804 Midterm (16 points). 02/14/20

Problem 1 .

An iron sphere of radius R carries a charge () and has a uniform magnetization M = Mé;.
It is initially at rest. Find

(a) Angular momentum stored in the fields

(b) If the sphere is demagnetized by heating (keeping M uniform), by use of Faraday’s
law find the induced electric field, then find the torque induced by E on the sphere, and
finally the angular momentum imparted to sphere as M goes to zero.

Hint: The magnetic field outside the sphere is equal to the magnetic field of a pure dipole
with m = %WRBM

Solution

(a)

The electric and magnetic fields (at r > R) are:
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where m = %WRBM.

The angular momentum stored in the fields is
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By symmetry, the angular momentum L is collinear to é3 so
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(b)

If m = m(t)és the induced electric field takes the form
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The torque for the charge dg on the surface is
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Again, from symmetry we know that 7' || é3 so
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Since the charge is distributed uniformly over the surface of the sphere dq = 473%2 R? sin 0d0d¢

and the total torque is
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The angular momentum imparted to sphere is
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Problem 2 (6 points)

A circular wire of radius a lies in z, y plane with the center at the origin. It carries current

0 t<0
Iy t>0

Find the magnetic field on the z axis (at x,y = 0).

Solution:
Generalization of Bio-Savart law for time-dependent currents has the form (formula (6.56)
from Jackson or (6.3.23) from Chapter 6 of lecture notes))
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% and R = |Z — 2/|. Rewriting it for linear currents, one gets
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By symmetry, the magnetic field has only z component. Moreover, for a point on z-axis
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the retarded time is the came for all points on the wire and is equal to t — % =1— =

Also, I(t) = Iy8(t) and I(t) = Iy6(t) so we get
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From geometry

2ra’®

a

(dl/ X éR)g = dl ﬁ

= [(dlrxén), =



and therefore

B(z,t) =
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Note that the first term is equal to the result for constant current Iy multiplied by Q(t —
7”2“‘2) (see e.g. Eq. (5.38) from Griffiths textbook). The second part is a burst of radiation
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coming from turning on the current.

Problem 3.
Find the reflection coefficient for the circularly polarized electromagnetic wave incident

on a plane between two linear media at Brewster’s angle. (For simplicity, take ' = ).
Solution:
The circularly polarized wave have the form
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(we've assumed that & lies in the X Z plane).
Let us consider the components E}é; (electric field in the plane of incidence) and i Ejé,
(electric field normal to the plane of incidence) separately.
At 0; = 0 we have no reflected wave for the component E}é; (in the plane of incidence).
For iE}és (normal to the plane of incidence) we have
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Since at 6; = 0 we have sinp = cosfr = n'/v/n2 + n'? and cosOp = sin Oy = n/vVn2 + n'?,
we obtain
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Therefore, the intensity of the reflected wave is proportional to %( 622;2,;) and the reflec-
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