HW assignment 4 1
Due Thu Feb 19 at the lecture.

Problem 1.
A spin—% particle is in an eigenstate of S'y with eigenvalue % at time ¢ = 0. At that time it
is placed in a constant magnetic field B in z direction. The spin is allowed to precess for a
time T". At that instant, the magnetic field is switched very quickly to the x direction. After
another time interval T, a measurement of the y component of the spin is made. What is

the probability that the value —g will be found?

Solution.
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The Hamiltonian for the first time interval T is hwyo, where wy = Ziﬁ . The evolution of the
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The eigenstate of the operator S, is ¥y = 1( ) Indeed,

state yields at time T'
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The Hamiltonian for the second time interval is hwyd, so the evolution operator takes the

form
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and therefore the state at time 27" is given by
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The probability that the Spin—% will be found is
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Alternatively, at ¢ = T one can project onto eigenstates of o, operator:
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The eigenstates of 6, operator are evolved as
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so the state at t = 27T is
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so the probability that the spin will be —g is
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Problem 2.
Two atoms with j; = 1 and j, = 2 are coupled, with an energy described by H = aJi-Js

(a > 0). Determine all of the energies and degeneracies for the coupled system. What are

the eigenstates corresponding to maximal and minimal energy?

Solution.

The Hamiltonian can be rewritten as

H o= 57— =)
where J = J; + J,. The eigenstates of the system are |j,m) where j; + jo > j > |j1 — ja
which gives 7 = 1,2, 3 in our case. The corresponding degeneracy is 25 + 1 so we have:
7 states with j=3 have highest energy (12 — 6 — 2) = 2a,
5 states with j=2 have energy §(6 — 6 — 2) = —a, and
3 states with j=1 have lowest energy (2 —2 — 6) = —3a.
Check: the total number of states is 15 = (2j; + 1)(2j2 + 1)



