actually possible to find a gauge trans-

formation that satisfies Eq. (6.2.5)?

Let (A,Φ) be potentials satisfying Eqs. (6.1.8) and (6.1.9), and let Λ be a gauge transfor-

mation such that the transformed fields satisfy Eq. (6.2.5). Then we have

∇ ·A′ + 1

c2

∂Φ′

∂t
= 0

=⇒ ∇ ·A +∇2Λ +
1

c2

[
∂Φ

∂t
− ∂2Λ

∂t2

]
= 0

Thus we need to find Λ satisfying

∇2Λ− 1

c2

∂2Λ

∂t2
= −

[
∇ ·A +

1

c2

∂Φ

∂t

]
. (6.2.8)

If such a function is found, then potentials A′ and Φ′ satisfy the Lorentz condition.

Note, however, that the solution of this differential equation is not unique. One can always

add to Λ a function δΛ that satisfies the homogeneous equation

∇2(δΛ)− 1

c2

∂2(δΛ)

∂t2
= 0 , (6.2.9)

and the new function Λ′ = Λ + δΛ would also satisfy the inhomogeneous equation (6.2.8).

In other words, the Lorentz condition does not specify a gauge uniquely. Indeed, let (A,Φ)

satisfy the Lorentz condition. Now consider the transformation

A −→ A′ = A +∇(δΛ)

Φ −→ Φ′ = Φ− ∂(δΛ)

∂t
.
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Then the combination entering the Lorentz condition transforms as

∇ ·A′ + 1

c2

∂Φ′

∂t
= ∇ ·A +

1

c2

∂Φ

∂t
+∇2(δΛ)− 1

c2

∂2(δΛ)

∂t2
. (6.2.10)

By assumption, the fields (A,Φ) satisfy the Lorentz condition ∇ ·A + 1
c2
∂Φ
∂t

= 0. Thus, the

fields (A′,Φ′) will also satisfy the Lorentz condition if

∇2(δΛ)− 1

c2

∂2(δΛ)

∂t2
= 0 . (6.2.11)

The Lorentz gauge is important because:

• The wave equation is manifest explicitly,

• (A,Φ) are treated on equal footing and, when we discuss Special Relativity, we will see

that the Lorentz condition is Lorentz covariant, i.e. independent of the choice of the

4-dimensional (ct,x) coordinate system.

6.2.2 Coulomb Gauge

We have introduced the gauge

∇ ·A = 0 (6.2.12)

in the discussion of magnetostatics. It is not manifestly Lorentz covariant, but has the

property that the scalar potential satisfies Poisson’s equation (Coulomb’s law!),

∇2Φ = − ρ
ε0
, (6.2.13)

with solution

Φ(x, t) =
1

4πε0

∫
d3x′

ρ(x′, t)

|x− x′|
. (6.2.14)

The vector potential satisfies the inhomogeneous wave equation

∇2A− 1

c2

∂2A

∂t2
= −µ0J +

1

c2
∇∂Φ

∂t
. (6.2.15)

Note that the scalar potential Φ(x, t) is the instantaneous Coulomb potential due to a

charge density ρ(x, t), i.e. we do not take account of “causality” through the use of a retarded

potential.

The equation for the vector potential contains a gradient operator, ∇∂Φ/∂t arising from the

solution of Poisson’s equation for the scalar potential, and this term is irrotational,

∇×
[
∇∂Φ

∂t

]
= 0. (6.2.16)
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It would be useful to completely decouple the equations governing the vector and scalar

potentials, as in the case of the Lorentz gauge. To accomplish this, we will separate the

current into an irrotational, or longitudinal, piece and a solenoidal, or transverse, piece,

J = Jl + Jt (6.2.17)

with

∇× Jl = 0

∇ · Jt = 0.

We can always perform this separation, as will now be demonstrated. At first, we do it for

the Fourier transforms

J(k) =

∫
d3xe−ik·xJ(x) = Jt(k) + Jl(k) . (6.2.18)

The components Jt(k) and Jl(k) should satisfy

k× Jl(k) = 0

k · Jt(k) = 0.

This is achieved if we take Jl(k) proportional to k (i.e., “longitudinal”)

Jl(k) = k
k · J(k)

k2 , Jt(k) = J(k)− k
k · J(k)

k2 , (6.2.19)

or, in components,

J li(k) =
kikj

k2 Jj(k), J ti (k) =
(
δij −

kikj

k2

)
Jj(k) . (6.2.20)

As usual, the summation over repeated indices is assumed. Going back to the coordinate

space we obtain

J ti (x) =

∫
d3k

(2π)3
eik·x

(
δij −

kikj

k2

)∫
d3y Jj(y)e−ik·y

=

∫
d3y Jj(y)

∫
d3k

(2π)3
eik·(x−y)

(
δij −

kikj

k2

)
=
( ∂

∂xi

∂

∂xj
− δij∇2

)∫
d3yJj(y)

∫
d3k

(2π)3
ei k·(x−y) 1

k2

Using the formula ∫
d3k

(2π)3
eik·(x−y) 1

k2 =
1

4π|x− y|
, (6.2.21)
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that is consistent with the equation

∇2

(
1

|x− y|

)
= −4πδ(x− y) , (6.2.22)

we obtain

J ti (x) =
( ∂

∂xi

∂

∂xj
− δij∇2

)∫
d3y

Jj(y)

4π|x− y|
,

and similarly

J li(x) = − ∂

∂xi

∂

∂xj

∫
d3y

Jj(y)

4π|x− y|
.

These results allow to easily check that J ti (x) + J li(x) = Ji(x).

Now we want to transform

∂

∂xj

∫
d3y

Jj(y)

4π|x− y|
= −

∫
d3y Jj(y)

∂

∂yj

1

4π|x− y|
=

∫
d3y

1

4π|x− y|
∂

∂yj
Jj(y) .

At the last step, we used integration by parts, and discarded the surface term which vanishes

for y →∞. Thus we can write the longitudinal part as

Jl = − 1

4π
∇
∫
d3x′
∇′ · J(x′)

|x− x′|
. (6.2.23)

From the continuity equation, we have

∇ · J +
∂ρ

∂t
= 0 . (6.2.24)

and substituting in Eq. (6.2.23) we obtain

Jl =
1

4π
∇
∫
d3x′

1

|x− x′|
∂ρ

∂t
. (6.2.25)

We now identify the r.h.s. of this equation with our expression for the scalar potential of

Eq. (6.2.14) and observe that

Jl = ε0∇
∂Φ

∂t

=⇒ µ0J
l =

1

c2
∇∂Φ

∂t
,

where we have used µ0ε0 = 1/c2. Returning now to the original equation for the vector

potential, Eq. (6.2.15),

∇2A− 1

c2

∂2A

∂t2
= −µ0J +

1

c2
∇∂Φ

∂t
, (6.2.26)
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we see that it reduces to

∇2A− 1

c2

∂2A

∂t2
= −µ0J

t . (6.2.27)

Only the transverse part of the current is a source for A.

Thus this gauge is also known as the transverse or radiation gauge, and once again we

have decoupled the scalar and vector potentials.

Observing that the equality ∇× [∇× F] = ∇(∇ · F)−∇2F can be written as

(∇× [∇× F])i = ∇i(∇jFj)−∇2Fi = (∇i∇j −∇2δij)Fj , (6.2.28)

we may write the transverse part of the current also as

Jt(x) =
1

4π
∇×

[
∇×

∫
d3x′

J(x′)

|x− x′|

]
≡ ∇× [∇× j(x)] . (6.2.29)

Note, that the function j(x)

j(x) ≡ 1

4π

∫
d3x′

J(x′)

|x− x′|
(6.2.30)

(and hence also Jt(x)) is non-zero everywhere in space, even if the current J(x′) is localized

in some finite volume V ′.

6.3 Wave Equation

6.3.1 Green Function for the Wave Equation

In both the Lorentz and Coulomb gauges, we have reduced the problem of finding the

potentials to the solution of the wave equation

∇2ψ − 1

c2

∂2ψ

∂t2
= −4πf(x, t), (6.3.1)

where f is some known source, and c, as we have intimated earlier, is the velocity of wave

propagation.

Such a hyperbolic equation, like the elliptic equations encountered in electrostatics, can

be solved by means of Green functions. In particular, we will find the Green function

G(x, t; x′, t′) satsifying[
∇2 − 1

c2

∂2

∂t2

]
G(x, t; x′, t′) = −4πδ(x− x′)δ(t− t′). (6.3.2)
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The solution to the inhomogeneous wave equation, Eq. (6.3.1), for a general source is then

ψ(x, t) = ψ0(x, t) +

∫
d3x′ dt′G(x, t; x′, t′)f(x′, t′) (6.3.3)

where ψ0 is a solution of the homogeneous equation. Note that this is essentially

an initial-value problem, rather than the boundary-value problem encountered with ellip-

tic equations.

To obtain the Green function, we take the Fourier transform with respect to t:

G(x, t; x′, t′) =
1

2π

∫ ∞
−∞

dωe−iωtg(x, ω; x′, t′) ,

g(x, ω; x′, t′) =

∫ ∞
−∞

dt eiωtG(x, t; x′, t′) .

Note the opposite signs in exponentials for the direct and inverse Fourier transforms. Then

taking the Fourier transform of Eq. (6.3.6), we find(
∇2 +

ω2

c2

)
g(x, ω; x′, t′) = −4πδ(x− x′)eiωt

′
. (6.3.4)

We now introduce the spatial Fourier transform,

g(x, ω; x′, t′) =
1

(2π)3

∫
d3qeiq·xg̃(q, ω; x′, t′) ,

g̃(q, ω; x′, t′) =

∫
d3xe−iq·xg(x, ω; x′, t′) . (6.3.5)

Note that the sign convention for the exponential in the spatial Fourier transform, eiq·x,

differs from that in the time Fourier transform, where we had e−iωt.

Let us find the Green’s function G(x, t; x′, t′) for the wave equation. It satsifies[
∇2 − 1

c2

∂2

∂t2

]
G(x, t; x′, t′) = −4πδ(x− x′)δ(t− t′). (6.3.6)

To solve this equation, we use combined 4-dimensional Fourier transfom

G(x, t; x′, t′) =

∫ ∞
−∞

dω

2π
e−iωt

∫
d3q

(2π)3
eiq·xg̃(q, ω; x′, t′) ,

in which the exponential e−iωt+iq·x contains time t and space x coordinates in the ωt− q · x
combination. The Fourier transform g̃(q, ω; x′, t′) given by

g̃(q, ω; x′, t′) =

∫ ∞
−∞

dt eiωt
∫
d3x e−iq·xG(x, t; x′, t′) ,
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satisfies an algebraic equation

(−q2 + k2)g̃(q, ω; x′, t′) = −4πe−iq·x
′
eiωt

′

=⇒ g̃(q, ω; x′, t′) = 4π
e−iq·x

′
eiωt

′

q2 − k2
,

where k ≡ ω/c is the wave number. Thus

G(x, t; x′, t′) =

∫ ∞
−∞

dω

2π
e−iωt eiωt

′
∫

d3q

(2π)3
eiq·x4π

e−iq·x
′

q2 − k2︸ ︷︷ ︸
g(x,ω;x′,t′)

.

First, let us take the integral over q

Iq = 4π

∫
d3q

(2π)3

eiq·(x−x
′)

q2 − k2
.

In order to exhibit the behavior of this integral, we consider a coordinate system in which

the z-axis is aligned with x− x′, and let θ be the angle between q and x− x′. Thus

Iq =
4π

(2π)3

∫ ∞
0

dq q2

∫ 2π

0

dϕ︸ ︷︷ ︸
2π

∫ 1

−1

d(cos θ)
eiq|x−x

′| cos θ

q2 − k2

=
1

π

∫ ∞
0

dq
q2

q2 − k2

{
eiq|x−x

′|

iq|x− x′|
− e−iq|x−x

′|

iq|x− x′|

}
=

1

π

1

i|x− x′|

∫ ∞
0

dq

q2 − k2

[
qeiq|x−x

′| + (−q)e−iq|x−x′|
]

=
1

π

1

i|x− x′|

∫ ∞
−∞

dq q

q2 − k2
eiq|x−x

′|

On the last step, we combined two terms into one integral with (−∞,∞) limits.

The integrand has poles at q = ±k, and therefore we have to specify how to treat the poles

in order to evaluate the integrals. We will do this by displacing the poles off the real axis as

follows:

g(±)(x, ω; x′, t′) =
1

iπ

eiωt
′

|x− x′|

∫ ∞
−∞

dq q

q2 − (k ± iε)2
eiq|x−x

′|, (6.3.7)

where ε > 0 is very small, ε → 0. The two possibilities in q2 − (k ± iε)2 correspond to two

types of Green functions: retarded g(+) for which the poles are shifted from the real axis to

q = ±(k + iε) and advanced g(−) with poles for q = ±(k − iε).
We first consider the case of g(+), which has a pole in the upper half plane at q = k+ iε, and

in the lower half plane at q = −k − iε.
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We can complete the contour in the upper-half plane, where the contribution from the semi-

circle at infinity vanishes, and obtain

g(+)(x, ω; x′, t′) =
1

|x− x′|
eiωt

′+ik|x−x′|. (6.3.8)

Similarly, in the case of g(−), we have a pole in the upper half plane at q = −k + iε, and

performing the contour integration we obtain,

g(−)(x, ω; x′, t′) =
1

|x− x′|
eiωt

′−ik|x−x′|. (6.3.9)

We now invert the temporal Fourier Transform

G(±)(x, t; x′, t′) =
1

2π

∫
dω e−iωt

1

|x− x′|
eiωt

′±ω|x−x′|/c (6.3.10)

(we also substituted k = ω/c). The ω integration is straightforward, and we find

G(±)(x, t; x′, t′) =
1

|x− x′|
δ

[
(t′ − t)± 1

c
|x− x′|

]
(6.3.11)

The Green function G(+) is known as the retarded Green function, because a change at

time t arises from an effect at an earlier time

t′ = t− 1

c
|x− x′|. (6.3.12)

It manifestly exhibits causality. G(−) is known as the advanced Green function.

We now construct the complete solutions as follows:

1. Retarded Solution. We imagine that, as t → −∞, we have a wave ψin(x, t) satisfying

the homogeneous equation. The source f(x, t) then turns on, and the complete solution

is

ψ(x, t) = ψin(x, t) +

∫
d3x′ dt′G(+)(x, t; x′, t′)f(x′, t′). (6.3.13)
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The use of the retarded Green function ensures that the observer only feels the effect

of the source after it is turned on.

2. Advanced Solution Here we measure a wave ψout(x, t) as t→∞,

ψ(x, t) = ψout(x, t) +

∫
d3x′ dt′G(−)(x, t; x′, t′)f(x′, t′). (6.3.14)

The use of G(−) means that, once the source ceases, the effects from the source are no

longer felt, or more precisely they are contained within ψout.

Case 1 above is the more commonly encountered, for example in the case ψin ≡ 0 so that

there is no wave in the distant past, and a source f(x, t) switches on at some time. Then

inserting our explicit expression for the Green function, we obtain

ψ(x, t) =

∫
d3x′

f(x′, t′ret)

|x− x′|
, (6.3.15)

where the subscript ret denotes that the function f is evaluated at time

t′ret = t− 1

c
|x− x′| . (6.3.16)

6.3.2 Retarded Solutions for the Fields

Since in the Lorentz gauge both scalar Φ and vector potential A satisfy wave equations

∇2Φ− 1

c2

∂2Φ

∂t2
= − ρ

ε0
(6.3.1)

∇2A− 1

c2

∂2A

∂t2
= −µ0J , (6.3.2)

we can write them as

Φ(x, t) =
1

4πε0

∫
d3x′

ρ(x′, tret)

R
, (6.3.3)

and

A(x, t) =
µ0

4π

∫
d3x′

J(x′, tret)

R
, (6.3.4)

where R ≡ |x− x′| and

tret = t− 1

c
|x− x′| = t− R

c
. (6.3.5)

In other words, the subscript ret denotes that the functions ρ,J are evaluated at an earlier

time, the difference being equal to the time interval necessary for propagation over the

distance R = |x − x′| with the velocity of light c. Mathematically, tret is a function of t, x

and x′.
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6.3.3 Direct check of solution through retarded potentials

It is instructive to check directly that these expressions for Φ and A satisfy the wave equations

(6.3.1), (6.3.2). To calculate the Laplacian of Φ(x, t) (or A(x, t)), the important point to

notice is that the integrand of the x′-integral depends on x in two places: explicitly, in the

denominator (R = |x− x′|), and implicitly, through tret = t− R/c, in the numerator. As a

result,

∇Φ(x, t) =
1

4πε0

∫
d3x′

[
ρ∇
(

1

R

)
+ (∇ρ)

1

R

]
. (6.3.6)

Using chain rule, we have

∇ρ = ρ̇∇tret = − ρ̇
c
∇R , (6.3.7)

where the dot denotes differentiation with respect to time. Now, ∇R = êR ≡ R/R and

∇(1/R) = −êR/R
2 . Hence,

∇ρ = − ρ̇
c
∇R = − ρ̇

c
êR , (6.3.8)

and

∇Φ(x, t) =
1

4πε0

∫
d3x′

[
−ρ êR

R2
− ρ̇

c

êR
R

]
. (6.3.9)

Taking the divergence,

∇2Φ(x, t) =
1

4πε0

∫
d3x′

{
−
[
ρ∇ ·

(
êR
R2

)
+

êR
R2
· (∇ρ)

]
−1

c

[
ρ̇∇ ·

(
êR
R

)
+

êR
R
· (∇ρ̇)

]}
. (6.3.10)

Now, using

∇ ·
(

êR
R2

)
= −∇2

(
1

R

)
= 4πδ3(R) , (6.3.11)

and (note that ∇ ·R = 3)

∇ ·
(

êR
R

)
= ∇ ·

(
R

R2

)
=
∇ ·R
R2

− 2R · ∇R
R3

=
3

R2
− 2R · êR

R3
=

1

R2
, (6.3.12)

and also

∇ρ̇ = ρ̈∇tret = −1

c
ρ̈∇R = −1

c
ρ̈ êR , (6.3.13)
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we derive

∇2Φ(x, t) =
1

4πε0

∫
d3x′

{
−
[
ρ(4πδ3(R)) +

êR
R2
·
(
−1

c
ρ̇ êR

)]
− 1

c

[
ρ̇

1

R2
+

êR
R
·
(
−1

c
ρ̈ êR

)]}
=

1

4πε0

∫
d3x′

[
−4πρ δ3(R) +

1

c2

ρ̈

R

]
= − 1

ε0
ρ(x, t) +

∂2

c2∂t2

(
1

4πε0

∫
d3x′

ρ

R

)
= − 1

ε0
ρ(x, t) +

∂2

c2∂t2
Φ(x, t) , (6.3.14)

confirming that the retarded potential (6.3.3) satisfies the inhomogenious wave equation

(6.3.1).

6.3.4 Generalization of Coulomb and Biot-Savart Laws

Given the retarded potentials

Φ(x, t) =
1

4πε0

∫
d3x′

ρ(x′, tret)

R
, (6.3.15)

and

A(x, t) =
µ0

4π

∫
d3x′

J(x′, tret)

R
, (6.3.16)

it is, in principle, a straightforward matter to determine the fields:

E = −∇Φ− ∂A

∂t
, B = ∇×A . (6.3.17)

However, taking derivatives with respect to x, we should remember again that the integrands

depend on x both explicitly, through R = |x−x′| in the denominator, and implicitly, through

the retarded time tret = t−R/c in the argument of numerator. We already have expression

∇Φ(x, t) =
1

4πε0

∫
d3x′

[
−ρ êR

R2
− ρ̇

c

êR
R

]
(6.3.18)

for the gradient of Φ. Since

∂A

∂t
=
µ0

4π

∫
d3x′

J̇(x′, tret)

R
=

1

4πε0c2

∫
d3x′

J̇(x′, tret)

R
, (6.3.19)

we have

E(x, t) =
1

4πε0

∫
d3x′

[
ρ(x′, tret)

R2
êR +

ρ̇(x′, tret)

cR
êR −

J̇(x′, tret)

c2R

]
. (6.3.20)
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This is the time-dependent generalization of Coulomb’s law, to which it reduces in the static

case (then the second and third terms drop out and the first term loses its dependence on

time tret). For B, the curl of A contains two terms

∇×A =
µ0

4π

∫
d3x′

[
−J×∇

(
1

R

)
+

1

R
(∇× J)

]
, (6.3.21)

The chain rule that gave ∇ρ = −1
c
êR ρ̇, in case of curl gives

∇× J = −1

c
êR × J̇ =

1

c
J̇× êR . (6.3.22)

Recalling ∇(1/R) = −êR/R
2 gives

B(x, t) =
µ0

4π

∫
d3x′

[
J(x′, tret)

R2
+

J̇(x′, tret)

cR

]
× êR . (6.3.23)

This is the time-dependent generalization of Biot-Savart law, to which it reduces in the

static case. Note that in the expressions for the retarded potentials Φ, A, all one should do

is to replace t by tret, while the expressions for the fields E,B contain completely new terms

involving derivatives of ρ and J.

In case of a slowly changing current density, namely, when one can neglect all the higher

derivatives in the Taylor expansion

J(tret) = J(t) + (tret − t)J̇(t) + . . . (6.3.24)

(we suppress here the x′-dependence, which is not an issue) one can write

J(tret) = J(t)− R

c
J̇(t) (6.3.25)

to obtain

B(x, t) =
µ0

4π

∫
d3x′

[
J(x′, t)× êR

R2

]
+ . . . , (6.3.26)

i.e., the Biot-Savart law with J evaluated at the non-retarded time.

6.4 Energy-Momentum Conservation and

Poynting Vector

In this section, we will derive laws expressing conservation of energy and momentum for

electric and magnetic fields.
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The force acting on a particle carrying charge q and moving with velocity v is

F = q(E + v ×B). (6.4.1)

The work done per unit time, or rate of change of mechanical energy, is then

d

dt
Emech = v · [q(E + v ×B)]

= qv · E,

since the second term vanishes. Thus generalizing to a current density J we have

d

dt
Emech =

∫
d3xJ · E. (6.4.2)

We will now relate the rate of change of mechanical energy to the change of energy in the

electric and magnetic fields. The starting point is Maxwell-Ampère’s law ∇×H = J+∂D/∂t

(ME3), which gives ∫
V

d3xJ · E =

∫
d3xE ·

[
∇×H− ∂D

∂t

]
. (6.4.3)

We can use the vector identity ∇ · (E×H) = H · (∇× E)− E · (∇×H)

or E · (∇×H) = H · (∇× E)−∇ · (E×H) to write∫
V

d3xJ · E =

∫
d3x

{
H · (∇× E)−∇ · [E×H]− E · ∂D

∂t

}
. (6.4.4)

Identifying the l.h.s. of this equation with the rate of change of mechanical energy in

Eq. (6.4.2), and using Faraday’s law ∇× E + ∂B/∂t = 0 (ME2) on the r.h.s., we obtain

d

dt
Emech = −

∫
d3x

{
H · ∂B

∂t
+∇ · (E×H) + E · ∂D

∂t

}
. (6.4.5)

We will now assume that the medium is linear, allowing us to write

H · ∂B

∂t
=

1

2

∂

∂t
(H ·B) ,

E · ∂D

∂t
=

1

2

∂

∂t
(E ·D),

and thus

d

dt
Emech =

∫
d3xJ · E = −

∫
d3x

{
∇ · (E×H) +

∂

∂t

[
1

2
(H ·B + E ·D)

]}
(6.4.6)
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We have already, in Chapter 4.6, interpreted 1
2
ε0|E|2 ≡ 1

2
E ·D as the energy density of an

electric field. Likewise we will identify 1
2
H · B as the magnetic energy density and hence

their sum

u =
1

2
(H ·B + E ·D) (6.4.7)

as the electromagnetic energy density. With this identification, we now have Poynt-

ing’s Theorem expressing conservation of energy

−
∫
V

d3xJ · E =

∫
V

d3x

[
∂u

∂t
+∇ · (E×H)

]
(6.4.8)

Since this applies for any volume V , we have a differential energy continuity equation

∂u

∂t
+∇ · (E×H) = −J · E (6.4.9)

The vector

S = E×H (6.4.10)

is the Poynting Vector. It only enters through a divergence in the above expressions but,

when we come to consider its properties under Lorentz transformations later in the course,

we will discover that it is essentially unique.

We can reduce the integral over the Poynting vector in Eq. (6.4.8) to a surface integral using

the divergence theorem.∫
V

d3x∇ · (E×H) ≡
∫
V

d3x∇ · S =

∮
A=∂V

dA · S , (6.4.11)

where A is the surface surrounding the volume V . This gives∫
V

d3x
∂u

∂t
+

∮
A=∂V

dA · S = − d

dt
Emech (6.4.12)

Thus we can interpret the Poynting vector as the energy flux across a surface, and the

Poynting theorem in essence says:

“The rate of change of electromagnetic energy in a volume together with energy flux across

the boundary is equal to minus the total work done by sources within the volume”.
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6.4.1 Energy Conservation in terms of the Fundamental

Microscopic Fields

The field energy density of Eq. (6.4.7) contains not only the fundamental fields, but also the

“derived” fields H and D. Thus they include contributions associated with the polarization

and magnetization of the medium which are in essence mechanical, and should be associated

with the J · E term.

Let Emech be the mechanical energy in some fixed volume V . We have seen that the work

done per unit time per unit volume J · E is the rate of increase of mechanical energy,

dEmech

dt
=

∫
V

d3xJ · E. (6.4.13)

In the case of a vacuum, we have∫
V

d3xu =
1

2

∫
d3x(H ·B + E ·D)

=
ε0
2

∫
V

d3x(E2 + c2B2) = Efield

where now we have expressed the field energy solely in terms of the fundamental fields. It

is this expression that is more naturally associated with the field energy, and Poynting’s

theorem reads
d

dt
(Emech + Efield) = −

∮
A=∂V

dA · S (6.4.14)

6.4.2 Conservation of Linear Momentum

Again we work with the microscopic fields. The force on a particle of charge q is

F = q(E + v ×B). (6.4.15)

Thus Newton’s second law may be expressed as

d

dt
Pmech =

∫
d3x [ρE + J×B] (6.4.16)

where Pmech is the total momentum of the particles in a volume V . To evaluate this expres-

sion, we once again use Coulomb’s law∇·D = ρ (ME1) and Ampère’s law∇×H = J+∂D/∂t

(ME3), yielding for the integrand

ρE + J×B = ε0E(∇ · E)−B×
[

1

µ0

∇×B− ε0
∂E

∂t

]
. (6.4.17)
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We now use

∂

∂t
E×B =

∂E

∂t
×B + E× ∂B

∂t
∇ ·B = 0

to write

ρE + J×B =

ε0[E(∇ · E) + c2B(∇ ·B)− c2B× (∇×B) + E× ∂B

∂t
− ∂

∂t
(E×B)].

We now use Faraday’s law ∇× E + ∂B/∂t = 0 (ME2) to write

d

dt
Pmech +

d

dt
ε0

∫
V

d3xE×B

= ε0

∫
d3x [E∇ · E + c2B∇ ·B− E× (∇× E)− c2B× (∇×B)] , (6.4.18)

where we assume that the volume V is fixed. The second term on the l.h.s. we associate

with the momentum carried by the field

Pfield = ε0

∫
d3xE×B, (6.4.19)

which we can rewrite as

Pfield =

∫
d3x

1

c2
E×H =

∫
d3x g , (6.4.20)

where g is the electromagnetic momentum density given, up to a constant factor, by

the Poynting Vector,

g =
1

c2
S. (6.4.21)

To proceed further, let us consider the r.h.s. of the momentum conservation law, Eq. (6.4.18).

Using A× (B×C) = B(A ·C)−C(A ·B) in the index notation (with the summation over

the repeated indices implied),

[A× (B×C)]i = Bi(AjCj)− Ci(AjBj) = AjBiCj − AjBjCi ,

we may write (substituting A→ E,B → ∇, C → E)

[E× (∇× E)]i = Ej
∂

∂xi
Ej − Ej

∂

∂xj
Ei = Ej

∂Ej
∂xi
− Ej

∂Ei
∂xj

,
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which gives

[E(∇ · E)− E× (∇× E)]i = Ei
∂Ej
∂xj
− Ej

∂Ej
∂xi

+ Ej
∂Ei
∂xj

=
∂

∂xj
[EiEj −

1

2
E2δij].

What we have done is to write the electric part of the integrand as a derivative. We may

treat the magnetic term similarly, and now introduce the Maxwell Stress Tensor

Tij = ε0

[
EiEj + c2BiBj −

1

2
(E2 + c2B2)δij

]
(6.4.22)

Note that this tensor is symmetric.

We can thus write the momentum conservation law as

d

dt
[Pmech + Pfield]i =

∫
V

d3x
∂Tij
∂xj

(6.4.23)

which, after applying the divergence theorem, becomes

d

dt
[Pmech + Pfield]i =

∮
A=∂V

dATijnj (6.4.24)

where n is the outward normal to the surface enclosing V .

Note that Tijnj is the flow of momentum per unit area across surface A into the volume V ,

i.e. it is the force per unit area acting on the combined system of particles and fields within

volume V .


