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Chapter 9

Radiating Systems

9.1 Preliminaries

In this chapter, we will study radiation of varying current distributions. We will begin by

working in Lorentz gauge, where the equation for the vector potential is

∇2A− 1

c2
∂2A

∂t2
= −µ0J . (9.1.1)

From Chapter 6, we recall that this equation has the retarded solution

A =
µ0

4π

∫
d3x′ dt′G(+)(x, t; x′, t′) J(x′, t′) (9.1.2)

where

G(+)(x, t; x′, t′) =
1

|x− x′|
δ(t′ − t+

|x− x′|
c

) . (9.1.3)

We now consider the case where the fields arise from a current with harmonic time variation

J(x′, t′) = J(x′)e−iωt
′
. (9.1.4)

More general time dependence can be studied simply by taking the Fourier transform. The

potential corresponding to this current is then

A(x, t) =
µ0

4π

∫
d3x′ dt′J(x′)e−iωt

′
G(+)(x, t; x′, t′)

= A(x)e−iωt,

with

A(x) =
µ0

4π

∫
d3x′ J(x′)

1

|x− x′|
eik|x−x

′| , (9.1.5)

where k ≡ ω/c is the wave number
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262 Chapter 9

d

λ

We will now consider the form of the field a distance r = |x| away from a time-varying source

of extent d localized near the coordinate origin, i.e., |x′| ∼ d. We begin by introducing the

wavelength

λ =
2π

k
≡ 2πc

ω
, (9.1.6)

where λ� d (or kd� 1).

We now consider the form of the potential in three different regions:

1. d� r � λ (or kd� kr � 1) – the near zone

Then exp(ik|x− x′|) ∼ exp(ikr) ∼ 1, and we have

A(x) ' µ0

4π

∫
d3x′ J(x′)

1

|x− x′|
. (9.1.7)

The field is of the familiar form which we can expand as a series in, say, Legendre

polynomials.

2. r � λ� d (or kr � 1� kd) – the radiation zone

Then the exponent is rapidly oscillating, and we can write

|x− x′| =
[
x2 − 2x · x′ + x

′2
]1/2

=
[
r2(1− 2x · x′/r2 + x

′2/r2)
]1/2

(9.1.8)

' r
(
1− n · x′/r +O(|x′|2/r2)

)
= r − n · x′ +O

(
|x′|2

r

)
, (9.1.9)

where n = x/r is the unit vector in the direction of the observation point x. Thus, to

leading order in 1/r we have

A(x)
kr�1−→ µ0

4π

eikr

r

∫
d3x′ J(x′) exp[−ik n · x′] . (9.1.10)
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Thus we have an outgoing spherical wave. We can compute the magnetic and electric

fields using B = ∇× A and a Maxwell curl equation

∇×H = −iωε0E

accompanied by B = µ0H which gives

H =
1

µ0

∇×A , (9.1.11)

E =
i

ωε0
∇×H =

iZ0

k
∇×H ,

which also fall off as 1/r, corresponding to radiation.

(Hereafter Z0 ≡
√

µ0
ε0

= µ0c = 1/ε0c).

Since kn · x′ � 1 – recall that kd � 1 - we can expand the exponent in Eq. (9.1.10)

yielding

A(x) ' µ0

4π

eikr

r

∑
N

(−ik)N

N !

∫
d3x′ J(x′)(n · x′)N . (9.1.12)

Successive terms are O((kd)N), which dies off with increasing N .

3. r ∼ λ. Here we need to expand the solution in terms of the vector multipole expansion,

discussed in detail in Jackson, 9.6.

An analogous analysis for the scalar potential yields

Φ(x, t) =
1

4πε0

∫
d3x′

∫
dt′

ρ(x′, t′)

|x− x′|
δ

(
t′ +
|x− x′|

c
− t
)
. (9.1.13)

For large r, i.e., when |x| = r � d ∼ |x′|, keeping the leading term yields

Φ(x, t) ' q(t′ = t− r/c)
4πε0r

. (9.1.14)

where q is the total charge of the source. If the source is localized, and isolated, no charge

can flow in and out, and thus the total charge is constant in time – the monopole part of the

potential is static, i.e. has no time dependence.
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9.2 Electric Dipole Fields

If we keep only the leading term in Eq. (9.1.12), we have

A(x) =
µ0

4π

eikr

r

∫
d3x′J(x′). (9.2.1)

In fact, as discussed in Jackson, this is the leading l = 0 term in the vector multipole

expansion of the vector potential, and as such is valid everywhere outside the source as part

of the multipole expansion. We will now show that this corresponds to a dipole term. We

begin by recalling the continuity equation

∂ρ

∂t
+∇ · J = 0 (9.2.2)

which with our assumed time dependence becomes

−iωρ+∇ · J = 0. (9.2.3)

We now use integration by parts to write∫
d3x′ J =

∫
d3x′ (J · ∇′)x′ = −

∫
d3x′x′(∇′ · J)

= −iω
∫
d3x′ x′ρ(x′) = − iωp

enabling the potential to be expressed as

A(x) = −iµ0ω

4π

eikr

r
p (9.2.4)

where

p ≡
∫
d3x′ x′ρ(x′) (9.2.5)

is the electric dipole moment.

The magnetic and electric fields are simply obtained from Eq. (9.1.11):

H =
1

µ0

∇×A ,

E =
i

ωε0
∇×H =

iZ0

k
∇×H .

To proceed, we will need the formulas

∂r

∂xi
=
xi
r

= ni . (9.2.6)



Radiating Systems 265

and

∇if(r) =
df(r)

dr
∇ir = n̂i

df(r)

dr
(9.2.7)

Thus, we get

H =
1

µ0

∇×A =
1

µ0

(
−iµ0ω

4π

)
(n× p)

∂

∂r

eikr

r

= − iω
4π

(n× p)
eikr

r

(
ik − 1

r

)
=
ck2

4π
(n× p)

eikr

r

(
1− 1

ikr

)
. (9.2.8)

Analogously (using ck2 = ωk),

E =
i

ωε0
∇×H =

ik

4πε0

{
n× (n× p)

∂

∂r

[
eikr

r

(
1− 1

ikr

)]
+
eikr

r

(
1− 1

ikr

)
∇× (n× p)

}
.

(9.2.9)

Here we should take into account that n̂ = r/r is a function of r:

∂ni
∂xj

=
∂

∂xj

xi
r

=
r2δij − xixj

r3
, (9.2.10)

hence,

∇ · n =
2

r

and

pj
∂ni
∂xj

=
r2pi − (p · x)xi

r3
=
pi − (p · n)ni

r
⇒ (p · ∇)n =

p− (p · n)n

r
.

Thus,

∇× (n× p) = (p · ∇)n− p(∇ · n) = (p · ∇)n− 2

r
p = −n(n · p) + p

r
. (9.2.11)

The leading 1/r term comes from differentiating the exponential in the first term,

∂

∂r

[
eikr

r

(
1− 1

ikr

)]
= ik

eikr

r

(
1− 1

ikr

)
− eikr

r2

(
1− 1

ikr

)
+
eikr

ikr3

= ik
eikr

r
− 2

eikr

r2

(
1− 1

ikr

)
. (9.2.12)

We will leave the leading term in the original n× (n× p) = −(n× p)× n form, and use

n× (n× p) = n(n · p)− p
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for the remaining contribution.

This gives

E =
1

4πε0

[
k2(n× p)× n

eikr

r
− 2

eikr

r2

(
ik − 1

r

)
[n(n · p)− p]− eikr

r

(
ik − 1

r

)(n · p)n + p

r

]
=

1

4πε0

[
k2(n× p)× n

eikr

r
+ (3(n · p)n− p)

( 1

r3
− ik

r2

)
eikr
]
, (9.2.13)

H =
ck2

4π
(n× p)

eikr

r

(
1− 1

ikr

)
. (9.2.14)

Let us choose now the spherical coordinates in which the z-axis is along p, and θ is the polar

angle of n. Then p = p(n cos θ− θ̂ sin θ) and n× θ̂ = ϕ̂, so that we have n×p = −ϕ̂ p sin θ.

Using ϕ̂× n = θ̂, we find that expressions for the fields take the form

H = −ϕ̂ pck2

4π
sin θ

eikr

r

(
1− 1

ikr

)
, (9.2.15)

E =
p

4πε0

[
− θ̂ k2 e

ikr

r
sin θ + (2n̂ cos θ + θ̂ sin θ)

( 1

r3
− ik

r2

)
eikr
]
.

It is interesting to examine their limiting forms

• Radiation Zone: r � λ� d (or kr � 1� kd):

H =
ck2

4π
(n× p)

eikr

r
= − ω2p

4πc
ϕ̂ sin θ

eikr

r
.

E = −µ0

4π
ω2p θ̂ sin θ

eikr

r
= Z0H× n .

Both these fields manifest clearly the characteristic properties of radiation:

– The fields fall off as 1/r.

– The electric and magnetic fields are normal to the direction of propagation n.

• Near Zone: λ� r � d (or 1� kr � kd) :

Here the leading behaviour of the fields is given by

E =
1

4πε0

[
3n(n · p)− p

]
1

r3

H =
1

4πε0

i

Z0

(n× p)
k

r2
.

Thus at very short distances, there is essentially an electric dipole field with time

dependence exp(−iωt), and a magnetic field suppressed by kr/Z0 that vanishes as

k → 0
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In order to show that this solution does indeed correspond to radiation, we will look at the

time-averaged power flux in the radiation zone. This, of course, is just given by the

Poynting Vector, and we have

dP

dΩ
=

1

2
r2Re [n · E×H∗] =

Z0

2
r2Re [((H× n)×H∗) · n]

=
Z0

2
r2Re [(H× n) · (H∗ × n)] =

c2Z0

32π2
k4|(n× p)× n|2 (9.2.16)

There is a net flux of power away from the charge distribution, independent of r, i.e.,

radiation. For the case where all components of p have the same phase, we have the

characteristic expression for dipole radiation,

dP

dΩ
=
c2Z0

32π2
k4|p|2 sin2 θ . (9.2.17)

θ = 0

The total power transmitted is just obtained by integrating Eq. (9.2.16) over the unit sphere,

and is independent of the phases of p:

P =
c2Z0

32π2
k4|p|2 × 2π ×

∫ π

0

sin2 θ sin θdθ =
c2Z0k

4

12π
|p|2. (9.2.18)
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Center-fed Linear Antenna

Once again we assume that the dimensions of the antenna are much smaller than the wave-

length. The antenna consists of two conductors of length d/2, along the z axis. The linear

current density in the wires is

I(z) = I0

(
1− 2|z|

d

)
(9.2.19)

where we again suppress the time dependence.

φ

θ

e
z

This current flow gives rise to a line charge density Λ through the continuity equation

iωΛ(z) =
∂I

∂z
. (9.2.20)

yielding

Λ(z) =
2iI0
ωd

sgn(z). (9.2.21)

This charge density has a non-zero dipole moment

p =

∫ d/2

−d/2
dz |z|2iI0

ωd
ez

=
iI0d

2ω
ez.

N.B. if we had current flowing in opposite directions in the two arms of the antenna, there

would have been no dipole radiation term.

Thus, from Eq. (9.2.16), we see that this apparatus gives dipole radiation, with power dis-

tribution

dP

dΩ
=

Z0I
2
0

128π2
(kd)2 sin2 θ

P =
Z0I

2
0 (kd)2

48π
. (9.2.22)
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If we identify the power radiated with energy dissipation through an effective resistance, the

coefficient of I20/2 is Eq. (9.2.22) is the radiation resistance - the factor of 2 arises from

time-averaging, in the usual way.

9.3 Dipole Fields Revisited

In this section we will derive the formulas for the dipole radiation again – this time without

Fourier transformation
∫
dωe−iωt implied.

The general formulas for vector and scalar potentials due to an arbitrary source are:

Φ(x, t) =
1

4πε0

∫
d3x′

ρ(x′, tr)

|x− x′|
,

A(x, t) =
µ0

4π

∫
d3x′

J(x′, tr)

|x− x′|
, (9.3.1)

where tr = t− |x−x
′|

c
is the retarded time.

To study the behavior of these expressions in the radiation zone |x| � |x′|, we choose the

origin somewhere inside the radiating body and expand the denominators in a usual way:

1

|x− x′|
=

1

r

(
1 +

n̂ · x′

r
+ ...

)
(9.3.2)

where r ≡ |x| and n̂ ≡ r̂ is the propagation vector for our would-be spherical wave. We need

also to expand the retarded time in powers of r′/r:

tr = t− |x− x′|
c

' t− r

c
+

n̂ · x′

c

so that

ρ(x′, tr) = ρ(x′, t0) +
n̂ · x′

c
ρ̇(x′, t0) + ... (9.3.3)

where t0 ≡ t−r/c is the retarded time for our origin. The parameter of the expansion (9.3.3)

is d/λ � 1 (see previous Section). Indeed, ρ̇ ∼ ωcharρ where ωchar are the characteristic

frequencies of the emitted radiation, hence dρ̇
cρ
∼ dω

c
= d

λ
� 1. ) Substituting the expansions

(9.3.2) and (9.3.3) in the expression (9.3.1), one obtains:

Φ(x, t) =
1

4πε0r

∫
d3x′

[
ρ(x′, t0) +

n̂ · x′

c
ρ̇(x′, t0)

](
1 +

n̂ · x′

r
+ . . .

)
=

Q

4πε0r
+

n̂ · p(t0)

4πε0r2
+

n̂ · ṗ(t0)

4πε0rc
+ ...
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For the vector potential in Eq. (9.5.1), the first term in the expansions (9.3.2) and (9.3.3) is

sufficient:

A(x, t) =
µ0

4π

∫
d3x′

J(x′, tr)

|x− x′|
' µ0

4πr

∫
d3x′J(x′, t0) .

Just like in the previous Section, we can incorporate the continuity equation

∂ρ

∂t
+∇ · J = 0 (9.3.4)

to get ∫
d3x′ J(x′, t0) =

∫
d3x′ (J(x′, t0) · ∇′)x′ = −

∫
d3x′x′(∇′ · J(x′, t0))

=

∫
d3x′ x′

∂ρ(x′, t0)

∂t0
=

d

dt0

∫
d3x′ x′ρ(x′, t0) = ṗ(t0) ,

where

p(t0) ≡
∫
d3x′ x′ρ(x′, t0) (9.3.5)

is the electric dipole moment.

So, the dipole potentials in the radiation zone take the form

Φ(x, t) =
1

4πε0r

∫
d3x′

[
ρ(x′, t0) +

n̂ · x′

c
ρ̇(x′, t0)

](
1 +

n̂ · x′

r
+ ...

)
=

Q

4πε0r
+

n̂ · p(t0)

4πε0r2
+

n̂ · ṗ(t0)

4πε0rc
+ . . . ,

A(x, t) =
µ0

4π

∫
d3x′

J(x′, tr)

|x− x′|
=
µ0ṗ(t0)

4πr
+ . . . . (9.3.6)

Next we calculate the electric and magnetic field in the radiation zone. Discarding terms

∼ 1
r2

, one obtains after some algebra (note that ∇f(t0) = ḟ(t0)∇t0 and ∇t0 = − n̂
c

, i.e.,

∇f(t0) = −ḟ(t0)n̂/c):

∇Φ(x, t) = − n̂

4πε0rc2
(n̂ · p̈(t0)) = −µ0n̂

4πr
(n̂ · p̈(t0)) ,

∂

∂t
A(x, t) =

µ0p̈(t0)

4πr
, ∇×A = − µ0

4πrc
n× p̈(t0) .

Thus, the dipole fields in the radiation zone are

E(x, t) =
µ0

4πr
[n̂(n̂ · p̈(t0))− p̈(t0)] =

µ0

4πr
n̂× (n̂× p̈(t0))

B(x, t) = − µ0

4πcr
n̂× p̈(t0) =

n̂

c
× E(x, t) (9.3.7)
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If we choose the frame with OZ axis collinear to p̈(t0), the fields take the form

E(r, θ, ϕ) =
µ0p̈(t0)

4π

sin θ

r
θ̂, B(r, θ, ϕ) =

µ0p̈(t0)

4πc

sin θ

r
ϕ̂, (9.3.8)

The Poynting vector is then

S =
1

µ0

E×B =
µ0

16π2c
(p̈(t0))

2 sin2 θ

r2
n̂

⇒ the total radiated power takes the form

P =

∫
S · n̂ dA =

µ0

16π2c
(p̈(t0))

2

∫ 2π

0

dϕ︸ ︷︷ ︸
2π

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
4/3

=
µ0

6πc
(p̈(t0))

2 (9.3.9)

For a single point charge q we have p(t) = qx(t), so we get the Larmor formula

P =
µ0q

2a2

6πc
(9.3.10)

The Larmor formula can be also obtained using the Liénard-Wiechert potentials of the

moving point charge.

9.4 Liénard-Wiechert Potentials

9.4.1 Potentials of a moving charge

Consider a point charge moving along the trajectory r = w(t). What are the electric and

magnetic fields due to this charge?

As usual, it is convenient to start with the potentials. In the Lorentz gauge

Φ(r, t) =
1

4πε0

∫
d3x′

∫
dt′

ρ(r′, t′)

|r− r′|
δ
(
t′ − t+

|r− r′|
c

)
,

A(r, t) =
µ0

4π

∫
d3x′

∫
dt′

J(r′, t′)

|r− r′|
δ
(
t′ − t+

|r− r′|
c

)
. (9.4.11)

For a point charge

ρ(r′, t) = qδ(r′ −w(t)), J(r′, t) = qv(t)δ(r′ −w(t)) .

First, let us find the scalar potential. We have

Φ(r, t) =
q

4πε0

∫
d3x′

∫
dt′

δ(r′ −w(t′))

|r− r′|
δ
(
t′ − t+

|r− r′|
c

)
=

q

4πε0

∫
dt′
δ
(
t′ − t+ |r−w(t′)|

c

)
|r−w(t′)|

=
q

4πε0

∫
dt′

1

∂
∂t′

(
t′ − t+ |r−w(t′)|

c

)∣∣∣
t′=tr

δ(t′ − tr)
|r−w(t′)|

,
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where tr is the solution of the equation c(t− tr) = |r−w(tr)|. Calculating the derivative

∂

∂t′

(
t′ − t+

|r−w(t′)|
c

)
= 1− v(t′) · (r−w(t′))

c|r−w(t′)|
, (9.4.12)

where v(t) ≡ ∂
∂t

w(t) is the velocity of the particle, we obtain

Φ(r, t) =
q

4πε0

∫
dt′

δ(t′ − tr)
|r−w(t′)| − 1

c
v(t′) · (r−w(t′))

=
q

4πε0

1

|r−w(tr)| − v(tr) · (r−w(tr))/c
.

Similarly,

A(r, t) =
µ0q

4π
v(tr)

1

|r−w(tr)| − v(tr) · (r−w(tr))/c

Introducing the notation %(t) ≡ r−w(t), we obtain

Φ(r, t) =
q

4πε0

1

%(tr)− v(tr) · %(tr)/c
≡ q

4πε0
D

A(r, t) =
µ0q

4π

v

%(tr)− v(tr) · %(tr)/c
=

v

c2
Φ(r, t) =

q

4πε0

v

c2
D , (9.4.13)

the Liénard-Wiechert potentials for a point charge.

According to these formulas, the field at the point of observation at time t is determined by

the state of motion of the charge at the earlier time tr. Also, %(t) = r −w(t) is the radius

vector from the charge q to the observation point P ; like w(t) it is a given function of the

time. Then the time tr is determined by the equation

tr +
%(tr)

c
= t .

In the system of reference in which the particle is at rest at time tr, the potential at the

point of observation at time t is just the Coulomb potential.

9.4.2 Electric and magnetic fields of a moving charge

To calculate the intensities of the electric and magnetic fields from the formulas

E =−∇Φ− ∂A

∂t

B = ∇×A ,

we must differentiate Φ and A with respect to the coordinates x, y, z of the point P , and the

time t of observation. But our formulas express the potentials as functions of tr, and only
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through the relation tr + %(tr)/c = t are implicit functions of x, y, z, t. Therefore to find the

required derivatives we must first calculate the derivatives of tr. Differentiating the relation

%(tr) = c(t− tr) with respect to t, we get

∂%

∂t
= c

(
1− ∂tr

∂t

)
=
∂%

∂tr

∂tr
∂t

= −% · v
%

∂tr
∂t

The value of ∂ρ/∂tr is obtained by differentiating the identity %2 = %2 and substituting

∂%(tr)/∂tr = −v(tr). The minus sign is present because % = r−w. Thus,

∂tr
∂t

=
1

1− (% · v)/c%
= %D .

∂%

∂t
= −% · v

%

∂tr
∂t

= −% · vD = c(1− %D)

Similarly differentiating the relation tr = t− %(tr)/c with respect to the coordinates, we find

∇tr = −1

c
∇ρ(tr) = −1

c

(
∂%

∂tr
∇tr +

%

%

)
= −1

c

(
−% · v

%
∇tr +

%

%

)
=

1

c

(
% · v
%
∇tr −

%

%

)
,

so that

∇tr = − %

c(%− (% · v)/c)
= −%

c
D .

With the help of these formulas, one can calculate the fields E and B. The final results are

E =
q

4πε0 (%− % · v/c)3

{
(1− v2/c2)

(
%− v

c
%
)

+
1

c2
%×

[(
%− v

c
%
)
× a
]}

(9.4.14)

B =
1

c%
%× E . (9.4.15)

Here, a = ∂v/∂tr. All quantities on the right sides of the equations refer to the time tr. It is

interesting to note that the magnetic field turns out to be everywhere perpendicular to the

electric. In the non-relativistic limit, the electric field E reduces to the Coulomb field

E(r, t)|v/c→0 →
q%

4πε0%3
, (9.4.16)

while the magnetic field tends to zero as v/c.

To derive these formulas, let us first convert them in a simpler form by excluding double

vector products. Employing the BAC − CAB formula gives

E =
q

4πε0 (%− % · v/c)3

{
(1− v2/c2)

(
%− v

c
%
)

+
1

c2

[
(% · a)

(
%− v

c
%
)
− a%

(
%− % · v

c

)]}
=

q

4πε0 (%− % · v/c)3

{
(1− v2/c2) +

1

c2
(% · a)

}(
%− v

c
%
)

− q%a

4πε0 (%c− % · v)2
.
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To get this expression, we first we calculate the gradient of the scalar potential

−∇Φ =− q

4πε0
∇D =

q

4πε0

1

(%− v · %/c)2
∇ (%− v · %/c)

=
q

4πε0
D2

(
−v

c
+∇tr

[
−c− ∂

∂tr
v · %/c

])
=

q

4πε0
D2
(
− v

c
+
%

c
D
[
c− v2/c+ a · %/c

])
=

q

4πε0

(
−D2 v

c
+ %D3

[
1− v2/c2 + a · %/c2

])
Consider now the time derivative of the vector potential,

∂

∂t
A =

∂tr
∂t

∂

∂tr
A =

q

4πε0c2
%D

∂

∂tr
vD =

q

4πε0c2
%D

[
aD − vD2 ∂

∂tr
(%− v · %/c)

]
=

q

4πε0c2
%D

[
aD − vD2

(
−% · v

%
+ v2/c− a · %/c

)]
=

q

4πε0

[
1

c2
%D2a− v

c
D2 +

%v

c
D3
(
1− v2/c2 + a · %/c2

) ]
Combining, we get

E = −∇Φ− ∂

∂t
A =

q

4πε0

[
− 1

c2
%D2a +

(
%− %v

c

)
D3
[
1− v2/c2 + a · %/c2

]]
To get B, we calculate the curl of A,

∇×A =
q

4πε0c2
∇× vD =

q

4πε0c2
[D∇× v − v ×∇D]

For the first term, we need

∇× v = ∇tr ×
∂

∂tr
v = −a×∇tr = a× %D

c
= −D

c
%× a,

which gives

D

c2
∇× v = −D

2

c3
%× a = −%D

2

c3%
%× a

For the second term, we have

−v ×∇D =v ×
(
−D2 v

c
+ %D3

[
1− v2/c2 + a · %/c2

])
= v × %D3

[
1− v2/c2 + a · %/c2

]
Converting

v × % = −%× v = c%× (%− %v/c)/%

and combining both terms, we get the formula for B

B = ∇×A =
q

4πε0c%
%×

[
−%D

2

c2
a + (%− %v/c)D3

[
1− v2/c2 + a · %/c2

]]
=

1

c%
%× E .
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9.4.3 Power radiated by a point charge

Let us introduce the unit vector %̂ through %̂ ≡ %/%, and also the notation u ≡ %̂− v(tr)/c.

This vector tends to %̂ in the non-relativistic limit v/c→ 0. Using %− % · v/c = (% · u), we

can write the electric and magnetic fields due to a point charge moving along an arbitrary

trajectory w(t) as

E(r, t) =
q

4πε0

%

(% · u)3

[
u(1− v2/c2) + %× (u× a)/c2

]
B(r, t) =

%̂

c
× E(r, t) (9.4.17)

Recall that tr is defined as a solution to the equation c(t − tr) = %. As usual, velocity and

acceleration in Eq. (9.4.17) are taken at t = tr. The electric field consists of two parts of

different type. The first term (∼ u) is called the velocity field and the second (∼ a) is called

the acceleration or the radiation field. The first term varies at large distances like 1/%2.

Since the first term is independent of the acceleration it corresponds to the field produced

by a uniformly moving charge.

The second term in Eq. (9.4.14) depends on the acceleration, and for large % it varies like

1/%. It is related to the electromagnetic waves radiated by the particle. It is given by

Erad(r, t) =
q

4πε0c2%

%̂× (u× a)

(%̂ · u)3
=

q

4πε0c2%

%̂× (u× a)

(1− %̂ · v/c)3
. (9.4.18)

The radiation magnetic field,

Brad(r, t) =
%̂

c
× Erad(r, t) (9.4.19)

also decreases as 1/% for large %.

The Poynting vector is

S =
1

µ0

E×B =
1

µ0c
E× (%̂× E) =

1

µ0c
[E2%̂− (%̂ · E)E] (9.4.20)

Some of the energy is radiation; another part is just a field energy carried along by the

particle as it moves. To calculate the power radiated by the particle at time t∗, we draw a

large sphere with radius % = R, wait for t− t∗ = R
c
, and integrate Poynting vector over the

surface. Since the velocity field is ∼ 1/R2 the corresponding Prad is ∼ R2 1
R4 = 1

R2 so it does

not contribute to the radiated power at large R. The power due to the acceleration field

(∼ 1/R) is finite: Prad ∼ R2 1
R2 = 1. We get

Erad(r, t) =
q

4πε0c2%

%̂× (u× a)

(%̂ · u)3

→ % · Erad(r, t) = 0 ⇒ Srad =
%̂

µ0c
E2

rad. (9.4.21)
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For simplicity, consider the charge which is instantaneously at rest at t = t∗. Since v(t∗) = 0,

u(t∗) = %̂ so the Eq. (9.4.21) reduces to

Srad =
%̂

µ0c

( µ0q

4πR

)2
[a2 − (%̂ · a)2] =

µ0q
2a2

16π2c

sin2 θ

R2
%̂ (9.4.22)

The total power is given by the following Larmor formula

Prad =

∮
S

Srad · dS =
µ0q

2a2

16π2cR2

∫
sin2 θ

R2
R2 sin θdθdΦ =

µ0q
2a2

6πc
(9.4.23)

which we have already obtained using the electric dipole radiation, see Eq. (9.3.10).

We have derived the Larmor formula under the assumption that v = 0 but one can demon-

strate that it holds true as long as v � c. In the general case of arbitrary velocity, the

radiation is given by the Lienard formula

Prad =
µ0q

2γ6

6πc

(
a2 − (v · a)2

c2

)
(9.4.24)

where γ ≡ 1/
√

1− v2

c2
.

9.4.4 Electromagnetic fields due to a point charge moving with

constant velocity.

Potentials

For a point charge moving with constant velocity v the trajectory is w = tv, so that

%(t) ≡ r −w(t) is given by %(t) = r − tv. Hence, %(tr) = r − trv. Recalling that we have

also %(tr) = c(t− tr), we see that, in this case, the difference

%(tr)−
v

c
%(tr) = [r− trv]− (t− tr) v = r− tv = %(t)

is the distance %(t) from the charge to the point of observation at precisely the moment t of

observation. The retarded time may be also calculated explicitly:

c(t− tr) = |r− trv| ⇒ c2(t2 − 2ttr + t2r) = r2 − 2trv · r + v2t2r

Thus, we have a quadratic equation for tr:

(c2 − v2)t2r − 2tr(c
2 − v · r) + c2t2 − r2 = 0 .

Its solution (with tr ≤ t) is given by

⇒ tr =
c2t− v · r−

√
(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)

c2 − v2
.
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This gives

c2t− v · r− (c2 − v2)tr =
√

(c2t− v · r)2 − (c2 − v2)(c2t2 − r2) .

The Liénard-Wiechert potentials (9.4.13) then take the form

Φ(r, t) =
qc

4πε0

1

c|r− trv| − v · (r− trv)
(9.4.25)

=
qc

4πε0[c2t− (c2 − v2)tr − v · r]
=

qc

4πε0

[
(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)

]−1/2
and

A(r, t) =
v

c2
Φ(r, t). (9.4.26)

Let us demonstrate that Φ(r, t) can be rewritten as

Φ(r, t) =
q

4πε0R

(
1− v2

c2
sin2 θ

)−1/2
, (9.4.27)

where R = r − tv and θ is the angle between R and v. As we have seen, for a constant

velocity R (denoted as % in general case) is the distance to the position of the moving charge

at the time of measurement of the fields.

We have

(c2t− v · r)2 − (c2 − v2)(c2t2 − r2) = [c2t− v · (R + tv)]2 − (c2 − v2)[c2t2 − (R + tv)2]

= [(c2 − v2)t− v ·R]2 − (c2 − v2)[(c2 − v2)t2 − 2tv ·R−R2] = (c2 − v2)R2 + (v ·R)2

= c2R2 − v2R2 sin2 θ , (9.4.28)

and therefore √
(c2t− v · r)2 − (c2 − v2)(c2t2 − r2) = Rc

√
1− v2

c2
sin2 θ . (9.4.29)

For the vector potential, we have

A(r, t) =
v

c2
Φ(r, t) =

qµ0

4πR
v
(

1− v2

c2
sin2 θ

)−1/2
. (9.4.30)

Fields

Since the potentials in this case are given by explicit functions of t and r, the calculation of

E =−∇Φ− ∂A

∂t

B = ∇×A
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is straightforward. We need

− 1

c2
∂

∂t

[
(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)

]−1/2
=

c2t− v · r− (c2 − v2)t
[(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)]3/2

=
−v · r + v2t

[(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)]3/2

and

−∇
[
(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)

]−1/2
=

−(c2t− v · r)v + (c2 − v2)r
[(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)]3/2

Then

E =−∇Φ− ∂A

∂t
=

qc

4πε0

−(c2t− v · r)v + (c2 − v2)r + v(−v · r + v2t)

[(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)]3/2

=
qc

4πε0

(c2 − v2)(r− tv)

[(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)]3/2
=
qc(c2 − v2)

4πε0

R

(R2c2 −R2v2 sin2 θ)3/2

or

E =
qR

4πε0R3

1− v2/c2(
1− v2 sin2 θ/c2

)3/2 . (9.4.31)

For magnetic field, we get

B =− q

4πε0c

(c2 − v2)(r× v)

[(c2t− v · r)2 − (c2 − v2)(c2t2 − r2)]3/2
=
q(1− v2/c2)

4πε0R3c2
v ×R

(1− v2 sin2 θ/c2)3/2

=
1

c2
v × E(r, t) . (9.4.32)

It can be demonstrated that the fields (9.4.31) , (9.4.32) are Lorentz transforms of the usual

Coulomb field of a point charge (E(r, t) = qR/4πε0R
3, B = 0).

9.5 Magnetic Dipole Radiation

Let us now return to our previous approach in which we assumed that the source currents

in

A(x, t) =
µ0

4π

∫
d3x′

J(x′, tr)

|x− x′|
, (9.5.1)

have an oscillating dependence on time, i.e., take

J(x′, tr) = J(x′)e−iωtr = J(x′)e−iω(t−|x−x
′|/c) = J(x′)e−iωteik|x−x

′| .
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We see that A(x, t) has now e−iωt dependence on time, A(x, t) = A(x)e−iωt, with A(x)

given by

A(x) =
µ0

4π

∫
d3x′

J(x′)

|x− x′|
exp[ik |x− x′|] . (9.5.2)

Using |x−x′| = r−(n̂ ·x′)+ . . . we obtain that the next, linear in n ·x′, term in the multipole

expansion of

A(x) =
µ0

4π

eikr

r

∫
d3x′ J(x′)

(
1 +

n̂ · x′

r
+ ...

)
[1− ik n · x′ + . . .] (9.5.3)

is

Anext(x) =
µ0

4π

eikr

r

(
1

r
− ik

)∫
d3x′ J(x′)(n · x′) , (9.5.4)

where the O(1/r2) term is kept to ensure the expansion is valid at all distances. To exhibit

the form of this potential, we express the integrand as pieces symmetric and anti-symmetric

in J and x′, by writing

(n · x′)J =
1

2
[(n · x′)J + (n · J)x′] +

1

2
[(n · x′)J− (n · J)x′]

=
1

2
[(n · x′)J + (n · J)x′]− 1

2
n× (x′ × J) (9.5.5)

We now introduce the magnetization density

M =
1

2
x′ × J. (9.5.6)

Then the second term gives rise to a vector potential

Amag.dip.(x) =
ikµ0

4π

eikr

r

(
1− 1

ikr

)
n×m = ∇×

(
µ0

4π

eikr

r
m

)
, (9.5.7)

where m is the magnetic dipole moment.

Let us find now electric and magnetic fields of the magnetic dipole radiation. Taking the

curl of Eq. (9.5.7), we find

Hmag.dip. =
1

µ0

∇×Amag.dip. =
ik

4π
∇× (n×m)

eikr

r

(
1− 1

ikr

)
=

1

4π

{
k2(n×m)× n

eikr

r
+ [3n(n ·m)−m]

(
1

r3
− ik

r2

)
eikr
}
. (9.5.8)

This outcome may be easily understood if we recall that in the electric dipole case we had

Hel.dip. =
ck2

4π
(n× p)

eikr

r

(
1− 1

ikr

)
(9.5.9)
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for the magnetic field, with the electric field obtained from it by taking the curl

Eel.dip. =
i

ckε0
∇×Hel.dip. =

ik

4πε0
∇× (n× p)

eikr

r

(
1− 1

ikr

)
, (9.5.10)

and the result (see Eq. (9.2.13)) was

Eel.dip. =
1

4πε0

[
k2(n× p)× n

eikr

r
+ (3(n · p)n− p)

( 1

r3
− ik

r2

)
eikr
]
. (9.5.11)

Thus, the field Hmag.dip. due to the magnetic dipole is of the same form as the field Eel.dip.

due to the electric dipole.

Hmag.dip. =
ε0m

p
Eel.dip. or Hmag.dip. =

m

p
Del.dip. . (9.5.12)

Similarly we have

Emag.dip. =
i

ckε0
∇×Hmag.dip. =

i

ckε0µ0

∇× (∇×Amag.dip.)

=
ic

k

[
∇(∇ ·Amag.dip.)−∇2Amag.dip.

]
. (9.5.13)

Noticing that

Amag.dip.(x) = ∇×
(
µ0

4π

eikr

r
m

)
, (9.5.14)

we conclude that ∇ · Amag.dip. = 0, i.e. Amag.dip. satisfies the Coulomb gauge condition.

Hence, it also satisfies the Helmholtz wave equation ∇2Amag.dip. = −k2Amag.dip., which may

also be checked directly:

∇2Amag.dip.(x) =∇2∇×
(
µ0

4π

eikr

r
m

)
= ∇×∇2

(
µ0

4π

eikr

r
m

)
= ∇× (−k2)

(
µ0

4π

eikr

r
m

)
= −k2Amag.dip. (9.5.15)

(recall that ∇2f(r) = 1
r
∂2

∂r2
(rf(r)). Using it, we obtain

Emag.dip. =ickAmag.dip. = −µ0

4π
ck2(n×m)

eikr

r

(
1− 1

ikr

)
, (9.5.16)

or

Emag.dip. = −Z0

4π
k2(n×m)

eikr

r

(
1− 1

ikr

)
, (9.5.17)

so that the electric field due to a magnetic dipole is of the same form as the magnetic field

due to an electric dipole:

Emag.dip. = −µ0m

p
Hel.dip. or Emag.dip. = −m

p
Bel.dip. . (9.5.18)
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Since the radiated power is proportional to n · (E×H),

Pmag.dip.
rad =

m2

p2c2
P el.dip.
rad =

µ0m
2ω4

12πc3
. (9.5.19)

In order to get an estimate of the relative strength of the electric and magnetic dipole

radiation, consider a physical dipole p = qd made from two charges q and −q separated

by distance d which rotate with angular velocity ω around the center of the dipole. The

magnetic moment of this system can be approximated by an oscillating current I = q
T

= qω
2π

so we get an oscillating magnetic moment m = qd2ω/8. The ratio of powers for this example

is
Pmag

Pel

=
ω2d2

64c2
∼ v2

c2
(9.5.20)

where v is the linear velocity of the rotating charges. We see that for charges moving with

non-relativistic velocities the electric dipole radiation is the most important part while the

magnetic dipole radiation is of the size of the relativistic corrections.

As an example of magnetic dipole radiation, consider the circular loop of radius b with

current

I(t) = I cosωt = Re Ie−iωt

in the XY plane. The magnetic dipole moment of this loop oscillates in time as

m(t) = m cosωt = Reπb2Ie−iωt .

Let us calculate the magnetic vector potential due to this setup. W.l.o.g. we can assume

that the point x lies in the XZ plane. The general formula for the magnetic vector potential

has the form

A(x, t) =
µ0

4π

∮
dl′

e−iωtr′

|x− x′|
Iêϕ′

Expanding tr′ ' t− r
c

+ n·x′

c
and 1

|x−x′| '
1
r

(
1 + n̂·x′

r

)
we get

A(x) =
µ0bI

4π

eikr

r

∫ 2π

0

dϕ′(−ê1 sinϕ′ + ê2 cosϕ′)
(

1 +
b

r
sin θ cosϕ′

)
e−ikb sin θ cosϕ

′

Since kb = 2π b
λ
� 1 we can expand the exponential in the r.h.s. of this equation and get

A(x) =
µ0bI

4π

eikr

r

∫ 2π

0

dϕ′(−ê1 sinϕ′ + ê2 cosϕ′)
(

1 +
b

r
sin θ cosϕ′ − ikb sin θ cosϕ′

)
Performing integration over ϕ′ we obtain

A(x) = −ikµ0Ib
2

4r
ê2

(
1− 1

ikr

)
eikr sin θ
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For our setup ê2 = êϕ so the final result for the vector potential takes the form

A(x) = −ikµ0m̂

4πr
êϕ

(
1− 1

ikr

)
eikr sin θ

which coincides with Eq. (9.5.7).

9.6 Electric Quadrupole Radiation

The first term of the decomposition in Eq. (9.5.5), obtained from the symmetric part, is

related to the quadrupole moment.

Ael. quadr.(x) =
µ0

4π

eikr

r

(
1

r
− ik

)∫
d3x′

1

2

[
(n · x′)J + (n · J)x′

]
, (9.6.1)

where the O(1/r2) term is kept to ensure the expansion is valid at all distances.

Recall that for the lowest term we had∫
d3x′ J = −iω

∫
d3x′ x′ρ(x′) .

Let us show that now one can use

1

2

∫
d3x′ {(n · x′)J + (n · J)x′} = −iω

2

∫
d3x′ ρx′(n · x′), (9.6.2)

and write

Aquad.mom.(x) = −µ0ck
2

8π

eikr

r

(
1− 1

ikr

)∫
d3x′ρ(x′)x′(n · x′) . (9.6.3)

Indeed, using J = (J · ∇′)x′, we have∫
d3x′ {(n · x′)J + x′(J · n)} =

∫
d3x′ {(n · x′)(J · ∇′)x′ + x′(J · ∇′)(x′ · n)}

∣∣∣
by parts

= −
∫
d3x′ {x′(∇′ · J)(n · x′) + (x′ · n)(∇′ · J)x′}

= −
∫
d3x′ {x′(n · x′)(∇′ · J) + x′(n · J) + (x′ · n)x′(∇′ · J) + (x′ · n)J}

=− 2

∫
d3x′x′(n · x′)(∇′ · J)−

∫
d3x′ {x′(n · J) + (x′ · n)J} . (9.6.4)

The second integral here coincides with (minus) original expression. Hence,∫
d3x′ {(n · x′)J + x′(J · n)} = −

∫
d3x′x′(n · x′)(∇′ · J) . (9.6.5)
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Using the continuity equation

∂ρ

∂t
+∇ · J = 0 , (9.6.6)

which with our assumed time dependence becomes

−iωρ+∇ · J = 0 , (9.6.7)

we get the desired relation

1

2

∫
d3x′ {(n · x′)J + x′(J · n)} = −iω

2

∫
d3x′ x′(n · x′)ρ(x′) . (9.6.8)

In components, the integral can be written as∫
d3x′ ρ(x′)x′α

∑
β

nβx
′
β =

∑
β

nβ

∫
d3x′ ρ(x′)x′αx

′
β . (9.6.9)

If we now recall our expression for the quadrupole moment

Qαβ =

∫
d3x′ρ(x′)(3x′αx

′
β − r′

2
δαβ) , (9.6.10)

we see that ∑
β

nβ

∫
d3x′ ρ(x′)x′αx

′
β =

1

3

∑
β

nβQαβ +
nα
3

∫
d3x′ r′

2
ρ(x′) (9.6.11)

or ∫
d3x′ x′(n · x′)ρ(x′) =

1

3
Q(n) +

n

3

∫
d3x′ r′

2
ρ(x′) ≡ 1

3
Q(n) + q

n

3
〈r′2〉 (9.6.12)

where Q(n) is defined by

Qα =
∑
β

Qαβnβ. (9.6.13)

The next step is to use the expression for A

Aquad.mom.(x) = −µ0ck
2

8π

eikr

r

(
1− 1

ikr

)∫
d3x′ρ(x′)x′(n · x′)︸ ︷︷ ︸
Q(n)/3+qn 〈r′2〉/3

. (9.6.14)

to find the fields in the r � λ limit,

H = ikn×A/µ0

E = ikZ0(n×A)× n/µ0. (9.6.15)



284 Chapter 9

We find that fields can be written as

H = −ick
3

24π

eikr

r
n×Q(n) , E = −Z0

ick3

24π

eikr

r
[n×Q(n)]× n (9.6.16)

and the power dissipation is

dP

dΩ
=

c2Z0

1152π2
k6|[n×Q(n)]× n|2 (9.6.17)

(where 1152 = 2(24)2).

A simple model of a quadrupole moment is given by

Q33 = Q0

Q11 = Q22 = −1

2
Q0, (9.6.18)

which is clearly traceless. Then

Q(n) = −1

2
Q0n1ê1 −

1

2
Q0n2ê2 +Q0n3ê3 = −1

2
Q0n +

3

2
Q0 n3ê3 , (9.6.19)

and

n×Q(n) =
3

2
Q0 n3(n× ê3) =

3

2
Q0 cos θ(n× ê3) = −3

2
Q0 cos θ sin θ êϕ . (9.6.20)

Since êϕ is a unit vector orthogonal to a unit vector n, the product êϕ × n is also a unit

vector, i.e., |eϕ × n| = 1, and the angular power distribution is given by

dP

dΩ
=
c2Z0k

6

512π2
Q2

0 sin2 θ cos2 θ . (9.6.21)

Thus, for quadrupole radiation, we have a four-lobe pattern of power distribution

Using ∫ 1

−1
cos2 θ sin2 θ d(cos θ) =

∫ 1

−1
x2(1− x2) dx =

4

15
, (9.6.22)

we find that the total power radiated is

P =
c2Z0k

6Q2
0

960π
. (9.6.23)

The complete description requires the full multipole expansion which is beyond what we

are going to do in this course.


