
Solution to HW 3

The differential cross section for a general 2 ⇒ 2 particle cross section is calculated in

Appendix A. For our case

(

dσ

dΩ

)

”1”

=
1

64π2s
|T |2 (1)

where s = (E1 + E ′

1
)2 and the label ”1” means that we catch the first particle (when it

flies into the spherical angle dΩ). The relevant diagram is shown in Fig.(1). There are no

diagrams of the Fig. 24b type since the particles are not identical and the diagram of the Fig.

24c type is absent because I did not specify that particle ”1” can emit π-meson and convert

into particle ”2”. The transition matrix is just the amputated modified Green function ,
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FIG. 1. Feynman diagram for the 1, 2 ⇒ 1, 2 scattering. Particle ”1” is denoted by a single line

and particle ”2” by a double one.
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, same as before. Thus,
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If our detector cannot distringuish between the particles ”1” and”2” you must add the

corresponding cross section for the scattering into π − θ angle (since in this case the ”2”

particle will get into our detector located at angle θ):
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Note that unlike the contributions of the Fig. 24a and b we add the cross sections rather than

the amplitudes since our particles are, in principle, distinguishable and it is only because we

decided to save on a cheap detector we cannot separate them.

The total cross section is just
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Performing the integration, we get
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