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804 Final Exam (40 points). 05/01/07, 15:45 ÷ 18:45 p.m.

Problem 1.

Consider the vector potential A(~r) = ~r × (~r × ê3).

(a) What is the magnetic field?

(b) Does this potential satisfy Coulomb gauge condition ~∇ · ~A = 0? If not, modify ~A such

that the magnetic field remains the same but the Coulomb condition is satisfied.

Solution

~A = z~r − r2ê3 = xzê1 + yzê2 − (x2 + y2)ê3

The magnetic field is ~B = ~∇ × ~A = 3xê1 − 3yê2. (In the spherical polar coordinates

~A = r2 sin θ θ̂ and ~B = −3r sin θ φ̂).

Since ~∇ · ~A = 2z the potential is not in the Coulomb gauge. To bring it to Coulomb

gauge we need a transformation

~A′ → ~A+ ~∇Λ

so that

~∇ · ~A′ = 0 ⇒ ∇2Λ = − ~∇ · ~A = − 2z

The simplest solution of ∇2Λ = − 2z is Λ = − z3

3
so we get

~A′ = xzê1 + yzê2 − (x2 + y2)ê3 + ~∇Λ = xzê1 + yzê2 − (x2 + y2 + z2)ê3

Problem 2

A TEM wave propagates along a coaxial cylindrical wave guide (made from a perfect

conductor) with inner radius a and outer radius b. Find the surface current on the outer

cylinder. Is there a total current flow along the outer cylinder?

(Reminder/hint: a cylindrically symmetric solution of the 2-dim Laplace eqn is ~E ∼ ŝ/s

for the electric field and ~B ∼ φ̂/s for the magnetic field)

Solution

The magnetic field of the TEM wave has the form

~B(~s, z, t) =
C0

s
φ̂eikz−iωt

where C0 is some constant. From the boundary conditions at the surface of a perfect

conductor we get

~K = n̂× ~H = − µ0~s× ~B =
µ0C0

b
eikz−iωtê3
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so the real surface current is

~K(~s, z, t) = <µ0C0

b
eikz−iωtê3 =

µ0C0

b
cos(kz − ωt) ê3

The current (in the z direction) along the whole perimeter is

I =

∫
dlK = 2πµ0C0 cos(kz − ωt)

⇒ alternating total current along the conductor.

Problem 3 .

A particle of charge q moves in a circle of radius a at a constant angular velocity ω.

Assume that the circle lies in the x, y plane, centered at the origin and at time t = 0, the

charge is at (a, 0) on the positive x axis. For points on the z axis, find

(a) the Lienard-Wiechert potentials and

(b) the time-averaged electric field.

Solution

(a). The Lienard-Wiechert potentials are given by

φ(~r, t) =
q

4πε0

1

|~r − ~w(tr)| − 1
c
~v(tr) · (~r − ~w(tr))

~A(~r, t) =
~v(tr)

c2
φ(~r, t)

In our case |~r − ~w(t)| =
√
z2 + a2 and ~v(t) · (~r − ~w(t)) = 0 for any t so we get

φ(~r, t) =
q

4πε0
√
z2 + a2

~A(~r, t) =
~v(tr)

c2
φ(~r, t) =

µ0q

4π
√
z2 + a2

[− sin(t− tr)ê1 + cos(t− tr)ê2]

where tr = 1
c

√
z2 + a2 is the retarded time.

(b). By symmetry, the time-averaged electric field is collinear to the z axis so it is

sufficient to find Ez(z, 0, 0)

〈Ez(z, 0, 0)〉 = − 〈 ∂
∂z
φ(z, 0, 0)〉 − 〈∂Az

∂t
〉 = − ∂

∂z
φ(z, 0, 0) =

qz

4πε0(z2 + a2)3/2

so 〈 ~E(z, 0, 0) = qz
4πε0(z2+a2)3/2

ê3.
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Problem 4.

An insulated circular ring of radius b lies in the x, y plane centered at the origin. It carries

a linear charge density λ = λ0 sinφ where φ is an azimuthal angle. The ring is set spinning

at a constant angular velocity ~ω = ωẑ. Find the power radiated by the ring.

Solution

The main part of the radiated power comes from the electric dipole radiation. The electric

dipole moment of the ring at rest is

~p = b

∫ 2π

0

dφ λ sinφ ~r = b

∫ 2π

0

dφ λ sinφ (ê1b cosφ+ ê2b sinφ) = πλb2ê2

This dipole (located at the origin) is set spinning in the x, y plane with angular frequency

ω so

~p(t) = πλb2(ê2 cosωt− ê1 sinωt)

From the Larmor formula

P =
µ0

6πc
(~̈p)2 =

µ0π

6c
λ2ω4b4

Problem 5.

In a certain frame K the electric field ~E and the magnetic filed ~B are orthogonal. Is

there a frame where the field is

(a) purely electric or (b) purely magnetic,

and with what velocity should that frame(s) move with respect to K?

Solution

In the frame K the second Lorentz invariant ~E · ~B = 0 while the first invariant E2 −B2

is positive when | ~E| > | ~B| and negative for | ~E| < | ~B| so nothing forbids to have ~B′ = 0 in

the former case and ~E ′ = 0 in the latter. To get the velocity of the relevant boost, consider

the Lorentz transformations of the electric and magnetic fields

~E ′ = γ( ~E + ~β × ~B)− γ2

γ + 1
~β(~β · ~E)

~B′ = γ( ~B − ~β × ~E)− γ2

γ + 1
~β(~β · ~B)

In the first case (when E > B) we want to have B′ = 0 so

( ~B − ~β × ~E) =
γ

γ + 1
~β(~β · ~B)
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Multiplying both sides by ~β we get

~β · ( ~B − ~β × ~E) =
γ

γ + 1
β2(~β · ~B) ⇒ ~β · ~B = 0 ⇔ ~v ⊥ ~B

so ~B = −~β × ~E. The simplest choice is to take ~v orthogonal to both ~E and ~B, then

v = c
B

E
, ~v ⊥ ~E, ~B

Similarly, in the second case we can take v = cE
B
, ~v ⊥ ~E, ~B and the resulting ~E ′ will vanish.

(In the SI units v = c2B
E

and v = E
B

for the first and the second case, respectively).


