1. Consider a system of angular momentum j=1, whose state space is spanned by the basis $\{ \mid +1 \rangle, \mid 0 \rangle, \mid -1 \rangle \}$ of three eigenvectors common to \mathbf{J}^2 (eigenvalue $2\hbar^2$) and J_z (respective eigenvalues $+\hbar$, 0 and $-\hbar$). The state of the system is:

$$|\psi\rangle = \alpha |+1\rangle + \beta |0\rangle + \gamma |-1\rangle$$

where α , β , γ are three given complex parameters.

a. Calculate the mean value \langle **J** \rangle of the angular momentum in terms of α , β and γ .

b. Give the expression for the three mean values $\langle J_x^2 \rangle$, $\langle J_y^2 \rangle$ and $\langle J_z^2 \rangle$ in terms of the same quantities.

2. Consider an arbitrary physical system whose four-dimensional state space is spanned by a basis of four eigenvectors $|j, m_z\rangle$ common to ${\bf J}^2$ and J_z $(j=0 \text{ or } 1; -j\leqslant m_z\leqslant +j)$, of eigenvalues $j(j+1)\hbar^2$ and $m_z\hbar$, such that:

$$\begin{array}{l} J_{\pm} \mid j, m_{z} > = \hbar \sqrt{j(j+1) - m_{z}(m_{z} \pm 1)} \mid j, m_{z} \pm 1 > \\ J_{+} \mid j, j > = J_{-} \mid j, -j > = 0. \end{array}$$

a. Express in terms of the kets $|j, m_z\rangle$, the eigenstates common to \mathbf{J}^2 and J_x to be denoted by $|j, m_x\rangle$.

b. Consider a system in the normalized state:

(i) What is the probability of finding $2\hbar^2$ and \hbar if ${\bf J}^2$ and J_x are measured simultaneously?

(ii) Calculate the mean value of J_z when the system is in the state $|\psi\rangle$, and the probabilities of the various possible results of a measurement bearing only on this observable.

(iii) Same questions for the observable J^2 and for J_x .

(iv) J_z^2 is now measured; what are the possible results, their probabilities, and their mean value?