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1 Notations

Mostly, I use the notations from the book by Peskin and Schoeder.

However, the totally antisymmetric tensor e differs in sign from Peskin. I define
9123 — 1, same as Bjorken & Drell textbook.
In addition:

Fourier transform - (27)~1 goes with [dk

Fa) = [ ) = [amhe i g = [@actr@)

I use the space-saving notation [d"k = f%

Dirac delta-function:
Definition: §(z —y) =0if 2 # y and [dz 6(z) = 1. Property:

/@5m—wﬂw:fm> (12)



In multi-dimensional space

def
8 (x —y) = 0z — y1)0(z2 — y2)...0(zn — yn) (1.3)
Sometimes I will omit the upper label (n) for brevity (if there is no confusion about the
dimension of the d-function, for example 6(Z — ) = 6G)(Z — 7).
Properties:
1
§(F(z) — F(y)) = 5(z —y) (1.4)
| F ()]
f-function:
Oz)=1 >0
(z) =0 x<0 (1.5)
Derivative: J
%H(x) = 0(x) (1.6)

Spatial components of 4-vectors and 3-vectors

I denote the components of three-dimensional vector @ = (az,ay,a,) by @;: d1 = ag,
dy = ay, d3 = a,. This (unusual) notation is introduced in order to avoid confusion with
covariant components in four-dimensional notations. The contravariant components of 4-
vector a = (ao, @) are defined as a' = ag, a’> = Qy, a® = a, so the covariant components of

this 4-vector will be a1 = —a,, a2 = —ay, a3 = —a, which differ in sign from d;.

Part I

2 Harmonic oscillator as a trivial (0+1) field theory

2.1 Harmonic oscillator in classical mechanics
The Lagrangian of a harmonic oscillator is

¢')2 B w2¢2

(2.1)

where ¢(t) is a coordinate. We use the notation ¢(¢) rather than common notation z(t) to
ease future transition to field theory where the field is denoted by ¢(Z, ).

2.1.1 Classical equations of motion from least action principle.

Action:

5(¢) = / “dt L(o(1), (1)) (2.2)

t1
S(¢) is a functional of ¢(t). (Mathematically, S : Lo — R)
Q: How to find minimum of a functional?
A: Same way as for a function: consider small deviation of the argument from the would-be
minimum and check if the linear term of deviation of the function vanishes.



¢ Classical path a)(t)
f
Trial path ¢(t): o) = qi(tl) = S@) > S@)
! ¢(t2) = q)(tZ) = q)f
q)i - t

ty ty

Figure 1. Least action principle: given the initial and final points, the classical path ¢(t) is a path
of minimal action

For a function F'(z): let z, be a minimum of F(z), then
1
F(x. + Az) = F(zy) + AxF'(z,) + §(A$)2F//<$*) +
= F(z.) = 0 (and F'(z) < 0) (2.3)

Now we repeat the same steps for the functional S(¢(t)). Suppose S(¢(t)) is minimal for
H(t) = 4(), then
S(e(t) +d0(t)) > S(e(1)) (2.4)

for arbitrary d¢(¢) with boundary conditions
6¢(t1) = bo(t2) = 0 (2.5)

(recall that ¢(t1) = d(t1) = ¢; and ¢(t2) = d(t2) = ¢ for any trial path ¢(t)).
Expanding the action (2.4) in powers of small d¢(t) we get

08

S90) +sot0) = $(60) + s Tl
to 25
+ [ dtdt' 56(t)dg t,t +0(6¢° 2.6
/ (030(t) 5. g FO0) (26)

The function %( ) defined by the above equation is called a first variational derivative of

the functional S(¢) (and ‘; ¢§ (t,t') is called a second variational derivative of the action).
Similarly to the case of a function F(z) , in order for S(¢(t)) be a minimum, the
linear term in Eq. (2.6) should vanish and the quadratic term should be positive. Since

0¢(t) is arbitrary we get

t2 05 05
dt ¢ =0 =0 2.7
[faswge =0 T 27)



(the second requirement means that g ¢;§ (t,t) =30 should be a positive-definite opera-
£)=a(t
tor).

Let us find %(t) for the harmonic oscillator (2.1).

t2 . .
S(0()+00(t)) = [ at L(o+60.6+39) (28)
t2 . OL($, ¢ OL($, ¢ :
- [Cafred + D0 e+ oDl s + o6
h $(t)=5(t) 99 $(0)=6(1)
Integrating by parts the term proportional to 6(;'5(15) we get
OL(¢,¢) : = OL(¢,9) d
dt (t) do(t) = dt —(t) —og(t) (2.9)
/“ L /t % a=sn ™
. t=ts . .
OL(¢,9) . d OL(¢, ¢) 2 d 0L(¢, ¢)
= ———®)e(t)]  — [ dtép(t) — (1) = — | didp(t) — (1)
0¢ t=t1 /tl at o9 B(t)=0(t) /tl at ¢ P(t)=4(t)
where the end-point terms vanish since d¢(t1) = do(t2) = 0. We get
. 2 L OL(¢, ) d OL(¢, )
S(dt)+dp(t)) = [ dtL(¢,¢)+/ dtdoo(t) (t) - — (1)
/tl /tl { 9% o(t)=o(t) it o¢ o(t)=¢(t) }
(2.10)
Since d¢(t) is arbitrary we get Euler-Lagrange equation
OL(¢,¢)  d OL(¢,9)
(t) =0 (2.11)
( o6 di 99 ) o(t)=¢(t)
For the harmonic oscillator
¢2 W OL(¢,¢) OL(¢,¢)
L(6.9) = it el el AL
and the Euler-Lagrange equation takes the form
d . .
20 = —Wt) e o) = —wie) (2.13)

This is the familiar second-order differential equation for harmonic oscillator with solutions

e (or coswt and sinwt).

2.1.2 Classical Hamiltonian for the harmonic oscillator

The canonical momentum is defined as

w(t) = —(¢) (2.14)



For the harmonic oscillator

o= (2 = ¢ 2.1
w0 = (G- = (2.15)
In general, classical Hamiltonian is defined as
H = 7¢— L(¢,9) (2.16)

where we must express qb in terms of 7w using Eq. (2.14).
For the harmonic oscillator we get

ﬁ_w2¢2) _ 7T2 w2¢2

Ho=m- (5 -

(2.17)
p=n
2.2 Harmonic oscillator in quantum mechanics

2.2.1 Quantization in the Schrédinger picture

Quantization recipe: We promote ¢ and 7 to operators ¢ and # satisfying canonical

commutation relations

[p, 7] = ih, (2.18)
define QM Hamiltonian
A 72 W2?
H = — 2.19
and solve Schrédinger equation
d .
ih%h}'t) = HI|¥y) (2.20)

where |U;) is the QM vector of state. Hereafter we set & = 1 as common in QFT.
Usually we write down the Schréodinger equation (2.20) is so-called coordinate repre-
sentation where |¢) are eigenstates of the coordinate operator ¢

dlo) = 6lo) (2.21)
In this representation the state vector is given by the Schréodinger wave function
(0|Ty) = ¥(t, ¢) (2.22)

where the wave function ¥(t,¢) is the amplitude to discover harmonic oscillator at the
position ¢ at the time ¢t. The operators ¢ and 7 in the coordinate representation have the
form

0

(016|®:) = SU(t,0) = d()V(t0),  #V(t,¢) = —i%‘l’(wﬁ) (2.23)

where the first equation is the trivial consequence of the definition (2.20) and the second
follows from the commutation relation [¢, 7] = i:

[6.7]U(t.¢) = $7(t,¢) ~ 7U(L,¢) = é(—iafb)‘lf<t,¢>+i§ﬁ(¢w,¢>)
0

- _i¢§z)\1/(t,¢)+z’a¢<¢\p(t,¢)) = Ut ¢) (2.24)



With operators qg and 7 in the form (2.22) we get the familiar for of the Schrédinger equation

0 72 w2g? 1820(t,¢)  w? ,
1&‘1’(@@ = (?4‘ 5 )‘I’(tﬂﬁ) = _§T¢32+7¢ (t)@(t, ¢) (2.25)
For the stationary states
U(t,¢) = e "PU(p) (2.26)
so the stationary Schrodinger equation turns to
HY($) = EV(¢) (2.27)
or, in the explicit form,
1P®(¢)  w? ,
3 e + ) = BY() (2.28)

Such scheme of quantization (when vector of state depends on time and the operators qg and
7 do not) is called the Schrédinger picture. It is very convenient in quantum mechanics,
but, as we shall see below, extremely inconvenient in quantum field theory.

2.2.2 Quantization in the Heisenberg picture

In Heisenberg picture vector of state |¥) does not depend on time but operators ¢ and 7
do.
We take Schrodinger vector of state at ¢ = 0 and define

‘\I/>Heis = ‘\Ilt>SChr0‘t:0
d(t) = Mltge=ilt 2(t) = Mtgeillt, (2.29)

In this picture instead of Schrédinger equation for vector of state (2.20) we have two Heisen-
berg equations for operators ¢(t) and 7(t)

%éﬁ(t) = i[H,$(t)], —#(t) = i[H A (2.30)

It is instructive to see that the commutation relation between (Z) and 7 does not depend on
time

[é(t),fr(t)] _ gg(t)ﬁ'(t) - ﬁ'(t)(&(i) _ eth&efthethﬁ_efth o ethﬁ_efthethqgefth

— it gremilt _ illtggo—ifit _ eth[gg, Aleilt = gifltje—ifit _ (2.31)

As we shall see below, the Heisenberg quantization picture easily generalizes to quantum
field theory.



3 Classical theory of a scalar Klein-Gordon field

For simplicity, we start the discussion of the field theory using a simplest scalar field ¢(x)
as an example. We denote 4-dimensional vectors by Latin letters z = (ct, Z) and, in what
follows, we set ¢ =1 as usual in QFT.

The Lagrangian of the scalar Klein-Gordon field has the form

L) = /d%; Lt 7) (3.1)

where £(Z,t) is the Largangian density

2

T ¢2(@) (3.2)

L) = LO0D00(01) = S0,00"0() ~

The corresponding action takes the form

/dt L) = /dtdgznﬁtx /d4x£, _ /d‘*x,c(gb(x),am(x)) (3.3)

Canonical coordinates and canonical momenta are
oL .
o(t,x) and w(t,z) = 8—(;.5(@37) = ¢(t,x) (3.4)

so the classical Hamiltonian for the KG field takes the form

X . ) t t 2 2
H = / Bar(t,2)b(t,z) — L(t) = / P ln(t, o)t z) — (2,:3) + |V¢(2’x)| +m7¢2(t,a:)]
3 ‘qu (t,x ‘ m?
—o°(t .

= [al" O )] (35)
3.1 Least action principle for Klein-Gordon field
Given the initial and final field configurations

o, %) = ¢i(Z),  o(t2,T) = ¢y(T) (3.6)

the classical field ¢(x) varies in such a way that the action S(¢) is minimal of all possible
field configurations. In other words, if we take the trial field configuration ¢(¢,Z) with the
same initial and final conditions ¢(t1,Z) = ¢;(Z) and ¢(t2, %) = ¢;(Z) and compare its
action to that of classical field ¢(z) we will get

$(6) > S() (3.7)

similarly to equation in Fig. 1 for classical mechanics.



3.1.1 Classical field equations from least action principle

Similarly to the case of harmonic oscillator (see Fig. 1) we consider trial field configuration

$(a) = o) +0(x) (3-8)

where §¢(x) is a small deviation from the classical field (), and expand in powers of §¢:

S(¢) = S(¢) + /t 2dt/d3x dp(x) 05(¢)

If S(¢) > S(¢) the linear term in the r.h.s. of Eq. (3.9) must vanish (and the quadratic
term must be positive, but this is a separate issue which we will not discuss now) so we

0(5¢%) (3.9)

é(x)=¢(z)

obtain . 5
2
/ dt / 3z 6p(x) i(@ =0 (3.10)
h O lo@)=a()
Since the above equation holds true at any d¢(x) we get
55(;@) =0 — classical field equation (3.11)
¢ lo@=d)

Let us find now the explicit form of 5(¢) for the action (3.3).

to
S(6 +66) — S(6) = / dt / P [L(6+ 56,006 + 0a08) — L(, Dad)]

2 05 (¢, acb) OL(¢, 0a9)
3 2

The second term in the r.h.s. may be integrated by parts similarly to Eq. (2.9):

f2 OL(b, Dn
/ dt / P Ouégb(x)((;g’d)@
“w

Y A g )@, 0a9) OL(), Dnd) )
_ /t dt/d o +a 00(w) = 5 22+ 0(667)]
3 — (¢7 a¢
/d x0p(t, T) 7&5

Since d¢(t1,Z) = 0¢(t2, &) = 0 the first (boundary) term in the r.h.s of the above equation
vanishes and we obtain

06 ox' 009

S(¢+0¢p) — S(p) =
ta 3, 8£ ¢7 aoz¢) 0 a[,(¢, 8a¢) )

oS

By definition, the expression in square brackets is §3 3 SO we get

0S(¢)  OL($,0a¢) O OL(H,0a0) (3.15)
Sp ) dxi 0D, '

11 2
—/t dt/d% [ b0(a) 20 000) () 0 OLO:08)
t1

(3.13)

0(6¢%)]



and the classical field equation (3.11) takes the familiar Euler-Lagrange form

OL(¢, D) ‘ 0 [ 0L(¢;0a9) ‘
99, %) _ (3.16)
0¢ $=3 Ozt ( O |4 (5)
For the Klein-Gordon field £ = 19#¢d,¢ — ™ ¢? so
a£(¢7 aOéd)) 2 8£(¢, aocd)) "
- _ 0 ) = 1
and the equation (3.15) takes the form
0
@3% = 9,00 = —m?¢p (3.18)
or, in short,
(0* +m*)p(x) = 0 (3.19)

This is the Klein-Gordon equation studied in the AQM course. (Right now m? is just a
parameter in this equation but it will be a mass of the scalar particle after quantization of
the Klein-Gordon field.)

Part 11

4 Quantization of the Klein-Gordon field

For simplicity consider (1+41) dimensional Klein-Gordon field ¢(¢,x). Lagrangian for this
field is

L(t) = /dx L(t,z) (4.1)
B ¢2 ¢/2 m2¢2
Lito) = 5 =73 2
where ¢’ = W and ¢ = % as usual).

Similarly to the case of (3+1) dimensions one can get the Euler-Lagrange equation in
the form of Klein-Gordon equation

o(t,z) — " (t,x) = m2¢>(t,az) (4.2)
4.1 Lattice model for the KG field

Lattice model: a harmonic oscillator in each point of the grid and similar interaction between
two adjacent oscillators:

1

L) = Y [§6R0) — SmP6in) — 5 [Busi(®) — én(0))] (43)



Sy

e,
@g@
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Q
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999999
1000000
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Figure 2. Lattice model: a harmonic oscillator in each point on the grid and similar interaction
between two adjacent oscillators. The lattice spacing a is the same for all oscillators.

The classical Euler-Lagrange equations for the set of oscillators are

+ ¢n+1 + ¢n—1 - 2¢n

d OL oL -
bn = _m2¢n ) (4.4)

atag 09

The normal modes are
i —iwpt * =1 iwpt
(bp(xna t) — apezanp 1Wp + ape anp+iwp (45)

where p is a real number, o, is an arbitrary complex number, and

4
w]% = m?+ 2 sin? % (4.6)
so the general solution has the form
m/a : . . 4
onlt) = [ 3 (apet it aemien it (47)
—T/a

Let us now label each point on the grid not by its number, but by the position of the
corresponding point on the lattice x, = na

o0

L(t) = % Z a{qy(t, Tn) — M2G2(t, Tn) — (¢(tv$n+1)a— ¢(ta$n))2} (4.8)

n=—oo

In the “continuum limit” @ — 0 the above sum turns into integral

1>
L) = 5 [ do [Bt0) - 0°(t0) - mPo(t,a)] (4.9)
—Oo
which is KG lagrangian (3.2) (for 141 dimensions).

Thus, the classical Lagrangian for our lattice model turn to the Lagrangian of KG field
in the continuum limit ¢ — 0. It is therefore natural to assume that quantization of our

model will give a theory of quantum KG field in the limit a — 0.

~10 -



4.2 Quantization of the set of harmonic osciillators.

First we need to identify canonical momenta for the lattice Lagrangian (4.3).

oL .
() = ——({) = ap,(t 4.10
(t) a%( ) Pn(t) (4.10)
Let us now label 7, by the point on the lattice x,, = na and define
1 ) )
w(t,zy)) = aﬂ'n(t) = on(t) = o(t,zp) (4.11)

(recall that 7(t,2) = ¢(t,z) in the continuum limit, see BEq. (3.4).
Hamiltonian of our set of harmonic oscillators reads

H(t) = Z [ﬂ'n(t)qgn(t)_[/(t)] dnmn
= 3 [0 + g B (t) — a0 + S (1) (4.12)

In the notations ¢(t, x,) and 7(t, x,,) (see Eq. (4.10) it takes the form

(t, xni1) — o(t, 7n)

a

Hit) = ¢ 3 [7r2(t,xn)+< )2+m2¢(t,xn)2} (4.13)

n=—oo

which reduces to the classical KG lagrangian in the continuum limit ¢ — 0

+ — (¢, x)}

2
/ dx[ﬁz (;’ ?) (qub(;, 7)) ”;2 (4.14)

(cf. Eq. (3.5) for three space dimensions).
As usual, to quantize a set of harmonic oscillators we promote ¢, and 7, to operators
¢, and 7, satisfying the canonical commutation relations

[quﬂ-n} = 1, [d)maﬂ'n] = [qu,ﬁbn] = [ﬂ-mﬂrn] =0 (4'15)

m#n
and solve the corresponding Schrédinger equaton
Sy = Al (4.16)
i— = :
dt

where

=g 3 e (R i @

and |®) is a vector of state for this system. In coordinate representation |¥) is described
by a wave function depending on all coordinates:

<"‘¢—n'--¢—1a¢07¢1--‘¢n~"|q}t> = (I)(tv"'¢—n-~¢—17¢0,¢1~~¢n-") = ‘ll(tv{gi)n}) (4'18)

— 11 —



As usual, [U(t, {¢,})|? is the probability to find the zeroth oscillator at the position ¢p, the
first oscillator at the position ¢, the (-1) oscillator at the position ¢_; etc. at time ¢.

The action of canonical operators qgn and 7, on the wave function in the coordinate
representation is given by

gf}nlll(t,{gf)k}) = qﬁn(t)\l’(t,{(ﬁk}), ﬁ-nql(tv{d)k}) = _i&in\y(t’ {(bk})v (4'19)

It is easy to check the canonical commutation relations:

[qgmvﬁ'n]\ll(t?{(ﬁn}) = - Z(ﬁmaznw(t?{gﬁn}) +i82n¢mw(t7{¢k}) = 'i(smn\ll(tﬂ {¢k})
[g?)m, an]\lj(tv {¢n}) = (¢m¢n —m < n)‘lj(tv {¢n}) =0
s (8 100)) = = (0~ (m & W)¥(t, {6,)) = 0 (1.20)

4.2.1 Normal modes for the set of oscillators

To find a solution to Schrodinger equation (4.16) we need to rewrite Hamiltonian in terms
of normal modes (4.5). A general solution to classical equations for the set of oscillators is
given by (4.7), the corresponding set of canonical momenta (4.7) have the form

m/a o . .
m(xp,t) = — z/ dp wy(ape’ Pt — ettt (4.21)
—7/a

and therefore the classical Hamiltonian (4.13) rewritten in terms of normal modes looks
like

w/a
H(t) = / /dp Wy, 0y (4.22)
where we have used the formula
- ian(p—p') / 2m /
Y. € = 2mb(a(p —p) = —o(p— ) (4.23)

n=—oo

The r.h.s. of Eq. (4.22) does not depend on time which reflects the conservation of energy.
For the operators ¢(z,,) and #(2,) the expansion in normal modes reads

. T/a G . .
d’(xn) _ / b (&pelanp+&}“)eflanp)

—n/a\/2wWp

w/a a ) }
(zy) = — 2/ P wy(Gpe' P — Gl eianp) (4.24)

—n/a\/2Wp P

where the factor /2w, is for convenience and wy, is given by Eq. (4.6). The inverse formulas

are

A — a i wpqg(xn)_l_iﬁ-(mn)e—ianp

Qp
n=-—co 2wp
20 wpd(wy) — idt(zn)
o = 0y ) Z ) oy (4.25)
n=-—00 Wp

- 12 —



It is easy to see that the operators &), satisfy the canonical commutation relations
lap.al] = 276(p—p), lap.ay] = [af,a},] = 0 (4.26)

One can check self-consistency

. T/a G an . . . .
A . p p Aia At —ia A danp’ At —ianp’
[P(zm), T (2n)] = _Z/—w/a\/ﬂ\/ﬂp’ wp Gy - eI Gy — Gl e
w/a ; R
= z/ /dp cosa(m—n)p = 25mn & bm, ] = 0mn (4.27)
Similarly, one can check that [QZA)m, (ﬁn] = [fm,7n] = 0.

4.3 Quantum KG field as a continuum limit of the set of harmonic osciillators.

In the continuum limit a — 0 the lattice Hamiltonian (4.9) reduces to

0 = % > [Fax) + (¢(:nn+1)a— ¢(x"))2+m2¢3(xn)2]

n=—oo

= ;/ de[#2(2) + ¢ (2) + m*$ ()] (4.28)

(recall that #(z,) = 1m,), see Eq. (4.7).

In the continuum limit the wave function (4.14) depends on the continuum set of
coordinates ¢(z) (each of ¢(z) is an independent coordinate) so (¢, ¢(z)) is actually a
wave functional.

Let us find the explicit form of the canonical operators QAS and 7 in this “coordinate
representation” of wave functional ¥ (¢, ¢(x)).

For the operator qg the limit @ — 0 is trivial:

San) Ut D)) = d(@a)U(t, {d(n)}) = S@)U(t6(2)) = é(2)U(t,é(2)) (4.29)

For the operator 7 the limit a — 0 is more subtle.

Let us prove that

L _ 0¥, 9(2))
Lim 7 (2 ) U (E, {p(20)}) = “oe(z) (4.30)
where the r.h.s. is a variational derivative defined in a usual way

oV(t, ¢(2))
59 (x)

as a linear part of the deviation of the value of functional ¥ due to the small deviation of

the argument of the functional W(t, ¢(z)), same as in the Eq. (2.6) (here h(z) = d¢(z)) in

Eq. (2.6)).

Proof: consider

U(t, 6() + h(2)) — U(t, 6(2)) = / dz h(z) oY) (431)

Wt {olon) + o)) - o)) = Y hen) Tl o) )

n=—oo

~13 -



The canonical momentum operator is defined as

Fe) U (D)) = Tl (o)) = — - OTEAAII g
a a a¢($n)
Ut {(xx) + hlar)}) = V(b)) = @ Y ah(za)i(zn)(t {d(r)})
= U(t,p(z) + h(z)) — V(t,p(z)) = i/d:c h(x)7(z)P(t, ¢(z)) (4.34)
Comparing the above formula to Eq. (4.43) we see that
F@)U(6() = — i‘w, QE.D. (4.35)

Let us now demonstrate that the canonical commutation relation (CCR)

~

Bam), Awn)] = o (4.36)

turns to

[D(2), 7(y)] = id(x —y) (4.37)

in the limit a — 0. Indeed, from Eq. (4.36) we see that if x # y we get [¢(x), 7(y)] = 0. In
addition,

o0

S aldlam), i) = i S / dr' [p(a'), #(z)] = i (4.38)

which means that [¢(x), 7(y)] = d(z — y) by definition of d-function (1.2).
Check of self-consistency of our formulas: CCR (4.37) in the coordinate representation
of vector of state

) FIWE (D) = = i0la) 55 ¥t 1) + s (G W A1)
= W0 (5507000) = 0 =)W (o) (1.3
To find %(y)qﬁ(x) let us note that for the functional F'(¢) = [da’f(x—a')p(z’) the definition
of variational derivative (2.6) gives
5 R PN
5255770 = 5 a6 =) = S =) (4.40)
Next, because by definition (1.2) of d-function
o(x) = /dx' d(x)o(z" — x) (4.41)
we can use Eq. (4.28) for the functional F(¢) = ¢(z) = [da’ ¢(2')d(2' — z) and get
0
Wﬁb(‘f) = 0(z —y) (4.42)

— 14 —



so the commutation relation (4.41) turns to CCR

[D(2), 7)Yt {d(2)}) = id(x —y)¥(t, {6(2)}) (4.43)

Now we are in a position to write down the Schrédinger equation for the wave functional

O(t, ¢(2))

GV = B 16) = ;5 [dalf@) + () + m?d @] Uit (o)) =
= 3 [l )+ ) + @] (ol 4
For the stationary states U(t, {¢(2)}) = e F'Wr({¢(2)}) so the Schrodinger equation

(4.44) takes the form

1 X 5 L 2 X m2 2 x z = z
5l 5 + @ @R G = BV () (149

4.3.1 3-dimensional KG field

At this point it is convenient to remember that our Universe has three spatial dimensions so
the KG field ¢ is a function of z = (¢, #). To quantize the 3d KG field ¢(¢, ¥) we can repeat
the steps discussed in the previous Section: consider 3d lattice of harmonic oscillators with
nearest-neighbor interactions, quantize this grid of oscillators and take the limit of lattice
spacing a — 0. The wave functional W(t, ¢(x) satisfies the Schrodinger equation

i%\y(t, o(x) = HU(t,p(x) (4.46)

H = % / Ea[72(, F) + |Vo(t, F)|* +m*¢° (¢, )]

where operators of canonical coordinate and canonical momentum

HE)T(t,0) = H(T)V(t, ) (4.47)
1)
Check of the canonical commutation relation :
6@+ = igzol@ = 50— 7) (1.48)

The Schréodinger equation for stationary states
U(t,0) = e "PWp(e)

takes the form

2
) H V@) + meX(@)| wp(o) = BUp(9)
(4.49)

A 1 )
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Part 111

4.3.2 Trivial solution of QFT Schrédinger equation: vacuum state

For the harmonic oscillator

2
($l0) ~ 7 (4.50)
(Educated) guess: for the Klein-Gordon field the vacuum wave function(al) should be similar
(@(#)[0) ~ e 2l (0D (451)

Q: What is the analog of w¢??
A: G(F)WmT F V2 (7)
Motivation:
For the oscillator: the classical path is ¢(t) = et
For the KG field: the classical solution is !

o) ~ [aperst o, = i) (152)

The Eq. (4.52) looks like a superposition of oscillators with frequencies depending on |p]
=

Our guess for the wave functional of vacuum state for the KG field is a product of wave
functions for these oscillators:

er—% @Dwpd(@) o, o= 3JPrdp(@Dwpd(F) _ 5 [dPrd(F)Vm?—V2H(T) (4.53)
because
Vit = V20(@) = Vit =V [ o) = [a% T ¥ o) (450
Thus, our guess for the KG wave functional for the vacuum state |2) is
(SD)NQ) = Vyae(4(@) = Nl 3/ Poo@Wo@ (4.55)

where W is a differential operator (4.54) defined as
Woz) = /m? — V2p(7) = / &3p \/m2 + PP (p) (4.56)

and N~! is some normalization factor. In the momentum representation it is even more
simple
(P = Viae(d(p)) = N~lem2/TP wro@o@) (4.57)

Let us now prove our guess (4.55). To this end we need to check that the Eq. (4.55) satisfies
Schrodinger equation (4.49)

AVacld) = 5 [#0 [~ (5505) + VHDF +m6(@)|Wracld) = Practunc(s)
(4.58)

!Note that w, from Eq. (4.6) turns to 1/m?2 + p2 in the continuum limit a — 0. This is relation between
energy and momentum of a Klein-Gordon scalar particle as we shall see below.
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2
Second two terms are evident so we need to find ( 3 ¢‘E5)) Uiac(@). A first step is to find

)
7\1&/&0
o) e

According to general definition of variational derivative (4.31)

¢) = 7 (4.59)

Voac(6+068) = Wcld) = exp [ = 5 [ 0+ 60)W (6 -+ 60)] — exp[ - [ @’ o170
= exp - % / d*x (6Wo +66Wo + 9Wg + 09W6) | - exp [~ % / &z W g]
~ exp[— 1/d3x qﬁWng]{ /d% SH(E)W () + 0(&;52)} —exp [ — ;/d% oW ¢]

= — [ 8@ W o(@) (o) + O(66%) o
SO 5 ) )
WWV&C (¢) = - W‘b(x)\pvac (¢) (4_61)

Now

(o) ) = 55 [Was(f)\lfvacw)}
o

Wo(@)| Wrac(9) = Wo(@)] =

~ 5@ Wyac(9) (4.62)

- 6¢<x>
o
Let us find first 5 (ﬂ) Gl Uiac (qb) at x £y

o o 0 L s -
55 5005 2 (@) =~ [553V00) | Brac(9) + [V 6(@)] [Wo)] Wrae (9) (4.63)

and take the limit x — y afterwards.
To get the first term let us find %W(ﬁ(gj’)

Wo(y) = /d?’p wpp(P)ePY = /d3p wpePYV [ 3z e~ PZp(2) = /d?’z ¢(5)/d3p wyeP T2

(4.64)
and therefore
W (o() + 06(7)) = / &z [$(2) + 66(2)] / &p w79
> W) = [Ep e ws)
Finally
0 6 _ 3 wone®T=E) _ W (W b(i
50(%) 5¢(g)‘l’va°(¢) { / d”p wp [Wo( )][Wqﬁ(y)]}llfvac(qb) (4.66)
Now let us take the limit 7 — &
L0 0y - ([ (e e
ot 5 V(@) = { [ = Po@o@ oacte) (467

17 -



and integrate over . We get

~ [ s @) = { [ [, [l o@o(@) oac(o)
[t [@pa, — [d e + [Fo@)P (168)

where we used

[esatvo@vo@)} = [ [a%we o [a% wyem o) (4.69)

= [ [@% wsyomo)2n s+ 1) = [a% oo

= [a% <m2+ﬁ2>¢<ﬁ>¢<—m = [t ) [y o) [ o)

= @)+ [0 [dy gl o [ Lo = mie (@) + 0@o()

Thus, we get Eq. (4.58)

AVacld) = 3 [d% [~ (5505) + V0@ + m6@0)| Wrac(d) = Pracocl®
(4.70)

with eigenvalue being the vacuum energy

Boe = /d3x/d‘3p”2” - V/d3p % (4.71)

where V is the volume of the 3-dimensional space. The vacuum energy density

- w w
Evac = /ddp ?p = V/d3p ?p (4.72)

is a sum of energies of oscillators with different momenta and each oscillator brings %
This sum (strictly speaking, integral) diverges. It is a general feature of all QFTs except
the supersymmetric ones where the vacuum energy vanishes.

4.3.3 Perturbation series for QFT Schrédinger equation

The perturbative series for a quantum theory is constructed like that: suppose we have a
Hamiltonian of the form

H = Hy + \H; with A < 1 (4.73)

The task is to find the spectrum of H and the probabilities of transitions between different
states as a series in small parameter A (in QFT, these probabilities are expressed in terms
of cross sections of particle scattering).

For example, let us consider the interaction Hamiltonian of the form

AH; = A / Bx $*(T) (4.74)
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V(o)

The usual procedure to get a perturbative series would be to solve the Schrédinger equation
by iterations, namely write down

= Wo(g) + AW1() + A’ Wa(¢) + ...

(4.75)

(Ho 4+ AH[)(To(h) + A1 () + N2Wo(d) + ...) = (Eo+ AE1 + N2Ey + ..)(To(¢) + AU (¢) + A2Ta(¢) + ...)

and solve:

HoWo(¢) = EoTo(),

(- EWi(6) = ExWo(o) - Hro(e) = B = Sollilbor g g
(Wo|Wo)
Ui(¢) = floiEo(El% — H1¥y)
The first equation for E; for wave functional reads
g IDO@T(6(@) A (6(2) W

JD(E)Wo(h(F)To(¢(7)

for wave functionals Wy (¢(Z). If somebody will calculate this ratio (with functional integrals
insted of usual integrals) he will definitely be lost of the second step of inverting of a
variational derivative operator. Probably, this procedure can be implemented on the lattice,
but in this case people just calculate functional integrals for the full Hamiltonian (4.73).
Bottom line: standard construction of QM perturbative series does not easily generalize to
QFT. Fortunately, there is another way - the QM ladder operator formalism can be easily
generalized to QFT.

5 Ladder formalism

5.1 Ladder operator formalism for harmonic oscillator

Reminder: we define

P w¢;+z7r
ot oﬁw ladder operators (5.1)
T Vow
Commutation relation for these operators reads
. 1 L. L a4
[a,a] = %(—Zu}[¢,7{'] +iw([w,¢]) = 1 (5.2)
Hamiltonian 5 )
q = % + %&2 - wde+g (5.3)
Property:
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may serve as a definition of the vacuum state |0).
Excited states:

1
>) (5.6)

where ¢, = - normalization factor. Let us check that Eq. (5.6) is an eigenstate of the
Hamiltonian (5 3). First, note that

n) = e,(ah)™0), E, = wn+

1

ﬂ

[H,a'] = wal (5.7)
= [H, (&Y = [H,a) @ +al[H,al)@h ! + ..+ @H"H,af] = nwah”

and therefore

Aln) = enBH(@)"0) = el @)")10)Fea(a!) HI0) = ealnot 3)(@1)0) = (ot 3)n)
(5.8)
so |n) is an eigenstate with energy E, = w(n + 3). (The normalization factor ¢, = ﬁ is
derived in QM courses but we will not need its explicit form in what follows).
Thus, the state |0) is the vacuum state, the state af|0) is the first excited state,
%(dT)2|O> is the second excited state etc. For this reason the operator a' is called a
“creation operator”.

Similarly to Eq. (5.7) one can show that [H,a] = — wa. Note also that
alln) = Vn+1ln+1),  an) = Vajn—1) (5.9)

which justifies the name “ladder operators” (you climb up and down a ladder |n)).

So, why these operators are more convenient that QZS and 77 Let us consider an example:
shift of vacuum state energy for anharmonic oscillator with H = )\QZ;4. Conventional
calculation reads

. 3\
(0| H|0) /d¢ 5% \ple 2% = A w/dgb ple ™ = 2 (5.10)
T 402

On the other hand, in terms of ladder operators we get (recall that a|0) = (0laf = 0)
A A

OUED) = 5 0a+a)'0) = H0l@+a@+ah’@raho) (1
= A0 + .l + (@ + a0+ A DI0) = 501636 + 110

- 4%2«)‘&“ al] +ala)al +110) = r;<0’ddT+d&TddT+1\O>

= Al + a1 = -

We see that the integration over ¢ is replaced by commuting various ladder operators. For
harmonic oscillator, it is about equally difficult (or equally easy). However, in QFT we
have an infinite (and worse, continuous) set of coordinates ¢(x) so we will have an infinite
and continuous number of integrations if we try to generalize Eq. (5.10) to QFT. On the
contrary, as we shall see in below, the ladder operator formalism easily generalizes to QFT.
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5.2 Ladder operator formalism in quantum field theory

To generalize ladder operator formalism to QFT we consider the lattice model for Klein-
Gordon field and take the limit a — 0. The expansion (4.24) in normal modes turns to

A dp ~ ipE | At o—ipE / dp R A -

r) = aze* +ae PT) = az+a' )e” 5.13
¢( ) \/m ( P D ) \/m ( P 7p> ( )
N . dp . ipE AT _—ip® dp ~ ~f ipE
W) = —1| —F/— Wylape — ae — wplay, —a_ s)e

( ) \/ﬂ p( P D ) \/m p( P p)

where we relabeled the normal modes as a, and &;. The inverse formulas can be obtained
by taking the limit a — 0, n — oo in Eq. (4.25)

ay = / d*z ;w [(Z) + i (&)]e 7T
al. = 2 = 5(Z) — i (T)]ePT
§ = [d g 190~ (5.14)

From Eq. (4.26) we see that [a, A;] = (27)36(p— 7).
Self-consistency check:

= /d?’:cd?’y eiﬁ'f—iﬁ'ﬂwp T Wy §(Z—17) = Wp T Wy By P-P)E (27r)35(]§’— )
N PN
Similarly, one can demonstrate that [az, &;] = [&T &;] = 0.

Lets summarize CCR in ladder formalism

(5.16)

= ;/fﬁp [ %(@ﬁ— al ) (ag —al ) + %(Aﬁ_f—&iﬁ)(ﬁ’ +al )

= [ Papal+alan) = [a% Pafart lapal) = [d° (il Fen050)
= /dgpwpa;dﬁ + V/dgp %

where (27)36(0) = [d3z = V where V is the total volume of 3-dim space. This
(last) term in Eq. (5.17) is the infinite total vacuum energy (4.71) which does not affect
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any transition amplitudes (cross sections). In what follows we omit this term so for our
purposes the KG Hamiltonian in terms of ladder operators has the form

H = /d3p Wyl (5.18)

[H,a}) = / @k wilalag, al] = / &k wyallag, af) = / @k wral(2m)°5(5— k) = wparl;
[H,a;) = /a‘?’k wylalay, as = /a‘% wylal,aga; = —/dgk wrap(2m)38(F— k) = — wyiy

(5.19)
Similarly to the case of harmonic oscillator, a, is an “annihilation operator” in a sense that
azl0) = 0 (5.20)

Proof: from Eqgs. (4.55) and (4.35) we see that

(5.22)
Please note that W is a usual differential operator (4.64) rather than the quantum operator
like ngS and 7.

We have defined vacuum state as a solution of Schrédinger equation (4.58). Alterna-
tively, one can define a vacuum state as a state annihilated by operators a; (see Eq. (5.20)).
It turns out that for the purpose of calculation of cross sections of particle scattering one
does not need to know the explicit form of the vacuum state Uo(¢) = ({¢(Z}|0) - the rule
(5.20) is sufficient. (For that reason, the explicit form of wave functionals is rarely discussed
in QFT textbooks).

Thus, vacuum state is a state annihilated by a; (for any p). The excited states are

p) = a;]0) (5.23)

Let us prove that a aq |0) is a one-particle state - the eigenstate of the KG Hamiltonian (5.18)
with momentum p’ and energy E, = w, = \/m? + p?.

— 22 —

wp¢( F) - We(#)] = 0 (5.21)



It is easy to start with the energy of the state (5.23). From Eq. (5.19) we see that

Hp) = Hal|0) = [H,al)|0) +alH|0) = [H,al)j0) = wpal |0) = wylp) (5.24)

so (5.23) is an eigenstate of Hamiltonian with energy E, = w, = y/m? + p?. But what
about the momentum of the state [p)? For now, p in the definition (5.23) is just a label
and we need to demonstrate that it has a meaning of the momentum. To this end we need
to construct momentum operator for quantized KG field.

Part IV

5.3 Momentum operator in a quantum field theory
5.3.1 Reminder: momentum in a classical field theory

A momentum of the classical system (particles or fields) describes the response of the system
with respect to translations.

Suppose we make an infinitesimal translation z, — z, + €,. 2 The change in the
Lagrangian (density) is £(z 4+ €) = L(x) + ¢* 4% where

dzt

d 0L 99 oL 00,¢
o, F1909) = 5050t 30,6 o, (5.25)
From Euler-Lagrange equations % = 8”%@) we get
dac — 9¢ 0 8,C+ 0%¢ oL B 8(8(;58/3)
dx,, - Ox, 0x” 00,¢  Ox,0x" 00,¢ oY O0x,, 00, ¢
0 oL
Iz — g — py o _
- (w(a 58,59 E) 0 o 8T 0
(5.26)
where or
T = Ou0yg5 ~ 9wl = 0u0,6 — L4(9° 900 — m*4?) (5.27)

is a stress-energy tensor of the scalar field ¢(x).
Conservation of energy

t1 t1 . t1
/ / Bx 8Ty = / / >z (0"Too + 0'Ty) = / / >z Ty = 0 (5.28)
to to to

= /d3$ Too(fl,f) = /d3l’ Too(tQ,f)

2
= /d% Too(t, Z) = /d3:1: (1(8045(75,5))2 + %\Vqﬁ(t,:f)!Q + =

5 5 ¢2(t,a_c’)) = const

2Throughout these notes the Greek letters will denote components of 4-vectors a, while Latin indices
will mean components of 3-dim vectors @;. (I try to avoid notation a; since it can mean both the covariant
component of 4-vector a and usual component of 3-vector @ which differ in sign)
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Since o (t, ) = =w(t, &)
2
/dgaz Too(t,Z) = /d3x (%772(15,5) + %|V(b(t, T)|* + m?gbZ(t,f)) = const  (5.29)

The expression in the r.h.s. is the classical Hamiltonian (3.5). Thus, we reobtained the
conservation of energy for the Klein-Gordon field.

Conservation of momentum

t1 t1 t1
/ / Bz 9T, = / / 3z (0°Ty; + 0% Ty) = / / 3z Ty = 0 (5.30)
to to to
= /dSZU Tol'(tl,f) = /d?)l' TOi(tQ,f)
= /d3x Toi(t, %) = /d3x Oo(t, 7))0ip(t, ) = /d3x 7(t,2)0;¢(t,Z) = const
The expression in the r.h.s.
p = / B Tos(t, 7) = / B w(t, 7)00(1, 7) (5.31)
is the (conserved) classical momentum of the KG field ¢(t, 7).

5.3.2 Quantum momentum operator

Now we construct the corresponding quantum operator. As usual, we take ¢t = 0 and
promote ¢(0,Z) and 7(0, Z) to operators ¢(Z) and 7(&). We get

Pt = / Bz 7(2)0'p(T) (5.32)

This is the quantum operator of momentum. In terms of ladder operators

_‘ IZ R Ad
P = / Brd3p (—i),/%ew'z(&ﬁ—aiﬁ) / &y e (o + al ) (5.33)

1

i 1 L . L ,
p—pz/d‘?’p p'labagy + agal) = /d‘?’ppz(a}aﬁ+(27f)35(0)) —/d‘?’pﬂa}% + V/d“3pp’

The integral [d 3p p; is formally divergent but it should be put to zero since there is no
preferred direction of “vacuum momentum” due to rotational invariance:

BP0y = / d3p p;|0) = should be 0 (5.34)
Finally, the quantum operator of momentum for the KG field has the form
P, = [ &% piatay (5.35)
i D piazagp

(cf. BEq. (5.18) for the Hamiltonian: Py = H = [d3p wp&;r)Aﬁ).
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Commutators:
[Pial] = / &y plalay,al) (5.36)

= /dgp, plal[ay,al) = /d?’p’p'l Lemnd@-p) = pla)

= [a iy = — (@ ap ) = g
=
P, 4(2) 0 (1Pl + [P alle ™) = [ T2 (Cpape™ + pate )
’ \/ﬂ »p »Up 2wp i 7
d iDL ~ ~ PPN
- a?z; ﬁ%@ﬁewu&;@ ) = iai,aﬁ(f) = i0i(F) = —i0'$(7) (5.37)

HR) = [ @i walalas.alag (5.38)

b
- /d3pd3q WpGi &ﬁa,;[ 7 Gg + apaglas, ag

Now we are in a position to check that the state d;g. has a definite momentum

Biafjo) = alpjo) + [Paf)jo) = pialjo) (5.30)
SO &;;.|O> is an eigenstate of the momentum operator P, with eigenvalue p; = [p) = ;| )

is a state with momentum p.
Thus, the state |p) is an eigenstate of both Hamiltonian and the momentum operator

HIp) = wilp) = Eplp), Plp) = pilp) (5.40)

and the relation between energy and momentum of the state is a characteristic of a rela-

tivistic particle with mass m

=

|p) is a state of a (scalar) particle with momentum p’ and energy E, = w, = /m? + p?.
Next, from commutators (5.19) and (5.36) we see that

Balaljo) = (B, alJato) +al{B,al)lo) + alalilo) = (v + ai)ala g|o>
At AT _ 1fT aTiat T AT T _ T
Aalallo) = [[,al)atjo) + al{,al)|0) + alali0) = (E,+ Epalato) (5.41)

(here Ep_ p = \/m

5,q) = alao) (5.42)
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Note that &;&}]0) = a}d%\O} = Bose-Einstein statistics.
Similarly one can define a n-particle state

By, Ba, B} = al al ...l [0) (5.43)
This is a state of n particles with momenta p, ps, ...ph.
6 Heisenberg picture in QFT

Reminder: in quantum mechanics

Schrédinger picture:

W(t) — vector of state depends on time
¢ — canonical coordinate does not depend on time (6.1)
T — canonical momentum does not depend on time

Dynamics is governed by Schrédinger equation

dv(t) -

——— = HV(t 6.2
i (t) (62)
Heisenberg picture
o= \I'S?}}m A(t)"?:ﬂ - vector of state does not depend on time
o(t) = e”ftqﬁe*”j” —  canonical coordinate depends on time
o(t) = etltpe—iH? —  canonical coordinate depends on time
(6.3)
Dynamics is governed by Heisenberg equations
do(t) . - di(t) . 4
—— = i[H, ot = i[H,7w(t 6.4
P = i) i) (6.4
Schrédinger picture in QFT:
U(t,{¢(F)}) — vector of state depends on time
o(& — canonical coordinate does not depend on time (6.5)
(T — canonical momentum does not depend on time

Dynamics: Schréodinger equation (4.44)

GV = ;/ d%[(aqif))”'WW(@+m2¢2<f>]¢f<t,{¢<2>}> (6.6)

Transition to Heisenberg picture in QFT: same as in QM

\IJ(A{gZ)(:E')}) = \IlschrpA(t,A{gb(f)})Jt:O - vector of state does not depend on time
o(t, %) = eHlg(z)e 1 —  canonical coordinate depends on time
o(t) = etz (x)e H —  canonical coordinate depends on time
(6.7)

(for example, vacuum state is Wyac({0(Z)}) = Nl 2 /deo(@)v m2=V26(7))
Dynamics is governed by Heisenberg equations

do(t, %)
dt

— AL, ), TOD) it w(e.) (6.8)
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NB: instead of the variational derivatives in Eq. (6.6) we have ordinary derivatives in

Heisenberg equations (7.13).
In terms of ladder operators

2 dp . _ipx | st ipe
$(z) = —@(p Pt e’ (6.9)
d—p ~ —1pT ~ 1px
By(age™ " — afe™)

(x) = \/ﬁ

Proof of Eq. (6.9)

N . e n . )
¢ty e =it — Zinﬁ[H’ [H,...[H,a]] = Zlnﬁ(_Ep)naﬁ — aye B
n=0 ’ n=0 )
» 0 n 0 n
eMale=lt = S i H (B, Al = Y () ay = e (6.10)
n=0 n=0 )
(recall that [H, a5 = — Epag, [ﬁ,d;] = Epa ;; where E, = w, = /m? + p?).
From Eq. (5.13) we see that
6iﬁtqg(f)€_iﬁt _ dp ZHtAf iHt zpw+€th JL@ zﬁte—iﬁf) _ dp G Ept o zpm+ AT feiBpte zﬁf)
,/2E 7 P V2E, *
eiﬁtﬁ_(j)e—iflt /d—p / thA —iHt zﬁf . eiﬁt&;e—th —ip- /d_p l &ﬁe—zEpt ipr CALT_EZE” ﬁf’)
(6.11)

which coinsides with Eq. (6.9).
Heisenberg equations:

951 = 9 dp A o tEpt T iEpt ,—ipZ ; By o Bt ip T iEpt —ip% P
—o(t, ) = — (age*"P lpx—ka Erte™T) = — g [dp\/ = (age™" ”e”””—a@Z Ple TP = 7(t, )
ot ot) J2E, " 5 \4p

dp 2 (&ﬁeszpt P _|_aT zEptefiﬁf)

0., . O [dp [|Ep,. _ibt ive At iEst —ind
&ﬂ(t x) = 875/@ ?(aﬁe i pelpﬁ_aﬁl pte zp:r) = — \/EEP

dp iEpt TEt—'** dp 2 2\ (7 _o—iEpt TEt—
_ )( —iEyp sz+ iEpt, zp:c) — (m v/ ) (ap —iEy sz+ iEpt, zp:c)
/./2E V2E,
a - N
p (&ﬁe—zEpt 1px + CL_EZEpte_pr) - _ (m2 _ V2)¢(t, CL_")

= (—m2 + V2) TEp
(6.12)

Combining these two equations we get the Klein-Gordon equation for the operator qg(t, X)

2
%qs(t %) = %fr(t,f) C em2 VLT = (P4mdd@) =0 (6.13)

which has the same form as the KG equation for the classical field ¢(x).
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Part V

6.1 Momentum operator and shifts of coordinates

We define
Pt = (H, P) — operator of 4 — momentum (6.14)
In terms of ladder operators it has the form (py = E, = \/m? + p?)
pr = / d*p p'atag (6.15)
where we combined Eq. (5.18) and (5.35).
Let us prove that A A
b(x+a) = elop(x)e e (6.16)
As a first step, we check that
e P Ig(20, )T = (0,7 +a) (6.17)
The r.h.s. can be expanded in commutators
6&(1'07 P Z A A C_ia . [p ’ C_i) &(x()a ZE)”]
- i )b, B) = i L@ 9w, ®) = deoFra)  (619)
= et n Z@fz 0 - o nl 0 - 0 .
where we used
Pb@)] = [Po@)] = [P e md@eifing = dfin[pi ja)e i = — icfrgig(meiiie
P - - o - o - o -
—  _iqtotHzo 2\ ,—tHzo _ AV - — —
= —i0'e""¢(Z)e i0'p(x) zaxiqﬁ(x) zaxiqﬁ(x) Z&%} (x) (6.19)
see Eq. (5.37) and Eq. (5.38).
Next,
iHag ; —iHa o ta T T & g S n " —
Hrog(yetioo = U g g = 3 W pda) = e +ad)
n=0 ’ n=0
(6.20)
because
[H, ()] = [H.eT0g@)e 0] = T, §@)e 70 = —icdfroayd(@)e 1 = —idyd(a)
(6.21)

where we used Heisenberg equation (7.13).
Now we are in a position to prove Eq. (6.16).
get

7,Pa¢( ) —iPa _ ezHao zA (Z)( ) —zﬁao-i-z‘]gﬁ _

_ GZHGOQZAS(JI(),f—I- CL) —iHag
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= ¢(x0+ ao, T+ @),

Combining Egs. (6.18) and (6.21) we

eiﬁaoe—z‘ﬁ%(x)eiﬁde—mao

Q.ED. (6.22)



Another proof of Eq. (6.16): in terms of ladder operators

m . . Z 2L - (=) 2 > e -
ezPa&ﬁesza _ ezHaoesz-adﬁezP-aeszag — ezHao Z ( Z') [P -a, [P -a, [P -a, dﬁ“]eszao
0 n:
00 .o . A A 0o .

= il SO A ittan _ gipdgifiang eift _ gpa 3 U0 g g gy

n=0 w n=0 "

00 .

B —iagFE,)" ‘ . ‘

— (i Z ( T(Z' P) &17 _ e—zEpao—Hpu&ﬁ _ e—zpa&ﬁ (623)

n=0 ’

Similarly,
- - 00 — — —
61Pa&;€—zpa eiﬁaoe—ip-aA;e P Ee—zHao iHao Z (_Z')n [p a, [P a, [P a, &;]]]e—zHao
=0 n.
o 00

_ ezHao Z (_Zp : CL) &;ﬁ_lHQO _ e—zﬁfiezHao A;f?e—iﬁao 6—1562 (zao')" [ﬁ7 [ﬁ’ [H’ &;[7]“

n=0 n: "0 n:

- (iagEp)™ . L R
ip-a P T iEpag—ip-a@ At ipa ~t
=e Z o ;= €7 ay = ea; (6.24)
n=0
and therefore
eilsa(g(x)efipa _ dp (eiﬁadﬁefipaefipx + eiﬁa&;e zpaeipm>

V2E,

~ —ipa_—ipr | ~T _ipa_ipx\ __
(aze~ "M% + agee™”) =

dp

V2E,

For shifts in 7(z) we have similar formula

eipafr(x)e_iﬁa = 7(z+a) (6.26)

Indeed, since 7(zq, Z) = dod(x0, Z) we obtain
Pty P = ¢ Do et = L, D = Ldara) = 7(rra)
(6.27)

6.1.1 Quantum operator P and differential operator P (generator of shifts)

Shifts in 4-dim space-time are generated by the differential operator
. . o - . o
PRO) = i0h9(e) = i-0@),  bata) = e ) (629)
o

where the last equation is easily checked by Taylor expansion. The same formula will be
evidently true for quantum operator ¢(z)

~

P%@)zi&%@>=¢£;a@7 Hrta) = PGy (629)

so the relation between the action of quantum momentum operator P and differential
operator P is

A~

[PF,d(2)] = —idd() = —PHd(x) = ¢P(a)e P = dlata) = e (x) (6.30)

To avoid confusion, hereafter we mark by hat only quantum operators.
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6.2 Equal-time commutators

By definition

[9(Z), 7(¥)] = i0(Z —9) (6.31)
Let us compute
(6t ), 7(t, 9] = [T o(@)e™ ™ e Ma(@)e™ ] = M) 7@l = id(T - 7)
[6(t, ), o(t, )] = [ d(@)e ', (e ] = H'[G(z), d(7)]e ' = 0
[#(t, %), 7(t, 7)) = [eH'7(@)e T eMir(e ] = M 7(@), 7(F)]e ' = 0 (6.32)

= Equal-time commutation relations:

Bt 2), 7t D) = i6(F—5),  [b(t.D),6(t,9)] = [}(t,5),7(t,§)] = 0 (6.33)
6.2.1 Normalization of one-particle state
Ip) = \/Ea;m) Peskin (6.34)
lp) = a;|0> Bjorken & Drell '
The factor /2E, makes (plp/) = 2E,02735(p — p') relativistic invariant, see Peskin’s

textbook.

6.3 Propagators
6.3.1 Wightman propagator
We start with the definition of Wightman propagator

D(z,y) = (0l¢(x)d(y)[0) (6.35)
Using formula (6.9)

ar3p dsp,

D =
(@) V2E, \/2E,
3
/ a’p e~ P(z—y)
2E,

Large-distance behavior of D(z — y).
First, consider the time-like intervals (z —y)? > 0. At time-like interval we can find a frame
such that z —y = (¢,0). In this frame

(Ol(age™ """ + &Le™) (dye ™'Y + al,e™)|0)

a3p iy ( L,
TP i (mo—yo)istE—)
/ e (6.36)

p():Ep

3
D(z,y) = /dp e~ Ep(zo—yo) — 1 it\/pPm?

0o 2
2Ep a2 Jo Vp? 4+ m?

1 oo ) _ —imt oo .
= 4n? dE /E? — m2eiBt E = 64 2 / dE \/2méE + E2e7¢!
™ Jim ™ Jo
too €M [0 fo e o —ifttooo N
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Figure 3. Contour

At space-like intervals we can find a frame where z —y = (0, 7). In this frame

3 Ry
Do) = [ 70 =

1 00 p2
bl 4 - | dp £
2B 87T2/0 P Vp?+m?

iy
/ df sin Qe'Prcos?
—Tr

etpr _ o—ipr

1 o) 2
/ ap L
8m2 Jo VP2 +m?2 i
I A
87TT — 0 p2+m2 87’["]" C p2+m2
1 & )

1o P L
—— [ dp / du e =
87T2/0 VP2 +m2J

r

L 4 pe PT p=rtm i /oo (m—|— /\)e—/\r

N Ar3r J,, P /p? —m? N 8m2r Jo V2 m + \2

Wyt / Ty AN oo VM (6.38)
8m2r Jo 2Am + X2 2(27r)3/2 '

6.3.2 Causality

Causality: no signal should go faster than the speed of light.
In other words: measurement performed at the point x should not affect measurement
performed at the point y if (x —y)? < 0.

“Elementary measurement” in QFT is [p(z), ¢(y)] = causality requires that [¢(z), d(y)] = 0
for (z —y)? < 0.
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Check:

- - d3p a3 - -
3, d)] = [T e e, e e

2E, \/2E,
(L'LSp ar3p/ T . )
\/E \/m ([ P p] [ D’ p] )
E°p [ —ipta—y) _ (o)
P
Now, if (x — y)? < 0 there exists a frame where zg = yp so x —y = (0,7) and
By a3p nw o7 [P
D@a—y) = [ZL 07 Dy—g) = |22 #7 L T — D(x—y) (640
@) =[5 e™ Dy-) = [Fre 5 (2-) (6.40)

which proves [¢(x), d(y)] = 0 at (z —y)% < 0.

6.3.3 Feynman propagator

In AQM course you’ve studied Feynman propagators. In terms of operators the Feynman
propagator reads

Dp(z —y) = 0(z0—yo)D(x —y) + 0(yo — x0)D(y — ) = (0|T{d(x)$(y)}|0) (6.41)

where

T{p(x)p(y)} = O(xo —yo)o(x)(y) + 0(yo — z0)P(y) () (6.42)
is called a“T-product” of operators.
NB: since [qg(x),gg(y)] = 0 the T-product (6.42) is relativistic invariant — the Feynman

propagator is relativistic invariant.
Proof: if (z —y)? > 0, 0(xg — yo) singles out upper cone, (xg — yo) singles out lower
cone, and for (z —y)? < 0 the order of operators does not matter anyway.
Explicit form of Feynman propagator:
d*p 1

De(z—y) = ll—% i m2—p?—ie (6.43)

Proof: perform the integration over pg

d4 —ip(z—y) d —ipo(w—y)
lim ‘p € - /d‘gp ePT=Y) Jim 2P
e—0) i m?—p?—ie e=0) 2mi m2+ p? — pd — ie

= [a3p &PF9) lim . .
/ p =0, 2mi (po — Ep + i€)(po + Ep, — ie€)

dpo —e—po(z—y)o

(6.44)

If g > yo we can close the contour of integration over pg in the lower half-plane and get a
residue at pg = FE), — i€, see Fig. 4
dpo —e—po(z—y)o 1

li = ~iBp(z0=yo) 6.45
50/ 2mi (po — Ep +i€)(po + Ep — ie) 2Epe (6.45)
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Figure 4. Contour for Feynman propagator

and therefore

4 —ip(z—y) 3 . IV
lim d‘p ¢ = /d p e~ Po(z—y)o+ip(F—y) _ D(x —y) (6.46)

e—0) i m?—p?—ie 2E,
Similarly, if g < yo we can close the contour of integration over pg in the upper half-plane
and get a residue at pg = — E, + i€ so
_e~tpo(z—y) .
lim [ 9P0 c 7 — L iBow) (6.47)

e=0,) 2mi (po — Ep + i€)(po + Ep — ie€) 2E,

and therefore

d'4p e~ p(z—y) d—3p . N
li _ YV ipo(z—y)ot+ip(Z—y) P 2P D(u — 4
=0 i om2— p? — i€ /QEp € (y — x) (6.48)

so we get Dp(x—y) = 6(xo—yo)D(r —y)+60(yo — x0)D(y — x) as in the definition (6.41).
Mathematically, the Feynman propagator (6.43) is a Green function of the KG equation:

d—4p efip(zfy) d—4p efip(xfy)
. 2 2 _ . 2 _ 2
11_121(1)(83;4—771)/ i m2—p?—ie lgr(l) i (m”=p m? — p? —ie
a* ;
_ / Z_p e PEy) = s (g — y) (6.49)

6.3.4 Retarded, advanced and Feynman Green functions

A green function of the KG operator is a function satisfying the equation
(@2 +m*)Dg(z —y) = —idW(x—y) (6.50)

This equation can be solved by Fourier transformation and the answer is

adip 1
Da(z—y) = /im2 — (6.51)
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However, this answer is ill-defined since there is a singularity on the path of integration over

po which need to be circumvent one way or another. There are 3 possible ways to go around

the singularity. They correspond to retarded, advanced and Feynman Green functions.
Retarded propagator (retarded Green function)

Dr(z—y) = 0(z0 —y0)([b(x), d(y)]) (6.52)

let us demonstrate that

d4p e_ip(x_y)

D — = i 6.53
k(@ =) 50) i om2o p? — iepg (6.53)
Indeed,
7 o %%
v N
Y AN
V N\
; \
Y \
, \
/ Y
/
I |
T
) © ® ;
\ - -1 -
\ Ep | € Ep 1€ //
\ K
N /
N /
N\ N s
N / 4
X0 >y0 S . PPl
Figure 5. Contour for retarded Green function
d? —ip(z—y) N d —ipo(z—y)o
lim .p 26 R = lim [ d3p @9 Jim iﬁ, 5 ¢ — R
e—~0 i m? — p* — iepg e—0 =0/ 27 m* + p* — p§ — i€po
L d _e—tpo(z—Yy)o
- / d3p PED Jiy [ PO c , (6.54)
e—0) 2mi (po — Ep +i€)(po + Ep + ie)

Now both poles in the integral over pg lie in the lower half-plane (see Fig. 5) so at o < yo
one can close the contour in the upper half-plane and get 0 while at zg > yo one gets a sum
of two residues:

hm/dﬂ) _6_.Zp0($_y)0 - = 9($0 — yo)i [e*iEp(xD*yO) —_ eiEp(fEO*yO)]
=0 2mi (po — E, + i€)(po + Ep + ie) 2E,

(6.55)
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Thus,

4 —1 — 3
lim dlp e*ow) = 0(zo — y0>/M P9 [e_iEp(xo—yo) — eiEp(fb‘o—yo)]
e—0 i m?Z—p?—iepg

= O(xo — yo)[D(z —y) = D(y — 2)] = O(xo — yo){[0(x),d(»)]), QED.  (6.56)
Similarly one can prove that the advanced Green function
Da(x—y) = 0(yo — z0)([d(v), d(x)]) (6.57)

can be represented as

dip  e~irle—y)

Dp(z —y) = lim (6.58)

e—0) i m?—p?+iepy

(Actually, the easiest way to prove the above equation is to make a change of variables
p <> —p in the integral (6.53) which corresponds to z < y).

Part VI

7 Self-interacting KG field

In classical physics

1 m? A
V7] e 2 N4
L= 50"60,0 — 6" — S0 (7.1)
Euler-Lagrange equation
(9£__2_13 oL %_Mﬁﬁ
56~ "0 m” g ~ %% 55 = Voang
= w56 = o) (12)

= the equation of motion is non-linear
(@ +m*)p(z) = — ¢°(x) (7.3)

In classical physics, we try to solve the non-linear equation (7.3). In QFT, the exact
solutions were found only for some simple 1 4+ 1-dimensional models. Instead

e Perturbation theory at small A\ < 1.
e Semiclassical methods (analog of WKB method in QM).
e Calculations of functional integrals by lattice simulations.

In this course we will discuss only the perturbation theory (in KG model, then in
Yukawa theory, in QED and finally in QCD).
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7.1 Perturbation theory for self-interacting KG scalar field in QFT

The Lagrangian density:

1 m? A
— Ak a2 4
L= 50M90,0— o-g? — 5o (7.4)
The canonical momentum: o
_ _ 90
p— e ¢ (7.5)

The Hamiltonian density is given by

7.‘_2

H =7 —L = 5

Lo o, m o Ay
+oIVoR+ g+ o (7.6)
7.1.1 Quantization (at t = 0)

As usually, we promote ¢ and 7w to operators
o(t,T) — o), n(t,d) — 7(d), (7.7)

satisfying the canonical commutation relations (CCRs)

[3(2), 7#(H)] = i6(Z—4), [0(F),0()] = [#(@),7F)] = 0 (7.8)

The quantum Hamiltonian is

- 1
0 = /d3x[2fr2(f) +

m2

VO@)P + 5-6*(@) + 376'(@)] (7.9)

N

We define vacuum state |€2) as an eigenstate of H with the lowest energy (we suppose that
it is non-degenerate).

HIQ) = EuaQ) —  stationary Schrodinger equation (7.10)

In the explicit form it reads

[ [~ 5 (5m=) 4 SIVO@DE + 220 + 56 Baaed) = Bracucls)

2\ 0 () 2
(7.11)
(here ({p(Z)}Q) = Uyac(o(Z) as usual).
Heisenberg picture
We start with V({¢(Z)}) = Ysenolt = 0,{¢(Z)}) and time-dependent canonical
operators
o) = dMg(@)e
#(x) = ellla(z)e it (7.12)

where x = (t,#) and H is given by Eq. (7.9). Note that formulas (7.12) look like Eqgs.
(6.7), only H now means the Hamiltonian (7.9) with the interaction term.
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The Heisenberg equations look similarly to Eq. (6.3) (with H given by (7.9))

do(t,Z) A 4, drx(t,2) oL
pr = i[H, ¢(t, D), o = i[H,7(t,Z)]) (7.13)

Let us prove equal-time commutators

(66,2, 7(1,9) = [Mo(@)e M (e ] = S, Al = id(@ - 5)
66,2, 6(t.9)] = [Mo(@)e " Mo = @), e = 0
[7(t,2),7(t, )] = [ethﬁ(f)e*th,e"Htﬁ(g’)e*th] = i a(@), 7(7)]e M = 0 (7.14)

which is identical to Eq. (6.32) albeit with different H. From this equation it is easy to see
that

. 1.y, o 1o~ m2 .o, ANag
) = [y + 596 DP + 5 8(05) + 561 2) (7.15)
3 1l it i, L ifi e 2 —iHt m? iHt 72 It | AN ift A, —iHt
= r|—e " 'me(x)e + —e x)|“e + —e¢ T)e + —e r)e
[al et @e it 4 S Go(@)pen it 4 TG @y Lotz ]
it 1= m? Aoy v Aty il
__ela/fx[ﬁ%f%%ﬂv¢ﬁﬂl+22&@3+4@(ﬁkzzt__é et —

so H(t) does not actually depend on .
Let us prove now that the quantum operator ¢(x) satisfies the same KG equation (7.3)

as the classical field \
@ +m))d@) = - 58 (7.16)

Proof: first, consider %qﬁ(t,f). Due to Egs. (7.13) and (7.15) we get

—o(t,7) = i[H,d(t,7)] (7.17)

m2

N A~ A
5 (1 2) + 564t 2), 6(t, 7))

Next,
9 P o
_ d3 ~2 > 16At—»2 m22 - )‘A4t S 7
= i [ @575 + 5 VoD + 3D + 616D, (D)
o n 2 A -
= i [ 900 + 52 + 36409, 7(0,7)]
:V%w@—m%@@—%&@@ = @%mﬂa@—-—gﬁm
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where we used formulas

mQ ~ ~ ~ N
/d3z[2¢2(t,z),fr(t,f)] = m2/d3z *(t,2)[(t, 2), 7 (t,T)] = im*(t,T)

3!
Jalen R ae0] = [ dée 0@, 700] = i a8 25002

= —i / Bz V2Pt 2)6(F - 2) = —iV3P(t,Z) (7.19)

/d%[z&(t,z),ﬁ(t,f)} = )\/dSz o3 (t,2)[o(t, 2), 7(t,7)] = igéf’)(t,f)

7.2 Green functions
Definition of the n-point Feynman Green function

(QUT{d(1)d(x2)...d(n)}|2) (7.20)
= O(x10 > 220 > .n0) (QD(21)P(2)...0(2,)|Q) + permutations

Examples:
1. Two-point Geeen function

(QIT{d(x1)p(22) }|O)
= 0(z10 — 220)(QU(z1)D(22)[Q) + (20 — 710 >)(Qd(2)P(21)|Q)  (7.21)

2. 3-point Green function
(QUT{(21)(x2)p(3)} Q) (7.22)
= 0(x10 — 220)0(w20 — $30)<Q|¢3($1)¢3(392)¢3(4U3)|Q> + 0(xo0 — x10)0(210 — $30)<Q\$($2)¢3($1)¢§($3)’Q>
+ 0(x20 — 230)0(230 — T10)(QD(22) Q) + 0(z10 — 230)0(230 — 220)(QD(1) |
+ 0230 — 210)0(210 — T20) (QD(23) Q) + O(z30 — 220)0(220 — 210)(Q(3) |

Later we will prove that the Green function (7.20) can be represented by a sum of Feynman
diagrams with n tails, but at first we discuss the relation between Green functions and

scattering amplitudes.

8 LSZ reduction formula

8.1 In- and out- states
A typical setup for scattering:
Let us define the operator ¢;, by

éin(l’) = gﬁ(ac) + 2% dtz G%(x — 2) 453(2) (8.1)

where G%(z — y) is the retarded Green function (6.53)

0 J— p—
Grlz—y) = / i m?—p? —iepg
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free particles in
the remote past

free particles in
the remote future

described by ¢ 0 described by ¢ .
Figure 6. Scattering
satisfying the equation
(B +m?) Gh(z—y) = —idW(@x—y), GChlzx—y) =0 (if xo<yo) (8.2)

Using this equation one obtains

(82 +m?) fim(z) = (8% +m?)o(x) —HA /d4z (82 + m?)G%Y(z — 2) ¢°(2)
= 28 + 580 = (53)

so the field ¢;, describes free particles at t — —o0.
Let us look now at the relation between at ¢y, (t, %) and ¢(t, Z) as t — —oco

q@in(x) = (ﬁ(az) +i/d4z GOR(:E—Z) ¢A53(z)
t
+i /_ dzo / Pz Ghz—2) $P*(z) = b)) 5™ dnla) (8.4)

so the field $($) approaches the free field &in(:n) in the remote past.
Similarly, we define

éout (l’)

Ma) + i /d4z GOz — 2) 3(2) (8.5)

where G%(z — y) is the advanced Green function (6.58):

d’4p e_ip(x_y)
G%($ - y) = / . 2 2 .
1 m* — p° + 1epy

satisfying the equation

(62+m2) GOA(w—y) = —2'5(4)(33—31), G%(w—y) =0 (if xo>yo) (8.6)
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Using this equation one obtains
~ ~ A N
(04 m%) dus(e) = (@ +mola) iy [z @2+ mAGY(@ - 2) B2
A A
= 28w + 58w =0 (5.7
Hence, the wave function ¢yt describes free particles at t — oo. Similarly to Eq. (8.4)
one obtains

bout(z) = ¢() +i/d4z GY(z — 2) $°(2)

= d(z)+i /t Oodzo / Bz GAz—2) $(z) = @) dow () (8.8)

so the field ¢(z) approaches the free field ¢oyt(z) in the remote future. 3

In terms of ladder operators:
a3p

V2E,

with commutation relation [am(p), - (p)] = (27) 6(7— 7)),

mn

and @in(p) |0m) = 0, where |[0y,) = ground state of HY.

o= [t ¢+, ) 7]

pOZEp

Similarly,
a3p

V2E,

with commutation relation [deut(p), @l (1) = (27) 6(F— ),

(lgout = |:d0ut (p) e—ipx + d:r)ut (p) eipac:|

pO:Ep

and dout [Oout) = 0, where |Opyt) = ground state of ﬁgut.

Main Hypothesis: |0in) = [Oous) = [€2)
“In” and “out” states:

Ip1,-Pn)in = H\/2E,, a;f,k |Oin )
P1,-Pn)ous = Iy/2Ep, al, |Oou) (8.9)
The amplitude of the m — n transition is given by the matrix element of S-matrix:

S(p1, 05, P = o, Py DY) = out(D2, Phs -PS | 1 D s P Vi (8.10)

8.2 LSZ reduction formula ( for 2—2 scattering )

S(p1,py — popy) = it lim (m?—pd) (m? —pd) (m? —p'7) (m® —p3) (8.11)

p?—m?

X /dx dz’ dy dy e~ P12ty Q)T ()b () d(y)d(y) L)

3The rigorous statement is ¢(x) e Z%qgm(x) and ¢(z) “25° Z%qgout (z) where Z is a number (to be
discussed with the theory of renormalization)
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Proof of the LSZ theorem:
For any free KG field

o
2E, a(p) = i/d3az e~ PEHEN 5y ()

. o .
V2E, al(p) = —i / dBx PP 9y () (8.12)
and therefore

out<p2ap/2 | plap/1>in = out<p2ap/2 | &iTn(pl) |p/1>in 2k =

= out{p2,ph | b (p) + (@l (p1) = @by (1)) [P V21 =
PR <~ ~
= out(vaplz| /d3li ezplx—zElt,L-ao <¢0ut( ) ¢1n( )) |p/1>in (813)

The Lh.s. does not depend on ¢ so

O, .
0ut<p27p/2 | /d3x ezplx—zElt i 0o ¢out($) |p/1>in = taket — 00 =

_ < / d3 ip1d—iEnt g n AW 8.14
= out(p2, P | T e i 9o () [P1)in (8.14)
t=00
Similarly,
/ 3 iphT—iEqt N 7. /\ _ _ _
0ut<p2ap2 ‘ d°z e 7 80 ¢1n(x) ‘p1>1n = taket =+ —o0 =
e . <>
— oot | [ PR o) (5] (8.15)
t=—00
Using the formula
5 VN t=00 . 92 52
/d r g1(t, %) 0o g2(t, T) = /d x [91(1‘) 22 92(z) — g2() 22 g1(z)| (8.16)
t=—0o0
for g1(x) = e I—iEnt gy = gZ)(:L‘) we get:
out<p2yp/2 ’plzp/1>in = out<p2’p/2 | fL/d43j € —ne (E2+80) ( ) |p1> (817)
= im0t =) 0 [ ' ot | Sl
p1—>m
Next
0ut<p2ap/2 | é(x) ‘ p,1>in = out<p/2 | aout(p2)€;5($) - QB(-T)ain(pZ) | p/1>in 2E) =
<> <>
. —iPaiiti J - 2 . — i ti 9 o
= Z/d3y e Pt Eat out<pl2| & d’out(ta y) (Z)(IL’) ’p/1>in - Z/dgy e P2Vt EQt <p2’¢( ) 5 (tay)‘p/1>in
P 9 -
= i / dPy e PIEER ou(ph| oo St I[P )| — i / dy e PIEERL (b d(w) o Ot ) [P1)in
t=00 t=—00
PN t=00
. —iPaiiti " 9 4 .
= i [y PTG (G) 5 S D (8.18)
t=—o0
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Using again formula (8.16) for g (y) = e~ 20+iE2t and gy(y) = T{p(x)(t,7)} we get:
out (P2, P|$(2) [P))in = i/d4y e (B3 +35) (oA T{(y)d(x)}p))in (8.19)
= im (= g3 i [ d Y o HIT (GO Hp i
py—m

and therefore

out (P2, 95 | P1,p1)in = (8:20)
= lim (m® = p})(m* = p}) / d'e d'y e PP G (0l | T{G(2)0(y)} 1)) in
12

Repeating this trick two more times, we get

S(pr1.py — pa,ph) = it lim (m? —p?) (m? —p3) (m® —p'7) (m? —p'3)  (8.21)

which is the LSZ formula (8.11.)

8.3 LSZ formula in General Case:

S(p1, 2y 2™ = P2, Dy DY) = out(p2y Dy DS | P1y DYy s D Nin = (8.22)
= ™ lim TI(m? - p?) / Ndel) Tde§) et Srt’ot)+i ol e
p?—m?

(QT{d(@1) . da(™) d(aa) .. dlas”)}2)

Part VII

9 Perturbation theory for self-interacting KG scalar field in QFT
Reminder: we define vacuum state |Q2) as an eigenstate of H with the lowest energy
HIQ) = EuacQ) —  stationary Schrodinger equation (9.1)

In the explicit form it reads

m2
(9.2)

(here ({o(%)} Q) = Vyac(d(ZF) as usual).
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We split the Hamiltonian in two parts:
H(t) = Ho(t) + Hint(t) (9.3)

3 3 L o l = |2 m?
Ho(t) = [d’zHo = [d $[§7T (t,x)+§lv¢(t,x)| +

7¢2 (ta f)]
Hint(t) = /d3$ Hint = /d3$ %¢4(t’f)

Our goal is to develop the perturbation theory at small A < 1. In QM that would be
stationary perturbation theory given by Eq. (9.4):

U(g) = o(d) + AWi(8) + \*Wa(¢) + .. (9.4)
(Ho + AHD)(Yo(9) + AU1() +...) = (Eo + AB1 +...)(¥o(0) + AW1() + ...)

As we discussed above, in QFT it is extremely inconvenient (if only possible) to solve
the Schrodinger equation (9.2) by iterations.
Reminder: two reasons why

e At each intermediate step we have “functional” integral over infinite number of canon-
ical coordinates ¢(x)

e Schrodinger equation is not relativistic invariant, the invariance should be restored

for the final results for scattering amplitudes

= In QFT, instead of solution of Schrédinger equation, we use Heisenberg picture and the
formalism of Green functions.
Now we can try to solve the operator equation (7.16) perturbatively

d(z) = do(x) + A1 (x) + Na(x) + ...
(% + m2)do(x) = 0

@ +m)di(@) = — 3@

0+ m)do(a) = — 2R (@)i(a)

but technically it turns out to be more convenient to develop a perturbation theory for
Green functions - vacuum expectation values (VEVs) of the field operators rather than for
the operators themselves.

Technical trick - “Interaction picture” (somewhere in between Scrodinger and Heisen-
berg pictures)

9.1 The interaction picture

Define

~

or(t, @) = efotg(z) =it (9.5)
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Expanding ¢(Z) in ladder operators (5.14) and using Egs. (6.10) one obtains

. a3p
¢I(t7 f) \/ﬁ

which is identical to Eq. (6.9) for a free KG theory (recall that the Hamiltonian which we
denoted by H ther is now ]:IO). Thus, the interaction picture is a Heisenberg picture at
A=0.

The relation between ¢(x) and ¢7(x)

( _o—iEpt-+ipT + a;eiEpt*iﬁf) (9.6)

q@(t,f) _ ZthZ)(:E’) —iHt _ eiﬁte—iﬁot(eiﬁotgg(f)e—if{ot)eiﬁote—iﬁt
= UT(t)r(t)U(t) (9.7)
where A A A A
U(t) = efote=ilt and Ul(t) = e iHoteifit (9.8)

the operator U(t) in the above equation is defined in terms of operators ¢(#) and # () since
both Hy and H are written in terms of these operators (see Eq. (9.3). Let us write it down
in terms of the operator ¢;(z) instead.

To do this, we need to prove the following theorem:

~ . ~ A~ t A
et Ate i A+B) Texp{ — z/ dt’B(t’)} (9.9)
0

where B (t) = et Be—iAt anq T-exponent is defined as follows
t t/
Texp{ '/d 'B(t )} El—’L/dtB +z/dt/ dt”B (")
t/ t”
—1 /dt/ dt”/ dt" B(t)Bt")B(t") + ... (9.10)

Similarly to the definition of T-product in Eq. (7.22) the operators in Texp are arranged
according to their times.

Proof of Eq. (9.9)
Let us differentiate both sides of Eq. (9.9) with respect to time ¢t. We get

dt(lhs) _ ezAt(Z-A_iA_iB)efz(A+B)t — _Z-ezAtBef’L(AJrB)t
= et BemiAtidt —i(ATBY — _iB(4) x (Lhs.) (9.11)
d . t ) . t ' ) ) .
Lhs) = —iB(0)+ 1 /0 A BB — i3 /0 " /O A" BOBWBE") + ... (9.12)
. t R t "’ . R .
= —iB(t) [1—2‘ / dt"B(t") +i? / dt” / at"B(t"B(t") + } = —iB(t) x (r.hs.)
0 0 0
In addition,
Lhs.|,_, = rhs|,_, =1 (9.13)
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Thus, the differential equations and the initial conditions for the 1.h.s and the r.h.s. of Eq.
(9.9) are identical = the Lh.s. of Eq. (9.9) is equal to the r.h.s. of Eq. (9.9), Q.E.D.
In our case A = fIO and B = fII SO

3 . 17 - 73 t A
U(t) = etHot —iHot—iHrt _ Texp{ —i/ dt,H](t/>},
0

~

Hi(t) = efotf e—ifot (9.14)
Explicit form of H(t)

Aoy

ﬁ[(t) — eiHotﬁintefiHot — eiHot/d?) [4'

( )] efiﬂot

_ 4' d3 (1H0t¢(f)eszot)(61H0t¢(a—:»)671H0t)(ezHot(b(f)eszgt)(ezHOt(b(f)eleot)
A a4
= /dsm 0 (61(Z,1)) (9.15)
SO
U(t) = Texp —2/ dt /d3 ¢I t "} (9.16)
It is convenient to define
Ut,t') = U®)U'(t) (9.17)
Let us prove that
. t1 \ -
Oty 1s) = Texp{—z'/ dt/d% Soen), (9.18)

Proof: similarly to Egs. (9.11) and (9.12) we compare the time derivatives of 1.h.s. and
r.hs. of Eq. (9.18)

jt(lhs) = (%U(tl))fﬁ(tg) = —iH; (t)U(t)U (ty) = —iHi(t1) x (Lh.s(.19)

d d t N
hs) = —|(1—4 | d'H; (¢
drehs) = gofi—i [Carne)

t1 t! t1 t "
+i / dt / dt" Hp(t) Hp(#") — dt’ / dt” / A" B () H (¢ H (7)) + }
to to t to to

2

. t1 "
= iHI(t1)+i2/ dt"Hp(t)H;(t") — / dt”/ dt" Hy () Hp (") H (£") + ...

to

~ tl t// ~
= —iH[(h)[l—i / dt" Hy(t") / dt" / dt" Hy(t")Hy(¢") + } = —iH(t) X

to

In addition,
Lh.s. of Eq. (9.18) = r.h.s. of Eq. (9.18) = 1 at t; =t

so the Lh.s. of Eq. (9.18) = r.h.s. of Eq. (9.18), Q.E.D.
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Group property
Uty t2)U(ta, ts) = U@)UN () U(t)UT(t3) = Ut)UN(t3) = U(ty, t3) (9.21)

Now we can rewrite the two-point Wightman function

~

QD)o (y)[Q) = (U (20)d1(F, 0)U (20)U (y0) o1 (7. 90)U (30)|2) (9.22)

(Qé(@)d(y)I2) = (QUU(0,20)dr(2)U (w0, y0)1(y)U (0, 0)|2) (9.23)

All operators in the r.h.s. can be expressed in terms of ladder a; and dﬁ 4 50 if we had a
rule az€Q) = 0 we could reduce the r.h.s. of Eq. (9.23) to commutators of various a;'s

AT
and a ay

s. Unfortunately, we do not know the action of the operator a; on the vacuum €.
(We know that &;P]Q) = AO“t|Q> = 0 but these in- and out- operators are completely
different objects).

Way around this difficulty: define “perturbative vacuum” |0) as lowest eigenstate of the
free Hamiltonian Hy. The explicit form is of course Eq. (4.55) but we will need only the
property (5.20)

agl0) = 0 (9.24)

which, as explained in Sect. 5, can serve as a definition of perturbative vacuum |0). Note
that if in Eq. (9.23) we had (0]....|0) instead of (€]....|2) we could easily calculate the r.h.s.
of that equation.

Now comes the central idea: if we take perturbative vacuum \O> and wait long enough,
ZHT|0

we get true vacuum [Q2). Indeed, let us consider the evolution e~ ) and insert full set

of eigenstates |n) of full Hamiltonian H
e_iHT\O Ze ’HT]n )(n]0) Ze EnTn) (n)0)
{n} {n}
BT I0)QI0) + D e ETET ) (nj0)| - (9.25)
{n#Q}

Now, if we take T' = 7(1 — i€) and first take the limit 7 — oo (and then € — 0), only the
first term in the r.h.s. of Eq. (9.25) survives:

lim lim e~ #7090} = ¢=Fo(T(1-i9)|Qy(Q|0) (9.26)
e—0T—00

and therefore 1 R
|2) = lim lim e~ HT=1) ) (9.27)

e—0 T—00 g—iEoT(1—ie (Q‘O>

Now, since e‘iﬁ0t|0> — 1 for any t (our convention is Hp|0) = 0) we can formally insert

e_iHW(l_ie)m) in the above equation and get

1 —iH7(1—i€) —iHor(1—ie
|Q> - lg%’rl;noloe i1EoT(1—ie <Q|0>6 Hr(1 )6 Hor(1 )’O> (928)

4 Recall Eq. (9.6): ¢ =

,zEpt+7,pa:+a ezEpt zpz)

ks
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Since e~iH(r(1=i€) g=iHo(r(1=ic)) — UN(T) = U(0,—T) one can write down

1
Q) = lim lim —————0U(0,—T)|0 9.29
) = lim lim ey (O DI i (9:29)
Similarly,
_ 1 —iHr(1—i€)
Q = E%Tlingoe Tor (=79 0] (Ole (9.30)
_ 1 iHoT ,—iHT _ L )
= I gy O T g T IR Er ey VO
Now we can substitute these expressions in the r.h.s. of Eq. (9.23) and get
(QUb(x)d()[Q) = (/T (0,20)1()U (w0, y0)b1(y)T (0,0)[€) (9.31)
1 R
— lim i ~T)\0)|
el—I}(l)TLHolo 6_22E0T<0‘Q><Q|0> < | ( ) (O $0)¢( ) (3707y0)¢1( ) (y07 )}U(07 )’0> T=r(1—ie)
1 ~ N N
= lim i T =T
i im0 0y (|U(T, z0)d1(x)U (0, y0) 1 (y)U (yo, —T)|0) i)
where we used the group property (9.21).
Let us consider now Feynman Green function which is a v.e.v. of the T-product of field
operators.
Suppose zg > 1o, then
(QT{S(2)d(W)}Q) = (Qb(x)d(y)|) (9.32)
1
= lim li T, =T
€E)I€)TLH0106 21E0T<0|Q><Q‘0> <0‘U( $0)¢)[( u (1'an0)¢1( U (y07 )10) T—r(1—ic)
Since all qb 1 operators in the evolution operator U(t,t') are ordered according to their times
(see Eq. (9.18) we can rewrite Eq. (9.33) as
(QUT{d(x)d(y)}|) (9.33)
T0>Yo 1
=" lim li T{U(T,
eg%ﬂ'l—?oloe 22E0T<0|Q><Q|0> <0| {U( $0)¢]( ) (-’EO,yO)QSI( ) (yo, )}|0> T—r(1—ic)
T0>Yo 1 A . .
=" lim li T{U(T,-T .34
tim i —rrara OTO@ - Da@w0], (934
Similarly, at yo > xg
(QUT{d(x)d(y)}|) (9.35)
Yo >0 1
=" lim li T{U(T,
eg%’rl—{roloe 22E0T<0|Q><Q|0> <0| {U( y0)¢1( ) (y07$0)¢1( ) (y07 )HO> T=r(1—ic)
x 1 A X N
WZF i im OIT{U (T, ~T)ér(y)bs ()}0)] (9.36)

e—07—00 e 2E0T(0]Q) (02]0) T=r(1—ic)

so the general formula for Feynman Green function can be written as

(QT{$(z)(v)}) (9.37)
= lim i g OO D) @6} 0)

T=1(1—1€)
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Let us now consider the denominator. It can be represented as

2iEgT o . 2 .
lim lim ™07 (0[2)(0[0) = lim lim (O]T{U(T; T)|0}>’T:T(lfie) (9.38)
Indeed,
(0|T{U(T,-T)|0}) = (0|U(T,-T)|0) = (0]e~%H (-9 n)39)

T=1(1—1i€) T=7(1—ie)

= lim lim (0|T{U(T,—T)|0}) = (0|)e~2ET(Q)0)

e—0 T7—00 ‘T:T(l—ig)

Now we are in a position to assemble the final result for the 2-point Green function

o {0 T{U(T, —T) i () b1 (y)}0)
QT{o(x ) = lim lim =
(QIT{g(x)d(y)}|$2) lim lim O[T{0 (T, —T)}0)

(9.40)
T=7(1—i€)

If we recall Eq. (9.18) U(t,t') = Texp{ — zft,dt” A 1¢7(t", &)} we can rewrite this equation
as

A O|T{ —ifTpdtfd*a t$)¢l }|0
(QT{p(x)o(y)}©2) = lim lim (9.41)
e—0 T—00 —i [T dt [d3z 2 ¢4(t,T)
507 (0/T{e L pdt [de 6t }HO N
Now we can use the rule a,|0) = 0 and reduce the r.h.s. of Eq. (9.41) to commutators.

9.2 Wick’s theorem

First, we separate the operator gZSI into positive-frequency qAij and negative-frequency gZSf
parts:

o1(z) = of (x) + o7 (x), (9.42)

Next, we define normal product of operators. (You may encounter two different notations
in the textbooks: N(ABC...D) and : ABC...D:).

Definition of : ¢; (1)1 (x2)....01(zn):
We write down each ¢ 1(z;) as q@f(:c,)—i—qgf (x;), open all parentheses and put all QZE; operators
in each term to the left of all (;Aﬁjf operators:

pr(x): = ¢r(x) (9.43)
o1(@)o1(y): = :(df () + 7 (2))(dF () + 7 ()
= F (2)07 (y) + é7 ()67 (y) + ¢7 (¥)df (2) + ¢y (2)dy (y)  (9.44)
or()or(y)dr(z): = :(f () + o7 (@)(¢f (v) + 6] W] (2) + d7(2)) : =
= ¢ (2)0] (¥)oF (2) + o7 (2)dF ()dF (2) + dF (¥)of (2)67 (x) + ¢y (2)0] ()b (y)
+é7 (2)0] W)oF (2) + b7 ()6 (2)0] (2) + b7 (2)d] (2)d] () + &f (2)é] ()7 (2)
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and so on. Note that since [(;31_ (x3), él_(az])] =0 and [q@?(azz), QAﬁ}F (x)] = 0 the relative order
of operators inside the (-) or (4) blocks does not matter.
Property (evident)

0] :1(x1)1(22)....01(): |0) = 0 (9.45)

Wick’s theorem is a relation between T-product and N-product of operators. Let us find
this relation for two operators.

T{b1(2)dr(y)} = 6(xo —y0)(d7 (@)o] (y) + 7 (@) (y) + OF (2) (y) + 1 (2)d; ()
+ 8(yo — 20)(0f ()] (2) + &} (1)o7 (@) + 67 (W) (x) + dF (¥)9; (@)
= 0(z0 — y0) :dr(@)dr(y): +107 (2), 7 (W)]) + 0(yo — 20) (: b1 ()1 (y): +[67 (9), 7 ()])
= :01(2)d1(y): +0(wo — y0)[o] (x), @f(y)] +0(yo — 20)[67 (y), &7 («)] (9.46)

Let us take now vacuum expectation value (v.e.v.):

(OIT{r(2)dr(y)}0) = (0] :d1(x)dr(y): |0) + 6(z0 — y0)[o] (), &7 (y)] + O(yo — 20) (& (), &7 ()]
= 0(z0 — y0)[@7 (2), &7 (v)] + O(yo — 20)[6] (v), & («)] (9.47)

where we used Eq. (9.45). On the other hand, we know that (0| T{¢;(z)¢;(y)}|0) = Dp(z—
y) (see Eq. (6.41)) so

T{¢1(x)p1(y)} = :01(z)d1(y): +Dp(z —y) (9.48)

A convenient notation:
- =

br(x)dr(y) = Dp(x—1vy) “contraction” (9.49)

Thus,

—

T{61(x)p1(y)} = :01(x)d1(y): + S1(z)ds(y) (9.50)
Next

T{b1(x)dr(y)dr(2)} — : br(x)dir(y )&1( )i = 0(mo > 1o, 20)0r(x) (:dr(y)pr(2): +<Z>I( )¢1(2))

—

+ 0(yo > mo,zo)éﬁ[(y)( 101 (2)dr(2): +¢1( )1 (z )) + 0(z0 > anZ/O)QgI(z)( :or(2)dr(y): +¢1(:E)¢1(y))
— 1 o1(2)r(y)d1(2) : (B(zo > Yo, 20) + O(yo > w0, 20) + (20 > w0, o))

o —

= 0(z0 > yo. 20){[0] (2),:1(y) 01 (2):] + S1 (@)1 () dr(2)} + (2 2 y) + (2 ¢ 2)

—

= 0(z0 > yo. 20){[0] (2).67 (1)&] (2) +07 ()] (v) +7 (V)7 ()] + dr(2)1(y)dr(2)} + (x < y) + (x4 2)

— 49 —



—

= 0o > w20 (18] (05 Ién(2) + 5] ()65 ()ort0) + B)bn()n(2)
+ 0 > 20, 20){ 67 (1).97 (2)91() + (67 )97 (@) + d1()dr (2)61(2)}
000 > 20,067 (2).67 ()61 (2) + 57 )67 (@}n ) + 61 or(@)dr(n)}
= @gl(z){e(ﬂfo > yo > 20) |67 (2),67 ()] + 0(x0 > 20 > y0)[0] (2).07 (¥)] + 0(yo > 20 > 20)[d7 (y),07 ()]

+ (g0 > 20 > 20)[6] (1).67 ()] + 0(zo > o, 20>e%z/<:cﬁ1<y>} + (o) + (o)

o —

= @1(2){9(1’0 > 40, 20)01(2)d1(y) + (0, yo > 20) (0(x0 — y0)[&F (2),67 ()] + O(yo — 20)[6] (v),¢7 (2)])

+ (1 — 0(x0,y0 > 20) — 0(20 > o, yu)) (9( ’0 — Yo )[(), (), ()] (y)] + 0(yo — ./1:())[(3[' (;{/),c;, (l)])} + (z ¢ x,y)

= bi(2){ 00 > o, 2)d1(2)dr(v) + 00, w0 > 20)d1(2)r(v)

+ (1 — ()(.’1}(),3/() > Z()) — 0(2’() > .’l,'(]fy())>c)/( )()/(1/)} + (Z &~ .CL‘) + (Z > y)

— — —

= 01(2)01(2)01(y) + d1(2)01(y)b1(2) + dr(y)p1(x) 1 (2) (9.51)

where I used formulas

0(xo > 20 > yo) = 0(xo — o) [1 — 0(x0,y0 > 20) — 0(20 > wo, !J(J)L

0(yo > 20 > wo) = O(yo — z0)[1 — O(x0,y0 > 20) — O(20 > Z0, Y0)] (9.52)
Thus, we get
T{r@drWdi(2)} = : br@d1)d1(2) : +b1()d1(@)31(y)+1(2)61w)d1()+ 1 (1)1 ()1 (2)
(9.53)

In a similar way one can prove that

T{¢1¢2¢3¢4} = ¢1¢2¢3¢4

—_ —

+ ¢1¢2¢3¢4 + ¢1¢2¢3¢4 + ¢1¢2¢3¢4 +¢1¢2¢3¢4 + 1oy + ¢1¢2¢3¢4
+ ¢1¢2¢3¢4 + ¢1¢3¢2¢4 + ¢1¢4¢2¢3 (9.54)

where ¢; = ¢;(x;) and :@jékél 1= @j SO

Wick’s theorem in general case

T{¢1(x1)pr(x2)...01(xn)} = :br(x1)¢r(22)...01(xn): + all possible contractions  (9.55)

is proved by induction.
Taking v.e.v. we get a version of Wick’s theorem convenient for conversion of Green
functions into a set of Feynman diagrams:

—_—

(OIT{r(1)$1(x2)--br(2a)}0) = Gr(21)0(22)d1(x3)dp(wa)... 01 (Tn—1) () (9.56)

—

+ or(x1)p;(23) D1 (22)B; (24) .01 (Tn1);(2) + ...(all possible contractions of all operators)
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Some examples:

—

OT{¢1(x1)¢1(22)}0) = dr(z1)d(x2) = Dp(a1 — a2) (9.57)
(01 T{¢1 (1)1 (z2)pr(23)}0) = 0
(OIT{¢1(x1)¢1(x2) 1 (3)Pr(24) }|0)

= G110y (2201 (w)s (4) + Brlw)s ()1 (e2) by (ea) + 1 (e0) by (2) 1), ()
= DF(.’L'1 — xg)DF(xg — $4) + DF(IL'l — wg)DF(wg — 564) + DF(CU1 — a;4)DF(ac2 — .CC3)

o —

Feynman diagrams: a line for each ¢r(z)é;(y) = Dp(x —y)
Let us apply Wick’s theorem to the calculation of two-point Green function (9.41)

. (0T {e = B ()i () }10)
(QUT{o(z)o(y)}2) = O (e 31 (9.58)

We will discuss the limit 7' = 7(1 —ie) — oo later and for now I just replaced fdet by [dt.
First, let us expand the numerator in Eq. (9.58) in powers of A

O‘T{ zfd4 A¢4(z @Z)I }|0
= (0T {di() )(1—9/&2@() S () [t d) [at i+ ) hoy
= OT{61@3iw)}0) - 5 [ =0T (o1 (0)31(0)54(:)}10) - 1(A) /d‘*zd‘“orT{m o))} 0

(O {Gr () i) }]O) — i /d4 (OT{$1(2)$1(y) 1 ()1 (= (2)}/0)

1(2,) /d42d42l (O T{61(x)d1(y)d1(2)01(2)1(2)d1(2) b1 (2 )dr(2)br(2)pr(2) }|0) + O(NP)

)\ e — — — — —

WKL )y (y) — iy / a2 [01(2)6;(y) x 301(2)01(2)01(2); (=) + 41 (2); (2) % 301(); (1) D1 ()6 (2)]

)\2 — — —

B 2(4.) /d42d4 '[2 % 41(2)6,(2) x 461(2);(y) % 6(d1(2)d, ()" + ...
- Gl H“/ a2 (L 1), )1 (20 () E)1(2) + L1 (@)1, w)ar () ()]

)\2 — —

— 2(41)? /d4zd4 /[ ¢1($)¢1(z)<§1(z’)<ﬁ1(y) ((]51(2)(2)](2/))3 + ] (9.59)

- LN/
X Y+(_l)\){gx y XZ T2 ) y}

a2 1
+(—17»){5X U y +EX ,
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Thus,

<O]T{e*ifd4z %J)Z}(Z)Qg[(];)(;ﬁ[(y)}K» = sum of all possible diagrams with two external legs
(9.60)

Part VIII

9.3 Vacuum bubbles

Vacuum bubble is a Feynman diagram (or sub-diagram) without external legs. For example,
in the second term in the r.h.s. of Eq. (9.59)

=0 [ @42 [5610)3, )61 (216,201 (216, = dr(2), () [~5 [ d61(:)0,(2)6(:)6,(2)]
(9.61)

the expression in [} is a vacuum bubble:

—i5 (41561206, ()6,) = 15 [ats (De(z,2)” = ~ig [d (Dr(©)’
— —i%V(DF(O))Q (9.62)

where V = [ d*z is a 4-volume of the space-time. Two disconnected bubbles will give V2,

X)X

for example

i [t )b ) TN [at261(216, ()1 (NN ()

- — i%V(DF(O))2 (_f2)2 (Dr(0))° / d*zd*2' D% (2 — 7)) (9.63)
—i 2 —i 3

= —i3v(0r0)* S 0r0) a0t = SRV (0r0)'] [at:0h(2)

Similarly one can show that three disconnected bubbles give the contribution ~ V3, and so

o1.

9.3.1 Exponentiation of vacuum bubbles

A typical diagram:

T3 8 O oo
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Vi - value of k-th vacuum bubble, n; is a number of such vacuum bubbles.

Sum of all diagrams is ({n;} = ni,na...ng)

Z Z (Value of connected part) <H LV"’“ ) (9.64)

ng!
connected parts all {n;} F

= Z (Value of connected part) <%: nll!Vle) (%: 71121‘/1712) < Z ’I’le'Vlnk)

connected parts Nk
00
— Vie >ieo Ve
= (Value of connected part) et = (Value of connected part) X e4=k=0
connected parts k=0 connected parts

Thus, the numerator in Eq. (9.58) is

(OIT{e=/ "= 59113y ()b () }0) = (9.65)

Xexp{g . z . . )

Let us now consider the denominator in the Eq. (9.58). Repeating the same steps, we

get,

<O]T{e_ifd4z %‘£§(z)}\0> = exp {sum of all vacuum bubbles} (9.66)
= exp { X + z + @ + é + ... }
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so the sums of vacuum bubbles in the numerator and in the denominator cancel and we
obtain

O|T{€—zfdz4'¢4 }|0

(QUT{d(x)(y)}I02)

>\

(0T {e~i/ 4= 2diC: }Ho

I +/\
N

= (QT{d(x)d(y)}|Q) = sum of all connected diagrams with two external legs

(9.67)
NB: Sum of vacuum bubbles is actually a shift of the ground state energy
(0T {4 5910} |0) = im (0]U(T, ~T)[0) (9.68)
_ Th_rgo<O’eiHoT6—iHTe—iHTezHoT’O> _ lim <0‘e—2iHT‘O> _ Tlggo<0‘€—2u—f{r(1—ie)’0>
= BT + 3 e EET o) ] = [(l0)Pe BT = [(jo)e

{n#9)

where Ey = [d3z &(z) = L3& and 2T'L3 = V. Thus, the shift of vacuum state energy
does not affect the Green functions (and hence the cross sections due to LSZ theorem).
That is why it is consistent to set Hol0) = 0: if Hp|0) = Ej, the contribution e 227 will
be cancelled in the ratio in Lh.s of Eq.

9.4 Feynman rules for ¢* theory in the coordinate space

Feynman rules for the n-point Green function in the coordinate representation

G(x1,x2,...Tp) (9.69)

_ N N (O[T {em ™ 5 (21) gy (2).-Bwn) }[0)
= (QAT{d(@1)d(w2)...d(xa)}Q) = O[T 3O )

are:

1. Propagator: z__y = ¢1(2)¢;(¢) = Dp(x—y)
2. Vertex: —i)\fd4z

3. Divide by symmetry coefficient
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Feynman rules in the coordinate space.

1
1. Propagator ~  y - o) ¢(y) = D.(x-y)

. 4
2. Vertex >é = _lkjd z

3. Divide by symmetry factor S:

N/ i
N

9.5 Feynman rules for \¢* theory in the momentum space

In the momentum representation
G(p1,p2,.-Pn) = /d4x1d4$2...d4xneip1r1+ip2x2+"‘ip"w"G(xl,xg, )

The set of Feynman rules for the Green function G(p1, p2, ...p,) in the momentum space
is as follows:
I. Draw all possible (but different!) diagrams with proper symmetry combinatorial factors.
II. Put Go(p) = m for each line with momentum p.
III. Put —iA(27)%6(3" pj) in each vertex (where p; are the momenta flowing into this ver-
tex).
IV. Integrate over the momenta of internal lines (an internal line is any line that is not the
tail). Each integration over momenta comes with (27)% in the denominator.
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Feynman rules in the momentum space.

1. Propagator ———— =

2. Vertex

q
3. Integrate over all momenta I1 J Pi

(2m)*
4. Divide by symmetry factor
9.5.1 About the limit T — oo
At each vertex we get

(2m)*0(p1 +p2 +p3 +pa) = /d4z (i(PL+P2+P3+pa) 2 (9.70)
Before the limit 7' — oo we had
7(1—ie)

T(1—1€

/ | )dzo /d3z €170 s Pi0TIFY P — (2%)35(2@)/ dzg 0 2P0 (9.71)
—7(1—1€) i —7(1—1€)

To ensure convergence of the integral over zp in the r.h.s. of Eq. (9.72) we can take

po = (real) x (14 ie) and therefore in Feynman rules in the momentum space we must

integrate over slightly imaginary pg = (real) x (1 +ie). This is equivalent to taking poles

po = £E, slightly off the real axis as shown in Fig. 7 We get

£)
E, = (Yea\)OH —Ep+ie
- / X
< :
Ep Ep— it

Figure 7. Shift of integration contour

T(1—1€ T
/ ( ) dzo eizo(l-i—is) D iPi0 — / dzo eizo(l—ie)(1+ie) > pio
—7(1—1€)

T T
~ / dzy €70 Zipio Tjgo/ dzg €0 ZiPio — 2”5(2171'0) (9.72)
. -

T

—T
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Thus, one should use Feynman propagators with poles at £(E, — ie) and write down the
full integral [dzy (or [dpo) over the real axis.

9.5.2 Feynman rules for reduced Green functions

Feynman rules in the momentum space can be simplified even more by performing the
integration using d-functions coming from momentum conservation in each vertex. After
taking into account the momentum conservation in each vertex there is only non-trivial
integrations corresponding to loops. On the other hand, if one considers the so-called tree
diagrams (= without loops) the value of these diagrams in momentum representation is ac-
tually already fixed by simply drawing the diagram with taking into account the momentum
conservation in each vertex.

Let us formulate the final set of rules for calculation of so-called reduced Green function
in the momentum representation. The definition of reduced Green function G(p1,p2,...pn)
has the form

G(z1, w9, ...0y) = / d'py d'py  dpy e
1, 2, ceedmy (27[_)4 (271_)4...(277)4
G(p1,p2s -pn) = (—=9)" " 1(27)*3(p1 + p2 + ... + Pn)G(P1, P2, ..-Pn) (9.73)

*ipll“l*ip2962~~*ipnan(p1 P2 pn)
N T

The set of Feynman rules for G(p1, p2, ...pn) is:

I. Draw all different connected diagrams taking into account the symmetry (combina-
torial) factors.

II. Draw momenta flow for each diagram taking into account conservation of the mo-
mentum in each vertex.

m and each vertex factor

ITI. Each line with momentum p brings factor Go(p) =

(=A)
d*k

IV. There is an integration [ ok for each loop.

Feynman rules for reduced Green functions

1
1. P t _— = —5 5
ropagator D mZ—p?ie
Py
/p4= B TR,7R
2. Vertex P = -\
7
P3\
4
3. Integrate over all loop momenta P, I1 J P
— L) @m)4i

4. Divide by symmetry factor
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9.5.3 Reduced Green functions and invariant martix elements M(p; — p;)

LSZ theorem (9.74) states that

S(p1, Py ™ = po, vy, pY”) (9.74)
= ™ lim H(m2 —p?) G(pl,pll, ...pgm) — D2, P, ...pén))
pZ—m?2

The relation between S-martix and invariant transition matrix M (p1 Db, ...pgm) — D2, P, ...pgn))

is (see AQM course)
S(pr oty ™ = p2 Dby py”) = {1} 2m) 6 (Y pt = S oS ) M(pr vt p™ > 2, v 05"

where {1} denotes combination of §() (pgi) - > péj )) corresponding to process without
scattering (if m = n). Looking at the relation (9.73) between G and reduced function G we
see that

M(pr, 1y ™ = poyph, pSY) = lim TI(m? = p2) G(p1, P, P = D2, Py pY”)

p?—m?

(9.75)

Part IX

10 Feynman diagrams for S-matrix

Consider two-particle elastic scattering

Figure 8. Two-particle elastic scattering

10.1 First order of perturbation theory

LSZ theorem for two-particle scattering (8.11):

. . 2 2
S(p1,py — po,ph) = i* lim (m? —p?) (m* —p3) (m? —p'7) (m* —p'3) (10.1)
X /dxdx’dydy’ e~ i1 —iph & +ipay+iphy’ Gz, "5 y,9)
. 2 2
= lim (m?® —pi) (m® —p3) (m? —p'7) (m* = p'3)G(p1, P} — pa,ps) = G™™P(p1,p} — pa, ph)

p?—m?
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(here we use better-looking notation G(p1,p| — p2,ph) = G(—p1, =D}, P2, h))
where

G(z,2'sy,y) = OIT {91 61(2)01(')d(v)(4')}10)
T (O[T {e /" W"(Z}HO

= set of connected Feynman diagrams with four tails ~ (10.2)

In the trivial order in perturbation theory we get

o 45(4)( _
/dZdZ, e—zqz—‘rzkzz 1 _ = (27T) d (q k) -0 (103)
m?2 — p? — i€ m?2 — g2 — ie

SO

if p1,p} # po,ph. If momenta are equal LSZ theorem is not applicable since we assumed
p1, P} # p2, ph throughout the proof in Sect. 8.

S(p1,py — p2.py) = (2m)%0(F1 — 52)(2m)°8() — 0h) + (2m)°6 (71 — ) (2m)°8(F) — £2))

(10.4)
The first non-trivial contribution to the r.h.s. of Eq. (10.2) is
GO yyf) = — 0 @ O br()br )30
=i [tz 61003211 ()1 ()61 (2161132
= - i)\/d4z Dp(x — 2)Dp(z’ — 2)Dp(y — 2)Dr(y — 2) (10.5)

= G(l) (pl,p{l — p2’p/2)) — /dxdx/dydy/ e—ip11’1—ip'196/+ip2y+iplzyl G(l) (x’ x/; y, y,)

in / 0% $1(2)d, ()12 )dy ()61 ()3 >¢I< 1)y (2)

(m2 —p? —ie)(m? —p'T — Z6)(m2 —p% —ie)(m? — p'3 — ie)
From Eq. (10.1) we get
SW(p1,ph = pa.ph) = —iX2m)*S(p1 + Pl — p2 — Ph) (10.7)
From the AQM course we know that
S(p1,p) = p2.py) = (2m)°[6(py — F2)d(D) — 1) + (P > )]
+ (2m)*i0(p1 + ph — p2 — Ph) M (p1,ph — P2, ph)
= M(l)(pl,pll —po,ph) = — A (10.8)

This can be derived directly from the Feynman rules for the reduced Green functions in
Sect. (9.5.3) and formula (10.14).
Finally, the cross section of meson-meson scattering in this model is given by the
standard formula
do M2 A2
dQ — 64n2s  64nls

+ o\ (10.9)
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and the total cross section is

1 do 2
o = = [dY— = 4 10.1
Ttot 2/ i = 325 7 O (10.10)

(% is due to identical particles in the final state, see the AQM course).

10.2 Second order of perturbation theory

GO (2,2, y,y) (10.11)
3 (3 [ A4 O {1 ()1 (21 (1)1 (04234 ot

The set of (connected) Feynman diagrams is shown in Fig. ?7.

x’ y
X y X y
z Z
z’ z’
X’ y’ x’ y

Figure 9. Set of second-order Feynman diagrams for two-particle scattering
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In the momentum space these diagrams look like so the set of corresponding amputated

P\ 7P,
p17 Vam's \p2

diagrams is

P\ /p,
. p,
pl / \ 2
P\
7P,
p N
1 \p2

p ™ P,
p]’ = \pz
P\ 7P,
p a2

Figure 10. Second-order Feynman diagrams for two-particle scattering in the momentum space

p P
~ -~
pl /i ~ p2

PI’/ N2

/
P s
P

P,

P\ 7,
P P
P, N i P,
P P

P\ P,
p2’\ /p’
b TP
\p2
%

PN ”p,
P] / N P2

Figure 11. Amputated Feynman diagrams for two-particle scattering

P\ /p2
p; ’ P
1/ \ 2
P,
B /p2
p, ’
IR X
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ar 1
e / o / 10.12
amp(p17p1 ? pQ’pZ) - k2 — ie)(m2 7 k)2 e ( )

i (m?— —(p1+ 7} —

e 1 e 1
i (m2?2—k%—ie)(m?— (p1 —pa — k)? —ie i (m?— k% —ie)(m? — (p1 — ph — k)? — ic
N 1 /dk 1 N 1 /dk 1

m2—p?—ie) i m*—k2—ic  m2—p?—ic) i m®—k?—ie

1 ak 1 1 ak 1
— s 10.13
+m2—p§—ie/imz—kQ—ie+m2—p’%—ie/im2—k2—ie ( )

First three terms are OK but we have a problem with last four ones: when we calculate the

cross section

M(pr,py = p2,ph) = lim T(m® = pf) G(p1,p| — pa2, )

pZ—m?

(10.14)

we have, for example, the contibution

I 1 /d’k 1
im —
pom2m?—p?—ie) i m?—k%—ie

which is infinite as p? — m?!
Q: What happened?

A: mass renormalization

10.3 Renormalization of the mass of scalar particle

Let us draw the (connected) diagrams for the 2-point Green function
/\ ,
+ p U + + es

and let us rewrite this sum of diagrams as follows:

. -, 00 ., 000 -
p p p




is called a one-particle irreducible (1PI) part. Let us denote it it —X(p?)

k k,+k,
QO \/ @
> = > = - + > b + P + ..
Pt];z
Y(p?) = A/Cﬂk ! (10.15)
P = i m2 — k2 e '
A2 [dky dtke 1
— - - - - — +
6 1 i [m?— (k1 + k2)? —i€][m? — (p — k1)? — ie][m? — (p — k2)? — i€]
We get
1 1 1 1 1 1 1
2 2 2 2 _
g(p ) - P - m2 _pgz(p )mg _p2 + m2 _pgz(p )mg _pQE(p )mQ _p2 + ..

We see that G(p?) no longer has a pole at p? = m?. Indeed,

1 1

2 .
= = = finit 10.17
T = TSP e T S T Ho-n
Instead, it has a pole at some other value p?> where
m? —p® +S(p?) = 0 (10.18)

Let us denote the solution of this equation mf)h, then

2 2
pe—=mey,

ax
mP—p+2(%) = myy PP I -S(my,) =" (mp,—p?) (1- ) (10.19)
P PQ:mf,h
The factor 1 — % is denoted as Z~1
P p2=m2,
dx
zZ7l'=1- 5 (10.20)
dp p2_m§h
Let us denote
om? = mgh—m2 = Z(mf)h) mass counterterm (10.21)

G(p*) = 54— (10.22)

and rewrite the exact propagator (10.16) as
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EVAVAVANEN = TN

1
P (O0P) ) e 1o

As p? — mf)h we get

ax
Z(p2) —om? ~ ¥(m 5 —om? + (p — m )dp + O(p2 — mgh)2
ax
= 0" -mpn) o +O0(p* —myy)” (10.24)
p? pP=m2,
(recall that dm? = E(mih)) and therefore
1 pQ—f;ﬁh 1 B Z
_ 2 2\ _ 5m2 - 2 _ 2
p? +X(p?) — om —p2 4+ (p2 —mgh)% . myp — P
pr=mZ,
77l = 1- (- d _ 2
= P m )dp = 14+ 212+ 2"+ .. (10.25)

_ml

Let us demonstrate that myy, is a physical mass of the scalar boson. Consider the two-point
Green function at large time

a —ipot+ip T a —ipot+ip T
LRy L S
) Mg, — P Zmph—i—p — Py — €

a?
= 2 [ G By =\ fmi (10.26)

= My is a mass of the particle.
Let us prove now that the same Z-factor relates (ZA> to qf;in and ngut (see the footnote at
p.40)
d(2) 5T Z26u(), o) " 22 dou() (10.27)

Proof: suppose ¢(z) S c1¢in(z) and ¢(z) b2ge ca¢ont () with some constants ¢; and
cy. First, from time reversal invariance of the theory one sees that ¢; = co = ¢. Second,
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consider the two-point Green function G(z —y) = (QT{d(z)p(y)}|Q) as 29 — oo and
Yo — —OQ

Gz —y) = (QT{¢(2)d(y)}|Q) = Yo (b)) (ninld(y)I2) (10.28)

{n}=all in—states

3 ~ A A
= /d (Q(@)|pin) (Pinl$(y) Q) + > (Qfp()[n)(ne(y)[2)

{n}=2+ particles states

d3p - - .
= & [ R @) )12 + S (o) il ()])
{n}=2+ particles states
(recall that one-particle state is the same for “ins” and “outs™ |pin) = |[pout) = |p)). Now,
since
2 d—g ~ ipx ~Ti sz 10.29
in(x) = ame_ +ay," .
d)ln( ) \/ﬁ [ ] pozEp ( )
we see that
in (2, Pb| Gin| Q) ~ alraly [alte™P" + a4l ||Q) = 0 (10.30)

\/7 P2p

and similarly for i, (pe, ph, p5| and states with larger number of particles. Thus, as g — 00
and yg — —0o0

a3p R R ad3p _. VI
Gla—y) = & [ TGP = & [ T2 e iErtzomwr i
2E, 2E,

(10.31)

Comparing this to Eq. (10.26) we see that ¢> = Z so ¢ = Z%, Q.E.D.
Let us now revisit LSZ theorem in terms of physical mass. Because of Eq. (10.27) the
formula (8.11) will look like

2

7 .
S(p1,p; = p2, ) = (ﬁf lim (m%, —p3) (m%, —p3) (m

2 12)
2 2
p; —m

2
_pll) (mph — D2

X /da: dx’ dy dy e P1E =i Fipzy+iphy! <Q]T{gzg(x)é(x’)cﬁ(y)g?)(y')}\Q)

T o\4 . 2 2
( ) lim (mf)h p%)(mgh p%)(mgh pll)(m?)h p/2)
vz pZ—m?
i

Z Z Z Z
X G (1. P) = p2,ph)
migy = P myy, — pimpy, —pymyy, —p3 T ’
= (\f)“Giﬁia(pl,p’l%pz,p’g) (10.32)

where G'P1 is a one-particle irreducible diagram (1PI diagram is a diagram which cannot
be reduced to two disconnected parts by removing one propagator).

Let us ignore for now the factor (ﬁ)4 (it will lead to proper renormalization of the
coupling constant \) and summarize the final rule for matrix elements of the transition

matrix

M(p1,py = p2,ps) = Gipt (P1.PL = P2oPh) |22 (10.33)
i p
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Figure 12. Amputated Feynman diagrams for two-particle scattering

10.4 Peskin’s mnemonic rule

In Peskin’s textbook there is a handy mnemonic rule for calculation of matrix elements of

S-matrix
S(p1, 1y, 2™ = po, Dy DS) = out (2, Dy 25 01y B D\ Vi
. 4 n
= (02, Py S| T{ 1% LNyt p{™ ) et (10.34)

where in the r.h.s. everything is in the interaction representation:

(P2, Dy . 0T = (U p1, 0, ™) = &le;f,,l...algm)m),
. Ay . aPp e ot ip
- _ = 10.35
L1(6(2) 101, dr(2) ag ¢ e, (1039)

and contractions of ladder operators with the field operators are defined as follows

= A dLgp, ip! t i etP?
~ — 0 ~ O — 0 ~ - rr ~ , —ip z _"_ ~ , wpz 0 — —_—,
appr(z) = (0layedr(2)|0) (0lap 2E, laye € ] %:Ep/‘ ) °E,
A/T‘_ _ R .|. B / Zp . T lp . /\'I' _ 6_ZpZ
z = (0 0) = (0 a e +a a0y = ———
¢( ) P < ‘(;5( ‘ ’ TE P ] p{):Ep/ p| > 2Ep
(10.36)

This mnemonic rule can be justified by the LSZ theorem. Let us illustrate this rule for
the elastic two-particle scattering in the first order in A

o (A At A
5(1)(]917]9,1 - p2>pl2) = 4\/ Ep2Ep/2EP1Ep’1 <O’apzap’2<4|)/d4z ¢Z}(z)a;)1a;'1‘0>
= 40 B By B By [ (20, (2)6:) k2

= —iX / d'z emirzmiizipzz s — 22§ (py 4 p) —py —py)  (10.37)
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and therefore we get the same result (10.8) for the matrix element of transition matrix.

Part X

11 Complex Klein-Gordon field

Consider a set of two non-interacting scalar Klein-Gordon fields ¢;(x) and ¢2(x) and define
the complex KG field ¢(z) = %[qﬁl (x) + ip2(x)] satisfying the KG equation

(0* + m*)p(z) = 0 (11.1)

Obviously, the complex conjugate field ¢*(x) satisfies the same KG equation. It turns out
that for the description of interactions with the electromagnetic fields it is convenient to
consider ¢(z) and ¢*(x) as independent canonical coordinates (instead of ¢1(z) and ¢a(x)).
The Lagrangian for the free complex KG field is

L(t) = /d3x L(Z,1)
L(z) = 90" (x)0"¢(x) — m*¢* () () (11.2)

Note that the Largangian density for the set of non-interacting fields ¢, and ¢o can be
written as

m2

2

L6 +£ln) = 3261 i) (61 +i6) = (1 —ign)(0n +i0)

which coincides with £(¢(z)) given by Eq. (11.2) so one free complex KG field describes
two free real KG fields which do not interact with each other.
The canonical momenta for complex KG field are

_ 9L it
W(tvx) = 8$(t7 ) ¢ (ta )
™(t,x) = ;ﬁ(t,m) = ot x) (11.3)

so the classical Hamiltonian for the KG field takes the form

H = /d3x[7r(t, D)p(t, 7) + 7 (t, ) (t, T)]
- [ @28 0D 0.5) - Vo (0.3) - Fo(t.) - mPe* (1. D)0(0,7)]
= / P [r(t,2)(t, x) + 7 (t, 2)d* (t, 2) — ¢* (£, D)d*(t, ) + V™ (t,7) - Vo(t, T) + m>¢* (t, ) ¢(t, T)]

= /d% [7*(t, B)n(t, &) + V™ (t, T) - Vo (t, T) + m>¢*(t, ¥)o(t, T)] (11.4)

Again, it is east to see that H(¢,¢*;m,m*) = H(¢p1;m1) + H(p2;m2) (note that ¢ =
%(qﬁl +i¢o) but ™ = %(771 — img) according to our definition (11.3)).

— 67 —



The classical energy-momentum tensor has the form (cf. Eq. (11.7)

* oc * * o Lk
TMV = H¢ 81/¢ ¢ m _guuﬁ = au¢ V¢+au¢6u¢ _gw/(a o) a¢_m2¢2)
(11.5)
and the classical momentum of complex KG field can be written as
P, = /d333 Toi(t, &) = /d% [7(t, )0 (¢, T) + 7 (¢, )0;9" (¢, T)] (11.6)

11.1 Quantization of the complex KG field

As usual, we promote classical coordinates ¢, ¢* and classical momenta 7, 7* to operators

#(Z), ¢T(Z) and # (), #T(F) satisfying the canonical commutation relations
[0(2), 7(7)] = [o'(@),21(#)] = i6(&—7), all other commutators vanish (11.7)
The corresponding quantum Hamiltonian has the form
= [dold @@ + 961(@)- $6(@) + m*6 ! @6()] (115)
Again, it is easy to check that
H($,¢'s7,71) = H(¢r,71) + H(da, 72) (11.9)

Now we can construct Heisenberg picture of quantization following usual rules in Sect. 6:
First, we define vacuum in Heisenberg picture as Schrédinger vacuumat ¢t = 0. Due to Eq.
(11.7) this vacuum state is a direct product of vacuum states |[0); and |0)o

0) = 10)1/0)2 (11.10)
The explicit form is the product of wave functionals (4.55) which can be written as
{6(@), " (@)} W) = e~ [Pae@Wo@ (11.11)

where the differential operator W is defined in Eq. (?7)
Next, we define the time-dependent operators
o(t,7) = eMo@e ™, §(t,a) = Mot @,
#(t, @) = ella(@e ™t #l(t,7) = Hal(7)e ! (11.12)
satisfying Heisenberg equations

aé(tvf) 8¢3T(ta f) 2 N

I 2 = A\ T —
GO _ameem, 220D g ),
Of(t, @) _ i o ort(t, ) o
ot - Z[H,ﬂ'(t,l’)], T - l[Ha ™ (t,ﬂ?)] (11 13)
5 These commutation relations are in agreement with [(;Aﬁl(ﬂ) 1(9)] = [ 02(Z), 72 (y)] = i6(Z — ¥), for

example [$(2), 7 (§)] = 3161(Z) + id2(2), 71(F) — ia()] = i6(F — §).
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Similarly to Eq. (6.33) one can prove the equal-time commutation relations
[6(t,7), 7(t.9)] = [6(t,2).7(t.9)] = i8(Z - D), (11.14)
[6(t,2),6(t. 9] = [6(t,),7(t, 9] = [7(t,8),7(t.P] = [&(t,D),6'(t,5)] = 0

Let us consrtuct the expansion of field operators in ladder operators. Since the com-

plex field is defined as ¢(z) = %(q@l (x) + zggg(a:)) (and ¢f(z) = %(gﬂ (x) — zgzgg(x)),

#(x) = %(ﬁl (z) —ifa(2)), #1(z) = %(ﬂ(z’) + zfr;(:n))) we can use ladder expansion
(6.9) for ¢, and ¢
2 dp A —ipr | ~t P A . —ipr _ ~t o'
®1 (‘73) = ﬁ ((1156 + alp ), T (x) = \/ﬁ (11~6 alp )7
7 —ipr | A ipx A . dp A —ipx - ipx
¢2(I’) = /\/ﬁ p +a12-ﬁ€p ), 71'2(1') = —1 ﬁ EI}‘(G 56 p —a;p P )
p

f dp ~ _—ipr | 1T ipz A . 1 _—ipr _ AT ipx
P(z) = /\/E@ﬁe P +b;r;»€p), f(x) = _Z/\/EEﬁ(bﬁe P —a;ep),

~ d’p _ R ) d‘p L .
f(z) = / b~e Ty ate’p”" @) = —i Ex(aze % — pleir
(11.16)
where
. 1. = - 1 =
ay = ﬁ(alp_jL i), ;= ﬁ(alﬁ — iG9p) (11.17)
(and a aﬂ = %(di —iazp) bT = ji(&iﬁ—i—id;ﬁ)). The commutation relations between a’s
and b’s follow from commutation relations between a; and a;r:
lagal,] = [bpb5] = (2m)%(F - F) (11.18)
[&ﬁﬂ&ﬁ’] = [;5'7 17’] = [&;3’7&;] = [;‘7 Z?’] = [dp_?b;’] = [p_’yd;r;v] =0

Let us check that the commutation relations (11.18) for ladder operators lead to CCR
(11.7).

N E o . .
6@.7@) = -5 [ \/; [ape™ + B, by — af, 7] —
p

_ ! / &3p (PED) 4 o PED) = (3 - )

2
[o1(@), 7T (7)) = _ L [aspasy @[&e-iﬁﬂ al e GgeT P — bl ePT] =
) Y 92 pap Ep P /4 P 724
= ;/a‘?’p (e7 @) 4 PE-D) = 4§(F — ) (11.19)
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The Hamiltonian in terms of ladder operators looks like

. 1 IR . IR
H = 2/d3p Ep(alay + azal.+ blbs + bybl) = /a% Ep(alaz+blbs)  (11.20)

in agreement with Eq. (5.18) and the fact that H = H; + Hy. (As usual, we throw away
the infinite constant, see the discussion after Eq. (5.17)).

Note that both az and Bﬁ annihilate the vacuum state (11.10). Indeed, since a150) = a150)1]/0)2 = 0
and agz|0) = [0)1a25/0)2 = 0, we have

agz |0) = bsl0) = 0 (11.21)

(which, as we discussed in Sect. , can serve as a definition of vacuum state |0)).
Now we can promote the classical momentum (11.23) to the momentum operator

B = [ [#@0i6@) + 7 (00, @) (11.22)
and check that in terms of ladder operators it reads
P = /d?’p pi(akay + biby) (11.23)

Similarly to Eq. (6.15) we can represent the quantum operator of 4-momentum as

Pt = (H,P) = /d3p P (alaz+ blbs) (11.24)
and prove formulas
d(x+a) = eipaqg(x)efip“, ol (x+a) = eiP“gZA)T(a;)efipa (11.25)

which are in agreement with the representation (11.16) in terms of ladder operators.
From the explicit form of momentum operator (11.24) we see that

[pﬂ&;}] = pu&;w [}ADM’E;I)] = puj);rp [Puvdp] = —play, [p'uj)}?} = _pul;p’ (11.26)
Using these commutators it is easy to show that d;\0> and BL]O) are one-particle states

=) = V2EL0)  Ip+) = 2E0) (11.27)

with the same mass m (since E, = \/m? + p? for both of them). These states will corre-
spond to states of particle and antiparticle with same masses and opposite charges. ¢ One
can formally introduce the charge operator

N

O = ;/d% (#@(@) — ¢ (@D (@) (11.28)

5The name “charge” is formal here since in a free theory there is no physical notion of charge but in the
theory of quantum electrodynamics of scalar particles these states will correspond to states of particle and
antiparticle with same masses and opposite charges like 77 and 7~ mesons
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In terms of ladder operators it looks like

= [ Giil-alan) = [@% Elhs—alap (11.29)

where again we dropped the infinite commutator term so the vacuum will have charge zero
Q[0) = 0 (alternatively one may just define the charge operator @ as the r.h.s. of the
above equation). The commutators of operator Q with ladder operators are

@ap) = oy [Qagl = —ap Qb = —bl, [0 = by (11.30)

From these commutators it is easy to see that the operator Q counts the number of (+)

particles minus the number of (—) particles in an (m+n)-particle state

Qlp1.p2s--pmi k1, ko, o ky) = Iuy/2Ei,\/2E; Qat a;; ; T/z L Bi |0) (11.31)
= II,,\/2F:11, 2Eim—n)a}lagz...ATmlebzz b%ﬂ]o) = (m—n)|p1, p2, .. Dm; k1, ka2, - ko)

From expansion of field operators in ladder operators (11.16) it is easy to get the Feynman
propagator for complex KG field

. . d3 dLB / ) .
O3 W) = bao - w) [ 2 (e 4 B ) Bpe Y + e )0

d—3pd—3 / R ., ; o
0 _ Loy ~ Zp Yy —ipx + b ipx 0
+ (yO Zo /2\/ﬁ < |( 5 € + (I )( )‘ >

= 0(zo—yo)D(w —y) + 0(yo—20)D(y —v) = Dr(z —y)

which is the same as the propagator for real (“neutral”’) KG field. One can also demonstrate
that

2 2 d3pd3p/ ~ —ipz | it ipzy\(s _ —ip'y | 3T ip'y
OIT{3)3N0) = 0l — o) [ T PLL (0](age2 4 8 eV + B0}
p=p

d3pd 3y AP L
+ 0(yo — z0 / eV + bl e®'V)(age " + ble™™)[0) = 0 (11.32)

(©
o /E,Ey {0l(a

and similarly (0]T{¢!(2)¢T(y)}|0). In accordance with these formulas the propagator of
complex KG field is depicted as a line with an arrow going from ¢(z) to ¢f(y)

11.2 Complex KG field with self-interaction

As an example of self-interacting KG field, consider theory with Lagrangian

A
L= 0,0"0"0—m?6"6 — 1(6"0) (11.33)
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<OIT{O(x) ¢'(y)}0> = X y

Figure 13. Feynman propagator for complex KG field

and independent canonical coordinates ¢(x) and ¢*(x). The Euler-Lagrange equations are

oL oL A
_ A 2 2y a2
% 0 900 = (0" 4+m")¢ 2¢ o,
oL oL A
96" 0 30r o = (0°+m%)¢ 2¢> 0] (11.34)

The canonical momenta are the same as in Eq. (11.3

oL :

(t,z) = 6—¢2(t,x) = ¢*(t,x)
. oL o
T (t,x) = %(t,:n) = o(t,x) (11.35)

and the classical Hamiltonian for the KG field takes the form (cf. Eq. (11.4))

— —

H = / Ea[n* (t, D)n(t, ) + Vo™ (t, F) - Vo(t, T) + m>¢™ (¢, 7)b(t, 7) + 2¢>*2(t, 7)o° (t, T)]
(11.36)

11.2.1 Quantization

For quantization, we repeat the same steps as we did for real KG field (see Sect. 7). As
usually, we promote ¢, ¢* and w, 7* to operators

o(t,7) = §(T), w(t,.F) — 7(@), (11.37)
satisfying the canonical commutation relations (11.7)

[0(2),7()] = [¢'(@),#T(7)] = i6(F—7), all other commutators vanish(11.38)

The quantum Hamiltonian is (11.8) plus the interaction term

H = Hy + Hiy, (11.39)
fy = [dalf @@ + V6l(@) - Vo(@) + md (@3@),  H = 6@ (@)

As usual, we define vacuum state Q) as an eigenstate of H with the lowest energy (and
suppose it is non-degenerate).

HIQ) = EuacQ) —  stationary Schrodinger equation (11.40)

As we saw in Sect. 9.3, the vacuum energy is a sum of (divergent) vacuum bubbles which
cancels in the expressions for physical cross sections
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The Heisenberg picture of quantization is constructed in the same way as for real KG
field in Sect. 9: we start with Y({¢(Z)}) = Psero(t = 0,{¢(Z)}) and define time-
dependent canonical operators

b(t, %) = e“fté(f)e*“i”’ oi(z) = eilftéT(f)efiila
w(t,7) = Mr@e M, Al(x) = AN (@) (11.41)
satisfying Heisenberg equations
WD b7, D iy, 540,
2oy = o o A
d¢ C(i?x) = i[H,$(t, 7)), W = i[H, 7, 7)) (11.42)

Similarly to Eq. (7.14) one can show that the equal-time commutators are the same as in
free theory (see Eq. (11.43)

(bt @), 7(t, )] = ['(t,2), 7 (t, )] = i6(F — ), (11.43)
t

[6(t, ), $(t,9)] = [6(t,2), 7 (1, 9] = [, 7)., 7t 9] = [#(t,7),6'(t,5)] = 0
Also, following logic of Sect 7.1.1 one can prove that the quantum operators ¢(z) and ¢f(z)
(given by Eq. (11.41)) satisfy the same non-linear KG equations (11.34) as their classical
counterparts

@+ (@) = 2 @FE@), P Am @) = — 26 @) (149
11.2.2 LSZ theorem

The proof of LSZ theorem repeats Sect. 8. We define set of free in- and out- complex KG
fields
iA

qgin(x) = gf;(l‘) + 2/d4z G%(SE —2) q2)2(27)¢A)T(z:)

~

Sia) = d(@)+ g [ds Ghiz—2) 627()

q@out(m‘) = ¢(z) + i;\/d4z G%(a:—z)qu(z)(y(z)

~

Shale) = J@)+ 75 [ds G- 2) 61920 (1145

and define a set of |p1+, p}+, ...pgm”—i—,pl—,p’l—, ...pgm’)—)h states and a set

of out(p2+, Ph+, ...pgm)—i—,pg—,p’z—, ...pén_) — | states. Let us consider for example the two-
particle scattering of one (+)-particle and one (-)-particle

S(pi+,p1— = pot+.1%) = out(p2+,ph — [P1+,P1—)in (11.46)

Using formulas

PRI AN RN LN
V 2Ep dout(p) = Z/dsx e—zp:ﬂ—i—zEpt aO ¢out($)a V 2Ep &:rn(p) = Z/d3.’E 61pm—zEpt 60 gbin(x)
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and repeating the derivation from Sect. 8.2 we get

out (P2, D5 — [P1+,P1—)in = (11.48)
= i (=gt =) [t dly I g+ (@O0
12

To reduce this formula to T-product of four currents we need to use

out(Py + | = /2By, (013", PiH)in = /2B, (63)7]0) (11.49)

\/Ei)%ut _ /d3x efszJrzEpta ¢out( ) 2E len _ / o ezp:): 'LEpta (z)T( )

and repeat the derivation or Sect. 8.2 again. We get

out (P + | T{(2)(y)} P\ +)in (11.50)
= lim  (m?—p])(m® —p)i /d4w dty e Y (QIT{g(2)d! () d(y)d' (v}

p'1p'5—m?
so the final form of L.SZ theorem fot two-particle scattering reads

. 2 2
out P2+, P — [p1+, Pl —)in = lim (m® — p1)(m?* — p3)(m? — p'7)(m* — p'3)

P03, 2 ph % —m?2
x i [t dty e e QTG )60 WY (115

Thus, the only difference with LSZ for real KG field is that |[p—) and (p—| states correspond
to ¢! operators (rather than ¢ operators) in Green functions.
For a general scattering process the LSZ formula gives

S(pr, P -0+ = g =, = = pat, s DY+ qo—, = g8 ) (11.52)

= out (Pt Pyt DS 4 o=, =, S — |pi P T i, = pg Ly =

= MMt iy I(m?2 — p?) / Tdz® Tdel) Tdy® Tay® e St =i S ul?+i Spd ey +i )

pZ—m?
< (QT{d(z1) ... "Dt (1) . S ) b(w2) oo D@ ) (2) ... D) HI)

11.2.3 Interaction representation and Feynman diagrams

The construction of interaction representation repeats Sect. 9.1. For example,

A A 0 T zf dtfd z E 0
QTN = tim i e )10
O|T{6 -7 7 }’0 T=T1(1—1¢)
Feynman poles O|T{€lfd4z £ Z)¢I }|0 (11 53)
0‘T{6Zfd4z L(2) }‘0 .
where \
Li(z) = - J16}=)or(2) (11.54)
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is the interaction term in the Lagrangian. Wick’s theorem is also the same with the only
exception: the contraction between ¢ and ¢ and between ¢! and ¢! vanishes, see Eq. (11.32)

o — —_—

or(x)dl(y) = Dp(z—vy,)  or(x)or(y) = dh(x)di(y) = 0 (11.55)

As we mentioned, the Green function qgj(x)g?)}(y) is depicted by a line with an arrow, see
Fig. 17. The relavant diagrams for 2-point Green function (11.53) look the same as in Eq.

(9.67)

—1 2 2ot ()1 ()2 2 in
(0T {e Jd*z 36} (2)dr1(2)]? I@;)@(y)}m)
<0|T{e—ifd4z %[ﬂ(Z)éf(Z)]Q}Hm

+ Zi +
x y

(11.56)

(QUT{o(2)' (1)} =

N

B X y X y
with the exception of symmetry coefficients
Z< ) m
X y X y
X y
S=1 S=2 S=2
Part XI
12 Lorentz transformations
Reminder from E & M:
1 0 0 O
Metric tensor ¢"* = 8_(1) _(1] 8 (12.1)
0 0 0-1
ot = A2, AF, = 4 x 4 matrix, AS = g"g,5N%
o =2 = A“aAfxaacg = z%wgdy = A“QAMB = 43 (12.2)

In terms of matrices A", = A, Ay = gAg
9"“9,8M% = AgAg = 1, |detg|=1 = (detA)? =1 = detA=+1 (12.3)

Lorentz transformations: rotations, boosts, and 3 discrete Lorentz transformations (P, T,
and PT).
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12.1 Relativistic invariance in a classical field theory

12.1.1 Scalar field

0’6) =123
xM =AM, xV

b@ =123 o’(x) =9 (x)

Figure 14. Active Lorentz transformation of a scalar field

Scalar field: ¢'(z') = ¢(z) (example: temperature in the room)
¢(x) = (A 1) active rotation (12.4)
Action must be relativistic invariant
[t c@ @) = [ate (o) (12.5)

We know that
¥ = Az = /d4x’ = \detA]/d4:B = /d4x (12.6)
S0

L(¢'(a) = L((x)) (12.7)

= Lagrangian density is relativistic invariant.
Let us check relativistic invariance for a classical KG Lagrangian (3.2)

m2
L) = L(6(, D000, ) = 50,00"6(x) — 2-62() (128)

For the mass term the invariance is trivial.
For the kinetic term

O - iy = (A2 @Al gy = (a2 g 0
o (@) gt @) = (Magd @A 556 = (Mag—o@)al 556
0 0 0 0 0

— By~ il — §8_ 7 . - —
= (oA )50 5 50(a) = Hlg-o() 5 500) = 5oz ao@) (129
where we used 9 9 5 5
8:1;/ = A#l/ axl/ s al»/;u = A“V 81:1/ (12 10)
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which can be proved as follows

o 9

8%% = Aaaxa(A%ﬁ) = AL NS = 6F
8 v [e% 8 v QaAV v

(The self-interacting KG Lagrangian 19,¢0"¢(z) — %-¢?(z) — %gb‘l(x) is also evidently
relativistic invariant.)
Let us also check explicitly the relativistic invariance of classical KG equation:

o 0 0 0

873:6//L¢/(x/) = Aﬂaax m a$5¢( ) = AuaaT " 83]B¢( x) (12.12)
= M Do) = L Daw) = (0 = (@ nol)
M Ozg 0w, Oz -

= form of the equation does not depend on frame.

12.1.2 Generators of Lorentz transformations

We will demonstrate that the differential operator

0
e~ 2w , JH = q(xH — > v) (12.13)
ox,
generates Lorentz transformations
e #m T g(z) = ¢la) = o(A ) (12.14)

where the matrix of Lorentz transformation A is completely determined by 6 parameters
wy corresponding to three boosts and three rotations.

Let us demonstrate that for boosts using the boost in x direction as an example. The
matrix of this boost is ”

cosh g sinhg 00 cosh 09 — sinh99 00
i sinh @ coshf 0 0 -1 _ . —sinh @ cosh 00
A(0) = 0 0 10| = A0O)=A0) = 0 0 10
0 0 01 0 0 01
(12.15)
Let us make an (educated) guess: wp; = 0, w19 = —0, all other elements vanish
2 00
ww = | 8 8 8 (12.16)
0000
We must prove that
e~ 5w " o(x) = e_iwm‘]mqb(x) = ¢(z"cosh@ — z'sinh @, —2sinh  + z! cosh 8, 22, 2°)
(12.17)

"This is the matrix of an active Lorentz boost in positive z direction. Note that all textbooks on Special

Relativity present the matrix of passive Lorentz boost (= Lorentz boost of a frame) which differs in sign of
0 from Eq. (12.15).
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Proof: let us rewrite this equation as

g(xo o) _zl o)

e\ dm WO) p(z) = ¢(2°coshf — 2! sinh @, —2%sinh § + 2! cosh 6, 22, 2%),  (12.18)

differentiate 1.h.s. and r.h.s. with respect to 6, and compare the differential equations.

d 0 0
Lhs) = (2 — 2! —)(Lhus. 12.19
ds) = @02 1,0 21
d d 0 1.: 0 .2 1 2 3
dG(rhS) = @qb(x coshf — x" sinh 6, —z" sinh @ + z* cosh 0, x*, z°) (12.20)
d 0
= de(x COShG—LE Slnhe) o0Xx0 ¢(X0’X1’x2’x3)’XD::pocosh97x1 sinh ,X1=—20sinh 84z cosh §

d 0
0 1.2 .3
4o ( Z Slnh 0+ COSh 0) 6Xx1 ¢<X ;X0 atw )|XO::1:0 cosh —z! sinh §,X1=—20 sinh 842! cosh §
0
_ . 1 0 w1 .2 .3
- (.’L‘ sinh 6 — 2" cosh 9) X0 ¢(X , X0 atw ) ’X()::po cosh —z! sinh §,X1=—20sinh 642! cosh §
0
0 1. 0 1,2 .3
+ (—SL‘ cosh 6 + z* sinh 9) oXx1 Qb(X X2t )}onaco cosh —z! sinh §,X1=—20 sinh §+z! cosh §

Now

d d
70 (rhs.) = wﬂwo cosh @ — 2! sinh @, —z" sinh @ + 2! cosh 6, 2, 2°) (12.21)

d 0
0 R 0 vl .2 .3
T dx0 (‘T coshf — x” sinh 9) oXx0 (b(X , X0 a%, ) ‘X()::(;O cosh #—z! sinh §,X1=—20 sinh 6+z* cosh §

d 0. 1 0 0 1,2 .3
+ @(_l‘ sinh 6 + COShG) oXx1 ¢(X , X5 at,w )’onxo cosh 0—z! sinh §,X1=—20 sinh 84z cosh §
_ 0 1
- COShQaXO ¢<X X aj LE |XO:x0 cosh O—z! sinh §,X1=—20 sinh f+z! cosh §
: 0 0 1.2 .3
B SlnheaXl ¢(X X0 at )’XOZQEO cosh O—z! sinh §,X1=—20 sinh 84z cosh §
and
d d ,
d—(r.h.s.) = — ﬁ(r.h.s.) = - 1¢(x cosh — z' sinh @, —2%sinh 6 + 2! cosh 0, 2, 2%)
T X

8
_ 0 1
= Smh9 g O(X7, X a2’ |X0::vocosh0—x1sinhG,Xlz—xosinhG—i-zlcosh@

3 0 w1
B COSheaXl ¢<X , X ,33 » L )‘onxocoshe—xl sinh 6, X1=—20sinh 842! cosh # (12'22)
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and therefore

xoi(r.h.s.) - xlaa(r.h.s.) =

dxy 20

= 2( sinhf—— 0 (X0, X', 2%, 27)| —cosh0i H(X0, X1 22 3:3)‘
- X0 XO,X1 . 8X1 ’ L X0 X1,

1 0 yl1 0 yl1
- (COShHW $(X°, X, 2%, 2 ‘XO,Xlz... - Smheﬁ HX° Xt )‘XO,Xlz...

) 0
= (2°sinh @ — 2! cosh G)ﬁ H(XO, X1, 22 xg)‘XO,XI:,,,
+ (=2 cosh @ + z! sinh 0)&?(1 H(X0, X1 22, xs)‘xo,xlz...

= r.h.s. of Eq. (12. = r.h.s. 12.

h fE 2.20 d h. 2.23

do

We see that the differential equations (12.19) for L.h.s. and (12.23) for r.h.s. coincide. Also,
the initial conditions at §# = 0 are equal, and therefore the Lh.s. of Eq. (12.18) is equal to
the r.h.s.

Let us now consider rotations, for example the rotation around z axis with the matrix

10 0 O 1 0 0 O
. 0 cosp —sing 0 -1 _ _ 0 cosp sinp 0
Alp) = 0 singp cose 0 = AT(p) = Al-p) = 0 —siny cosp 0
0 O 0 1 0 O 0 1
(12.24)
In a similar way one can prove that the matrix
0 928
W = | 0 —¢ 60 (12.25)
0 000
generates rotation on angle ¢ around z axis:
e_%wHVJuVQS(:U) = e—iw12J12¢($) = e¢(m1% 2821)¢(x) = ew(x2%_mlﬁ)¢(x)
= o2, 2" cos o + 2% sinp, —a' sin p + 22 cos p, %) (12.26)

For an arbitrary Lorentz transformation formula (12.14) still holds true but the relation
between w,,,, and A*, is more complicated .
Commutation relations between generators of Lorentz transformations

[PH, JY] = ig" PP —igh* P>
[JH N = =gV — gt — g AR gt ) (12.27)
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(PFro(z) = iot¢p(x), see Eq. (6.29)) Proof:

[, T

0 0 0 0
— 52 A A iz _ _ L
! (ac 856,,x oz, “ 8a:px 83:V) p=v Ao

o 0 0 a 0 0
S SIS N AR 2> S TS TP 7_##/\7)_ or — Ao
(m v Oz, Ox, T Oz, v Oz, Ox, e ox, g v p
- gupri_ngui — BV — Aep
o0z, Oz,
0 0 0 0 0 0 0 0
— gHPp AT A Y vp AT ALV T A p T VPl VAP T o T
g m(‘?az,, g x@xp g x@xu—i_g x@mp g x@:c,,—i_g x@:c,\+g x@:pu g xc’)x,\
0 0 0 0 0 0 0 0
— N 2 v P o (VA VA (e p Y VP (A
19 2(:1: B, T 8xp)—|-zg z(af; N T 8%)4-29 z(:L' oz, T 8x“)+zg z(:n oz, T 6:13,\)
= —ig"\ v+ ight T+ igh T — gl g (12.28)

12.2 Vector field

Vector field V#(z) : the field which transforms like the coordinate. Example: VH(x) =

zH®(x) where ®(x) is a scalar field.
Mx) = x X
v/ V) = x*P(x)
Xt =AM, xV

O’(x’) =P (x)

Figure 15. Active Lorentz transformation of vector field V#(x) = 2 ®(x)

In general
V(') = AL VY(z), of. 2" = At
Equivalent representation

VH*(z) = AL VY (A )

Example: electromagnetic field A*(x).
Let us prove that Maxwell’s equations

0 ) 0
) Fﬂy(x) = ]V($)7 F,LLI/ = 7141/ — U=V
Ty

are relativistic invariant, i.e. in after Lorentz transformation

A (@) = A AY(2)
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they look the same:

0 .
a—%FW(:c') = j(2). (12.33)
First,let us rewrite Eq. (12.10)
0 0 0 0
= A* = A7 12.34
o), Yox,’ ox'* " Qxv ( )
From this equation and Eq. (12.32) we see that
0 0 0
Ay = A} —ALA =AM —A
81‘;1 (‘T) 0 ax)\ v p(x) n v aCC)\ P(‘T)
= Fu(2) = AJALE(2)
- g () = AP AP piFA (z) = ApiFA (z) (12.35)
(9&0;1 1224 ottty v 81‘0— P v 856)\ o) .
The current j,(x) is also 4-vector so it transforms like Eq. (12.32)
(@) = ASj(2) (12.36)
and therefore
iF (') —j(2) = AS iF () —jp(z)| = 0 (12.37)
ax:; |24 v v O, Ap P :
so Maxwell’s equations retain the form (12.33) after Lorentz transformation.
12.2.1 Generators of Lorentz transformations for vector field
Let us prove that _
V() = (732 TV VY () (12.38)
where
(Y Ve a af\H . a a
(7%, = i(650) —op0p) & (T)", = i(g"0) — g"75p) (12.39)

Let us illustrate that for the boost in x direction. The vector field transforms like the
coordinate (see Eq. (12.15))

517/1 cosh 6 sinh6 0 0 1’2
M= A e x/Q _ smohﬂ co%hﬁ (1) 8 iz (12.40)
x
.1‘/3 0 0 01 3
(u=column, r=row) so the boost of vector field looks like
0
‘K:l(x:) cosh sinh @ 0 0 “;(l](x)
VA = ALV (z) e V,Qg/g _ SanhH Co%hﬂ (1) 8 VQEQ (12.41)
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Let us check that the Lorentz boost (12.41) is described by matrix (12.39) with w given
by Eq. (13.44) (wo1 = 0,w190 = —0, all other elements vanish)

i . 1 i3
(et T O (T (1 g - L g - P g g
v_ s ok 0 conye (oonye 107 oive o oonya o1y 8
= 5 —i0(T), = S (T) G (T), + 5 (T (T BT, + (12.42)
From Eq. (12.39) we see that
e
(jOl)Ha(jOI)ay — _ (go,u(sé_gl,ucsg) (QOaéi_gla(sB) _ _g(),u(sl(j]_f_glu(si = 10000
0000
(12.43)
so the matrices ((jOI)”)“V are
2108 081 Y
o1 _ 01,2 01\3 _
I =1dloo000 | W) =-loooo]): () =-ilggoo| (1244
0000 0000 0000
and therefore
1000 0000 %900 9%00 coshf sinhf 0 0
—iwe1 T 000 02 0° sinh @ coshf 0 0
e =1oo10 ] {oooo /T DF00 ]l G 000t = 0 0 10
0001 0000 0 000 0 000 0 0 01
(12.45)
Thus,
0
“;:1 cos}lllg sinlﬁz 00 5(1]
—iw 01 v i
V’“(a:') _ (e 01T )MVV (z) & 2 _ smo co% (1) 8 U2 (12.46)
V/3 0 0 0 ]. V3
which is a Lorentz boost of a vector field (12.41).
NB: We have proved that for the Lorentz boost in x direction
cosh ¢ sinh6 0 0 p
(A)E, = smOhG co%hH (1) 8 _ (e—iw()lJOl) (12.47)
0 0 01 Y
Similarly, one can prove that in general
(A, = (e‘%“aﬁjaﬁ)“ (12.48)

but the relation between matrix elements of A and w,g is more complicated.
Combining the formulas (12.14) and (12.48) we get

V/M(aj) — A}Lyvl/(A—lx) — (6_%‘”*9*7)\’))””‘/”(/\_1:6) — (e‘éwwﬁp)“Ve_%“’APJA”V”(:c)
(12.49)

The first (differential) operator shifts the argument x of vector field to A~1z and the second
(matrix) operator makes boost or rotation (or combination thereof) of vector field.
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12.2.2 Lorentz transformation for a general field

For a general field ®, (a is some index) the generator of Lorentz transformation is
' (2)) = Mup(M)®y(z) & & (x) = My (A)Py(A ) (12.50)

Mathematically, My,(A) is a representation of Lorentz group. Indeed, let us consider two

successive Lorentz transformations A; and As:
=AMz = Oya)) = My(Aq1)P.(2)
l’” = Az.%'/ = @Z(ZL/) = Mbc(Az)@)/C(x/)
2 = A2A1$ = (I)Z(CC) = Mab(AZ)Mbc(Al)q)c(x) (1251)

On the other hand
" = AgAjz = OV(x) = Mue(AaAp)P.() (12.52)
and therefore
Moc(A2A1) = Mgp(A2)Mpc(Ar) (12.53)

so matrices Mg, (A) form a representation of the Lorentz group.

In terms of generators
i

M(A) = e 2%asM*’ (12.54)

where matrices M®? are the generators of this representation (and, as we discussed, the 6
papameters wq define Lorentz transformation A). Mathematically, the matrices M2? form
Lie algebra of the Lie group Mg (A).

Commutation relations between generators are the same of all representations

(M MM] = —i(g"MYP — g M# — ghP M + g"PMF) (12.55)
For example, it is easy to check that
[jzw, jkp] - _ Z-(gu)\jlm _ gvkjup _ gupjl/k + ngjw\) (12.56)
Check:
4 E 174 4
[jﬂ >\7>\p] n = (jﬂ )Ea(jAp)Un - (jkp)fa(ju )077
= —(¢"05 — o V)90 = X p) + (9708 — X > p) (g8 — > v)
= ¢ — g g — pe v = A p = g gt — e = Ay
= ighi(— g+ g"%0)) — perv — Ao
= i(g“pj”)‘)gn — u<v — A< p = r.hs. of Eq. (12.56) (12.57)

For the proof of general Eq. (12.55) we need a mathematical formula: for any two operators
A and B
eAeP = ATBH3ABI(1 4 O((A,[A, B]| + O(B, [B, A))) (12.58)
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Proof of Eq. (12.55): consider two successive infinitesimal Lorentz transformations with
matrices A1 ~ 1+ dA; and Ay ~ 1 + §As, compute

M(A1Az) — M(A2A1) = M(A1)M(Az) — M(A2)M(A4) (12.59)

and compare the Lh.s. and the r.h.s of this equation.
For infinitesimal Lorentz transformations

(M) = (50Y, o S (Tus)
(A)", = (eféwg“ﬂjag)#y ~ 55—%w35(%5)“y (12.60)

we get (we keep terms up to w?)

(Mo = (B (P, = (eilrre e 14 0
— (e w1 4w2)*P Tag+ L garwiPwy J,ep) ( + O(w )) — e — L (WP +wy’ —genwituwh )Ja5(1+0( ))
(12.61)
From this equation we see that
M(A1As) = e~ 37l —ge Wy Mas (1 4 O(w?)) (12.62)

1

= 1- o 4 wzﬁ — ggnculg 5")Ma5 — g(wl + wg)aﬁMaﬁ»(wl + WQ))‘pM)\p + O(w?’)

2(
and therefore
M(A1A2) ~M(A2A1) = 3 geywws " Mas— 5 gens i Mag = igeye;“wy " Mag + O(w*)
(12.63)
Now tet us turn our attention to the r.h.s. of Eq (12.59). We get
i i 1
M(A;) = exp(— §w?ﬁMaﬁ) ~ 1- iwfﬁMoﬁ - gw?ﬁMagw?ﬁMag + O(w?)

i 1 a
M(A;) = exp(— waBMag) ~ 11— 7w25Ma5 - waBMangBMag + O(w3)

2 2 8
(12.64)

and therefore

L o
= M(A)M(Az) - M(A2)M(A1) = — 2wy’ (MasMy, — My, Mag) + O(w”)
1
= _1”1 57 [Mag, My,] + O(w?) (12.65)
Comparing Egs. (12.63) and (12.65) we see that

1
A . . A
——wf w2p[Ma5,M,\p] = zggnw?gwgnl\/la/g = w] BwZ (— Z[Maﬂ’M’\p]) = zwf‘BwQngpMa,\

= w?ﬂwé\p [Maﬁ,M)\p] = w?ﬂwg‘p( —198pMax + 19823 Mayp + igapMpy — igaAMgp) (12.66)
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Since wfﬁ and wy P are arbitrary we get the commutation relation (12.55).

Part XII

13 Dirac field and Dirac equation

13.1 Spinor representations of Lorentz group

We must find a representation of Lorentz group describing particles with spin % (electron is
historically the first example of such particle). From general formulas (12.50) and (12.54)
we see that we that the fermion field transforms as

Ye(a) = (e—%wWSM”)&wn(g@) (13.1)
with some matrices S satisfying the commutation relations (12.55)
[S‘“’, Saﬁ] = —ig"S"? — pev — aep (13.2)

From QM we know that spin—% particle is described by two-dimensional spinors, and there
exist 2 x 2 matrices satisfying the commutational relations (13.2):

e Solution #1

S = %0“6" —pev (13.3)
e Solution #2 '
S = %6“0" —pv (13.4)

where o and * are 4-dimensional Pauli matrices:
o' = (1,6), o = (1,-0), 07 = (04,04,0:) (13.5)
The explicit form is
2o (30 = () A= () P-(0) o
and

P (30 = (9T =0 A= (3w

Later we will need the anticommutation relations for these matrices
ola” + ot = 2¢", ala” +a"ct = 2g" (13.8)
Thus, one may consider fermion fields v¢(x) and ¢ (x) which transform as

g ymeB _ i aSeBy
vi(a') = (e 2 ap® )énun(x), v(a') = (™2 ap® )&YV,](JU) (13.9)
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It turns out that these fields satisfy Weyl equations

0 0
I — S H - -
o &Uﬂy(l‘) =0, 7 8ﬂvuy(:c) =0 (13.10)
These field are not parity-even: one turns into the other under the parity inversion. Indeed,

let us define the field 7(z) = v(2°, —F). The first of equations (13.10) can be rewritten as
O’O%V(l‘ ) +d Vv(® F) = 0 (13.11)
so the field () satisfies the equation

0 Ter— 0
0 (20 N o T 0 0 e T I
o wu( —2)+5- Vo, -7) =0 "5 @y(az ,Z)—-Vi(z",Z) = 0 (13.12)
which is the second of equations (13.10). Thus, Weyl equations are not invariant under
parity transformation and therefore are not applicable to parity-even electrons. (Nowadays
we know that they describe neutrino and antineutrino fields.)
Historically, Dirac found the parity-even representation of the Lorentz group realized

by 4x4 Dirac matrices v* satisfying the anticommutation relation

PHAY + A = 2gM (13.13)

The solution of this equation can be written as &

(0 o# o_ (01 1 _ 0 o 2 0 o 3 0 o
v %) = =) =00 F) =05 T) "= T)

(13.14)

where 1 stands for the 2x2 unit matrix and ¢’s are 2x2 Pauli matrices, see Eq. (13.5).

Later we WIH need also the matrix
-10
Vs 170’717273 _ ( ) (]3']5)

Note that 5 anticommutes with all y-matrices yy5 = —y2yH.
Using the equation (13.14) is easy to see that if we define

17" (13.16)
the matrices S satisfy the commutation relations (12.55)

S Sxp] = —iguaSup — v — A& p (13.17)
so they can serve as generators of Lorentz transformations, so

Uela') = (78S u (@) (13.18)

is a representation of Lorentz group It remains to be seen that the representation (13.18)
describes particles with spin 5 L and we will prove this later.

8 There are different representations of v matrices related by unitary transformations. The matrices in
Eq. (13.14) correspond to so-called spinor representation used in Peskin’s textbook. Another common form
of v-matrices is called standard representation, see e.g. textbook by Bjorken and Drell
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13.2 Dirac equation

Dirac’s question: suppose ¢¢(x) is a 4-component field which transforms according to Eq.
(13.18). How the classical equation for such field may look like?
First, it is clear that the equation of a KG type

(0% + m*)e(z) = 0

is possible. Indeed,

o 0

o 0
(a$l a 174

87 ox'*

+m2) () = ( +m?) (¢35 S) () (13.19)

7*0.)‘“‘" v a 8 710.)"’” - 8 8
- (e s )f”(ax’ Az )i () = <e e )ﬁﬁ(axuaxﬂ+m Jén(@) =0

since we can repeat the proof from Eq. (12.12) for each component ¢, (z).
However, Dirac wanted the first-order differential equation 9, and his guess was the
famous Dirac equation

(V"0 — m)enip(z) = 0 & i(y* )Enazg;i) = me(x) (13.20)

Let us prove that Eq. (13.20) is relativistic invariant. Introduce the notation

= (i S
Ay, = (), (13.21)
First, we will prove that
-1 _ v
(A1) e(Ay),, = AL e (13.22)

or, in explicit form

i v i v ! @ .
(e§m ) ex (7 (eiawu )y = (67§waﬂj g) 0 en (1323)

(recall that A is given by Eq. (12.48)).
To prove Eq. (13.23) we expand both sides in powers of w using formula

[e. 9]

ABe A — Z%[A, (4, [A...[A, B]]]..] (13.24)
n=0
The Lh.s. of Eq. (13.23) takes the form
<65“WS )E/\(fy“),\p<e W S#V)pn = Z (122')" [wS, [wS...[wS,v"]]]...] (13.25)
n=0 ’

9He thought that, similarly to the Schrédinger equation, the first-order differential equation for t(x)
would allow probabilistic interpretation at the one-particle level. This proved to be wrong - we know for
the relativistic description we need both electrons and positrons (which were predicted by Dirac!).
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Let us calculate these commutators (spinor indices of Dirac matrices are implied)

8 = (T = wenST ] = (e Ty & WSAM] = — (W)
(13.26)
We get
WS, [WwSY]] = — (W) [wS,7"] = (I (w7 = (wI)*)" 7 (13.27)
(WS, [wS, [wSy]]] = — (wI)",[wS, [wS,+"]] = ( I (wT)” [wS,VH
= — (W (WI)\(WwT), — (g )
[wS[ S.. [wSﬁ“]H ] = )" ((w)™)"

1 @ 12
)n)ﬂu,}/l/ — (e_iwaﬁj ﬁ) ,yl/

14

Z

o
WS, Z

Now we can prove that Dirac equation is relativistic invariant. Using 83% = A/ afzy and
Eq. (13.22) we get
o 8¢/( ) 1 — (i AP 9 13.28
(i0M)ey i —m @) = (i7"Magz = m)_ (Ag)pytn() (13.28)
) 0
= i) ep M5 (A )ty (2) — (A e ()
0

= (APep{ 1810 (") (A o, 5 = My P @)
= (e i) A, = i Yoy (2) = (Ag)ep {80y — iy bi(@) = 0
Note that Dirac field satisfies also the KG equation:
("0 +m)b(a) = 0 = (I8, —m)(ir 0 + m)p(x) = 0
= (=99 0,0, — m*)Y(z) = —(*+m*)P(x) = 0 (13.29)
where we used Eq. (13.13).

13.3 Lagrangian of the Dirac field

The Dirac equation (13.20) must follow from some Lagrangian. The Lagrangian is a scalar,
so how we make a scalar combination of spinor fields?
The simplest invariant is 1) (2)¢(z) where 9 = ¥'y%. Check:

—*W v W v Tw
ve(a) = (e 2" Sw) uy(@) = Wi, = vl@) (2 S) A8, (13.30)
(recall that w,, are real numbers). Now we use formula

YA = (13.31)
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SO
1

4[7“,7”])% (13.32)

YWSH = w8 w0 = wuﬂO(

= wuﬂOihm’ "o = wuui[’mmw 707" 0] = wuyi[v“,'y”] = wuS" = (wS)
and we get
VL0 = Ul 3 oy = U ), = TS,
(13.33)
so Y1) is a scalar:
V(Wi (@') = (') (e3D) Q(e—%@S)) ey Un(@) = (@) () (13.34)
In a similar way one can prove that j* = "1 is a 4-vector (recall notation A 1= e~ 3 («S) )

) = T = SNt = Tel@)(Ag) (0o (A dogtin(a)
= A e(x)()enibn(x) = A yip(x) = AF 5% (2) (13.35)

Now, if {y#1)(x) is a vector and 9, is a (co)vector, their product must be a scalar:

0 0
s (@) = Te@) (AT (7)o (g )on, 55t (2)
- 0

= MAN 0 e s tn(@) = Te@)0 e stn() = Br00() (1330

where we used Eq. (13.22).
Let us demonstrate that the scalar

Lp(z) = ¢(iv"0, — m)(z) (13.37)

may serve as a Dirac Lagrangian. We need to check that Euler-Lagrange equations for the

PO (@) = Pyt

Lagrangian (13.37) reduce to Dirac equation

oL oL oL oL

(M — - Iz - = (AR — —

o0 2(7 Oy m)z/), 90 0 = 0 20— o & 1(7 Oy m)w =0

oL - oL - oL oL - -

hdad i, Iz - = P - _

90 ma, 90 1y, = 0 30y 90 & 10"y, my
(13.38)

We see that the first equation is Dirac equation (13.20) and the second is its complex

conjugate.

Part XIII

13.4 Plane wave solutions of Dirac equation
13.4.1 Dirac equation in spinor representation of v-matrices

Dirac bispinor

o= (41) (13.39)
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Y1, ¥r - Weyl spinors (two-component spinors)
Dirac equation

, , Tojalo] =
oo () = mh) = (e D)) = mh = s = o

If m = 0 - two Weyl equations for neutrino and antineutrino fields v(x) = pr(z) and

v(z) =r(z)
icto,v(z) = 0, iclouv(z) = 0 (13.41)

13.5 Plane waves

Ansatz: 9,(x) = u(p)e "P*. Dirac equation (common notation ¢ = aty,):
Oup(r) = 0 = (F—mu(p) = 0 (13.42)
We start with particle at rest p, = (m,0,0,0).
0 _ -1 1 - _ 13
(my" —m)u(p,) = 0 = m< 1 71)u(pr) =0 = u(lp) = \/R(g) (13.43)

V/m is introduced for convenient normalization (we assume £7¢ = 1)
Next, we boost particle is z direction. The martix of this boost is given by Eq. (12.15)
and the corresponding matrix w by Eq. (13.44)

o g s it
AVO =1 0 o1 0 W = 0000 (13.44)
sinh® 0 0 cosh® —0000

where cosh § = % and sinh § = ‘%. The matrix of Lorentz boost for spinors is given by Eq.

(13.22). In our case wpz = —ws3p = 6 and
1 i(g, 0
SO3 = 1[70773} = - 5(0(-) _Uz> (1345)
SO
Ar () = (e’%‘”ﬁ“’sw) = (eii‘”msw) = ex { — Q(o’z 0 )}
zen ) T &n &g — P 2\ 0 —o,
_ (coshg —sinh%az 0 ) (13.46)
N 0 cosh g + sinh %az '
Since coshg = /2 (;fnm and sinhg = 4/ (;;m
u(p) = Aégn(é)\/ﬁ(g) (13.47)
cosh ¢ — sinh &¢ 0 £ 1 +m—
— 2 2Vz — po+m —p.0.)§
m( 0 coshg—i—sinthZ)(f) z(po_i_m)(gpo-i-m—kpszz;f)
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We see that although bispinor has 4 components, the two lower components are determined
by the two upper components. One may object that if the lower components of bispinor are
defined in an unique way by the upper ones, why is this doubling of writing? The answer
is that this double-writing is convenient since under spatial reflection the upper and lower
components of the bispinor (13.47) simply trade places so if we arrange our formalism to
be symmetric under exchange of upper structures and lower structures, such formalism will
be explicitly parity-even.
For arbitrary boost

_ 1 +m—p-5)¢
u(p) = 2(po +m) < Egg +m +§- 5’)5) (13.48)

This is the plane wave with definite direction of the spin in c.m. frame (§ = ((1)) spin up

or £ = ((1)) spin down)
Peskin’s notations

po+m-—p-od - po+m+p-&
VPT = e \po = e (13.49)
2(po + m) 2(po +m)
Check (see the definition (13.5)):
1 L\ (po +m)? —2(po +m)p- 7+ |p]? L
7p0+m—p'a} = = Po—p-0 = po
[ 2(p0+m)( : 2(po +m)
L L2 (po+m)® +2(po +m)p- 7+ [P I _
7P0+m+p-o} = = po+p-o = po
{ 2(p0+m)( ) 2(po + m)
(13.50)

and therefore

u(p) = (\/Vf;:gg) (13.51)

Plane waves with definite helicity

Sometimes it is convenient to specify not the spin of the particle in the rest frame but
the helicity (=projection of the spin on the direction of motion) of the particle in a certain

frame '°. The spinors of definite helicity have the form '!:
1 — (1) 1 1 — (2)
) = —+  ((po+m—|p)w W) = 1 ((pot+m—|plw
() 2(po +m) ( (po +m + [t )’ ®) 2(po +m) ( (po + m + |p)w® )

(13.52)

10 The helicity of the massive particle depends on the frame of reference, since one can always boost to a
frame in which its momentum is in the opposite direction (but spin is unchanged). For a massless particle,
which travels at the speed of light, one cannot perform such a boost so helicity is an inherent property of
a massless particle.

11 Tn order to distinguish these spinors with helicity :I:% from the spinors with z-component of the spin
equal to :t% we put the helicity :I:% in square brackets.
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where (0 and ¢ are polar and azimuthal angles of momentum p)

~i o3 £ it gin 0
N G it I C I G (13.53)
st COS§

The spinors (13.52) are eigenstates of the helicity operator

1 /9.3 0
— p-o

- cosf sinfe 10 7.50l0 = 5l 5, = (2
P = |ﬁ(sinc9e’"¢’ cosf ) = prow = [plwt, pow — |plwt? (13.55)

and therefore

ullip) — 1 (po+m—|pN)p- g™y _  1/2 (po+m—[phw®y _ 1 )
hu(p) 2 2(p0+m)((P8+m+ﬁ1)ﬁ ow (1)> 2(p0+m)<(pg+m+\ﬁ|)w 1)) 2 (p)

hul=3l(p) = 1 <(p0 +m—|p)p- fwgb _ L2 ((Po +m— !ﬁ])wg;) _
21/2(po +m) \ (po +m + |p)p - Fw 2(po +m) \ (o +m + [pl)w
(13.56)
where h = :I:%.
13.5.1 Negative-frequency plane waves
Ansatz: 9,(x) = v(p)eP*. Dirac equation:
i Oabp(@) = 0 = (F+mhu(p) = 0 (13.57)
Solutions 1 ( 5.3)
— pot+m—p-o)n VPpon 1
o) 2(po + m) ( (—po—m —p-0)n ) ( \/p0n> (13.58)

Explicit form of spinors v(p) with definite z-projection in rest frame and definite helicity is
given in by Egs. (25.12) - (25.21) from the Appendix.

13.5.2 Orthogonality and completeness of spinors

Using the explicit formulas for the Dirac spinors u and v it is easy to check the orthogonality

conditions

P (p)uX (p) = 2myy = —7 ()X (p)
u(p)y'uX (p) = 0 ()N (p) = 2p"San
a(p)o*' (p) = 0 = v*(p)u™ (p) (13.59)

and the conditions of completeness
St (W O)ED) — 2P)TP)) = 2mbas
j

doami2 “é(p)ﬂé
D=1 vé(p)ﬂé(p) = (¥ —m)ap (13.60)
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Here A = :t% can be either z-component of the spin in the c.m. frame or helicity. We will
need two more formulas (proven in the Appendix, see Eq. (25.26)

o(7, s)you(—p, 8') = ol(Bs)u(~p,s) = 0,  a(@ s)vv(-ps) = ul(@ s)o(-ps) = 0

13.5.3 4-vector of spin

It is instructive to write down the relativistic invariant generalization of the operator of the
spin of the electron in the rest frame. Suppose the spin of the electron in the rest frame is

given by the vector
§=rldk (13.62)

where k is our spinor in the rest frame. Let us intoduce formally the four-vector s* which
coincides with (0, 5) in the rest frame 2. Note that s> = —1 and s -p = 0.

With this notation the non-relativistic equation

[

1

for the spinor (% is generalized to
1 1
S5 u(p. ) = Su(p. ) (13.64)

where the spinor u(p, s) = u(®)(p) is given by usual Lorentz transformation of the (bi)spinor

()

e (RERE) e
Indeed,
75’7”%:(_0]9) (aoﬂ UOH)SM:GQS_%'S) (13.66)
so in the rest frame the eq. (13.64) reduces to:
() ) () o oo hin

which coincides with the eq. (13.63).
So, the two equations

Pypu(p, s) = mu(p, s)
Y5 yustu(p, s) = u(p, s) (13.68)

fix the Dirac spinor unambigously.

2 For example, s = (0,1,0,0) for x = % (%), s =(0,0,1,0) for kK = % (1), and s = (0,0,0,1) for

K= ((1)), s=(0,0,0,—-1) for k = ((1)) as we already know.
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13.5.4 Dirac field bilinears and Fierz identities

Y1 is a scalar, y* is a vector, PyHyY ...y M) is a what?
Complete set of y-matrices

1 1
v , 4
ot = gAY = iytyY —igh” 6 (13.69)
¥s 1
75 4

Overall, 16 independent matrices. The rest is expressed in terms of matrices (13.71) with
the help of formula

,y.u,yu,y)\ — g,uu,y)\ + gzz)\,yu _ g;w,y)\ - iE“y)\p’Yp’Yg, (13.70)

where € is a totally antisymmetric tensor with €923 = —1.

NB: I use sign convention from Bjorken & Drell. In Peskin’s book the sign is different:
0123
Peskin

Dirac bilinears

(A scalar

Py vector

Yot antisymmetric tensor of rank 2 (13.71)
VysY pseudoscalar

Yytys pseudovector

For example (see Eq. (13.22)):

Py (@) = SR ) = per = SHAT I ALEE) — e

i - _ 1 i b, iy
SP@ALTALALTY ALG(z) — oy = NN D@ Y — SNy

7

MA@y "y — %AVWA“§&($)7"7% = NN P(2)0" ) (z) (13.72)

= ¢(2)0¢Mp(x) is an (antisymmetric) tensor of rank 2.
Set of matrices (13.71) is complete = one can expand an arbitrary 4x4 matrix as

1 1 1 1 1
Loy = 706 Tr{T 77, Tr{Dyu 47 (98)en Te{lys } =7 (798 )en Ted Ty g (0" )en Tr{l o }

(13.73)
= Flierz identities.
Example:

VY YxTux = Y (X =T)vx = 7" Tux

(vx) (X)) — %(%ax)(mw — (P15x) (X15%) — %(%%ﬁ)(i%%lﬁ)
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YxTr{T'} + vaxmrm — PysxTr{Tys} — r/w“v“%war{Fw%} + gdw“aaﬁ YuxTr{Toas}

_ 1- _ 1,
X Tr{l'} — ¥ XTr{Tva} — ysxTe{Tys} — ¥ VX Tr{Tva75}

(13.74)



where we used formulas Y#y*y#* = — 29 and Y*y,v87, = 4g°8.

Part XIV

14 Quantization of the Dirac field

14.0.5 Classical Dirac field

Now we can write down the total expression for the classical fermion field satisfying the
Dirac equation:

1= 3 [ S0 ) 007 ] (141)

where s may be z-projections of the spin in a rest frame or helicities (or any other two inde-
pendent spin states) and a% and b%* are some numerical functions. The complex conjugate
field looks like

B, $)b5e P 4l (7, 5)at e (14.2)

0 =3 [Tl

and the Dirac conjugate () = wT(m)’yo has the form

s)bse™ P 1 u(j, s)a e (14.3)

-3 [l
The classical fields ¢ given by (14.1) and 1 given by (14.3) satisfy the Dirac equation
vmwmzmm
—171#( = my(x) (14.4)

dzt

(note that the second line is a hermitian conjugation of the first line).
To quantize the Dirac field, let us choose 1 (x) as a canonical coordinate. The Dirac

Lagrangian is given by £ = (i @ — m)1 so the canonical momentum is
m(z) = agoﬁw = il(x) (14.5)

and the Hamiltonian H = " pg — L takes the form
H = /d% (t, f)%w,f) - /d% L(t,T)
= i [#r oDt - [Eoileon im0y + 7T - mlu(e)
= [ w67 9+ ma (e, 2) (14.6)

Let us try to quantize Dirac field in the same way as Klein-Gordon field: promote ¢ and
7 to operators satisfying canonical commutation relations similar to Eq. (11.43) (Spoiler:
we will face trouble pretty soon)
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14.0.6 Attempt to quantize Dirac field with canonical commutation relations

As usual, we promote ¥(t = 0,Z),7(t = 0, Z) to operators 1/3(3_:’), 7(Z), then similarly to Eq.
(11.16) ag; and by get promoted to operators a; and by

U(7) = Z/\/ﬁ P, e’ﬁf&%—l-v(ﬁ, s)e_iﬁi)?}
O(F) = Z / [3(7, 5)e™7b5 + a(p, s)eP7as] | (14.7)
,/2E p

If we impose canonical commutation relations (CCRs) on the operators on () and # (&),
then similarly to Eq. (11.18) the ladder operators will satisfy the following CCRs:

5,05 = (2m)36(5 — p')0sw, [B5,051] = — (27m)%6(5 — )dsw (14.8)
~s ~s'1T _iis 18’1 ast oas'ty st 28ty pas 28t rs a8ty
[aﬁ7aﬁ’] [bﬁa 157] [%-a p”] = [bﬁ’ ﬁ’] - [aﬁ’bﬁ] - [bﬁ’ ] =0

d3

1(93 —ip(Z—7)
S [+ e = m)e 7]

= Z/(u(ﬁ, s)u(p, s)eiﬁ(f_g) + v(p, s)v(p, s)e_iﬁ(f_g))fyo = /
2E,

a3 s L L
= / b [(’YOE — 5P+ m)ezp(xfy) + (YoEp —7 -9 — m)efzp(xfy)],m _ /dgp oPE=7) 53@? — ) (14.9)
In terms of ladder operators, the quantum Hamiltonian reads

= / Ba GH@) =707 - ¥ + my (@) — / B (F)[~i7 -V + m]d(F)

d?) dLS / S s S P
Z/dga:/ {v(p, 8)e™* b + u(p, s)e*lmdsj}{(if’-ﬁ' +m)u(p', s )e? as — (- —m)v(p, s e PTb, T}
p ’ D ) D

2 /E, By
3 d—3 d—3 / S BT A ST N “’HAS’T
Z/d x/Q\/ﬁ{ zpzb% +u(p, s)e” P a; HEpou(@, s')e” Yay — Eyvov(p',s') e P ‘b }

1 PN N n o L o N ol 5 N ~gtn PN N A~ /
) / d*p {07, 9)v0u(—p. )b’ 5 + U(p, syou(d, s sy — a(F. s)yov(—F, s )as 5L — (7, s)ov(d, )bb'
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where we used the orthogonality properties @(p, s)you(p, s’) = v(p, s)vv(p,s') = 2podss
and v1 (7, s)u(—p, ') = ul (P, s)v(—p,s') = 0 (see Eq. (3.65) in Peskin’s textbook). If we
disregard (as usual) the infinite constant, we get

H = Z/ar% Bp(aas — b21b3) (14.11)
The - sign means that we have Hamiltonian with the spectrum unbounded from below.
Indeed, if we calculate the commutators of H with creation operators we will get
[H,a] = By,  but  [HD] = — b (14.12)
Now, if we define the vacuum as a state |0) annihilated by a3 and f)%

Hadf|o) = Epaf|o),  but  HE|0) = — E,b|0) (14.13)

so the state B;T|O> has energy —F,. Similarly, the state ZA);TZA);;T]@ will have energy —E, — E,
etc. This is a sick Hamiltonian (e.g. no state(s) with lowest energy = no consistent vacuum
state). We must try some other way to quantize Dirac field.

14.1 Correct quantization of Dirac field

Correct quantization: same story as above, only we impose canonical anticommutation

relations:

U}T(g} = 5(1_7'—37) a’ a”T} = ( )36< ﬁ ss!
% g ; ?ﬂ(g)i =0 } & {b;,b;T} = (2 ) 5(F — )35
{WL 7¢ 27)} =0 s

(14.14)
(the conventional notation is {A, B} = AB + BA). With this anticommutation relations,
instead of Eq. (14.11) we get

S [ @ Buaas - i = 3 [a% Bylaas + b+ 2ofs0) Y [d% Byfayla;
and therefore
H = Z/dgp Ep(aas+ b3 bs) (14.16)

similarly to Eq. (11.20). Note that Hamiltonian is hermitian: Hf = H.
Commutators of H with ladder operators are now OK:

[H,a)] = B, [Haz = — Eyp
1H,6] = BB, [H b = — Epbs (14.17)

Quantization in Heisenberg picture

G(t,7) = Y@M, G(tE) = M) (14.18)
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From Eq. (14.17) we see that

- oo m 0o m
Mgt = ST L L) = 3P (<) = e
n=0 ’ n= )
- - O yn O yn .
efltate it = Zi”;[fl, [H, .. [H,a])) = Zi”E(Ep)"aﬁ = afe'Pr(14.19)
n=0 ’ n=0 ’
(cf. Bq. (6.10)) and similarly for b operators:
ethBgefth _ i)%efiEpt’ eiﬁtl;:;refiﬁt _ B;TeiEpt (14.20)

and therefore (z = (¢, %))
zﬂ(:c) _ ethfl[}(f)efth _ Z/\/ﬁ Je ipmd%_i_v(ﬁs)eipxi)?]
TN Gl t T e —iHt — —» 77, T7S ipx A ST
O(E) = ey(T)e = Z/ﬁ Py 4 a(p, s)ePray] (14.21)

where we used decomposition of 9)(Z) and (&) in ladder operators (14.7). Now, from this
equation and Dirac equations for spinors pu(p) = mu(p), pv(p) = —mu(p) one can easily

see that quantum operators 1/1( ) and @b( ) satisfy the same Dirac equations

v 0@) = mi)
—z— ( W= map(x) (14.22)

as their classical counterparts, see Eq. (14.4).

Let us now prove equal-time (anti)commutators
{0, 3),491 (D} = 6F-7), {5), 0N} = {1(2), 915} = 0 (14.23)
Proof:
{e(t, ), ) (¢, 7)}

d—gd—gl s D _ il ! _ WY
- / Z{ug B, s)e” Prag + ve(B, 5)e™ 0 o (7, 8 e Vb +ac(p,s)e?Vad Y (0)en

2/ EyEy

d—g d-3 / _ o} ~ g’ N _ . R ~ ~o!
- /3 WZ( o ) (6 5T} + e e, )G BT ()
53p¢3 ' —i(Bp—E, ) ) +ipi—iT G as A5t SN g N i(Ep— B )—ipEip G pis 35
9 Z u( p S ) PP { iRl aﬁf }+ vf(p7 S)Uﬁ(p » S )6 L {bﬁa bp” }) (’70)(:77

8

dg SN o N iR(E— R ¢
= /2Ep (U&(p,S)UC(p,S)ep( w—f-'l)g(p,S)Ug(p,S)e P y))(FYO)

3 —
=[Gl e D (e P

d’p S o (T~ - (T~ S o
/2E[(Ep—p-'m+m70)ep( D4 (Bpt 5470 — myo)e PED] = 8(F — §)dey (14.24)
p
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Vacuum and one-particle states

By definition, vacuum |0) is a state annihilated by both az and 13%:

agloy = b30) = 0 (14.25)

71
Similarly to Eqgs. (11.27) we can try
a0y and  5|0) (14.26)

as a candidates for one-particle states. From Eq. (14.17) we see that they are eigenstates
of the Dirac Hamiltonian with eigenvalue F),

aafloy = [#,a31/0) = Epaljo), HN0) = [H,0]0) = EbSl0)  (14.27)

To finish the proof of one-particle interpretation of states (14.39) we need to prove that
they are the eigenstates of the momentum operator. Thus, the next step is construction of
quantum operator of momentum for Dirac field.

14.2 Momentum operator in the Dirac theory

14.2.1 Momentum of classical Dirac field

The general definition of classical energy-momentum tensor is 7y, = 0, P2 aawp — L.
For Dirac field it gives

oL oL
T = 9070 m/ﬂram/} 9077 —Lgu = WO —gu(@ P—m)p = iwpy,duy (14.28)
Up to a total derivative it can be rewritten in a symmetric form
[ 0 o (x 0 o
Tu(@) = (5@ 208 O ) 4y, 2D 20D )
] P P
= @) n oy +w 5 (@) (14.29)

where A(z) -2 5.7 B(z) = A(x) ain(m) - (82VA(CU))B(9:).
Similarly to the case of KG field
o\ 0Y(x)  O0P(a) Op(z)  Oy(x)

P T(0) = 150 (Bar T = (o) + vl T — S u(w))

= L0 D() 0 (@) + D)0 0 () — Db (@)3,0" () — 00, () ()

+ 9P (x) 3 0utp () + ()1, 0% () — PP(x) 1 p(x) — B ()7 04 ()]

= Lm0, () + ()0, (x) — MO ) () + () ()

+ 09 (2) 7, 0,00 () — imPh (), (x) + imPp(2) 1 (x) — D, (x)7 0" b(x)] = 0 (14.30)

where we used Eqs. (13.20) and (13.29).
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The equation (14.30) leads to conservation of the momentum:
. , . d .
T =0 = /d?’x(aoT“UrakT’“) =0 = dt/d% T, %) = 0 (14.31)

where we use integration by parts to get rid of the second term. Now, similarly to the
KG case (see Eq. (5.31)), we can interpret the integral in the r.h.s of this equation as the
momentum of classical Dirac field:

Pi — /d3x TOi(taf) = i/de [&(t,f)fyo OZ ¢(t,f) 4 &(t,f)’yi 5; w(t’ f)] (14.32)

14.2.2 Momentum operator in Dirac theory

As usual, to get quantum momentum operator we take the expression for classical momen-
tum and promote canonical coordinates and canonical momenta (1) and ! in our case) to

operators
~ . 7 a AR N S
Po= / e T%(1,7) = 4 / Ex [Pt F)yo 0" Y, T) + (8, D)y 0 (¢, F)]  (14.33)

In terms of ladder operators it takes the form

P=% / d*p pt (a3 a5+ b3 03) (14.34)
S
where we used formulas
ﬂ(ﬁ )7 (ﬁu /) = 17(]5’,3)7011(1),3’) = 2Ep588’7 ﬁ(ﬁ73)7iu _'75/) = 1—)(—»’8)%}(@3/) = 2pi588’7
o(F, s)you(—p,8') = vl ([ s)u(—p,s") = 0,  a(@, s)ov(-p,s) = u'(F s)v(-ps) = 0
(14.35)

HW 4: prove Eq. (14.33) = Eq. (14.37).

Proof:
pio— B Z d3pd’p’ 7 )l;s e~ Bt 4 G (p S)&STeiEpt]e—iﬁ-f( 53 +t 56) (14.36)
N e E “© o

X [ug 7, s)a f?e Byt +v§( s’)lA)s’_/T-yeiEP’t]eiﬁ'f

X
+ [’D(—ﬁ, S)Bsﬁe iEpt +u(p7 ) T zEpt]efiﬁ-a_c’,yi [Ep/u ﬁ’S/)A%’e—iEp/t _ Eplv(_ﬁl7S/)Bi’];ezEp/t]eiﬁ'-f

4 [_ Ep ( ﬁ )bs —1Ept +Epu(p7 8)&;T€iEpt] e*’iﬁ-f,yi [Ep,u(ﬁ’sl)&%/,e—iEp/t +U(_p )bST ZE /t] ip’ T
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1 2 [ - / . Aol .
D / @] - [0(=5.9)" pe " (5 s)agle P o [u(p, e ! + v(—p, o )b e ]

/

p
o(=p, )b e (. s)agl e |y [u(p, o Yag e e — o(—p. s )b e ]

= 0(=7, $)b% e~ !+ u(p, S)le;eZEp]v [u(F, )iy e " + v(~7, s )b L] |
1 oo o ¥
42/@‘3;9 {Ep[v(_p’ s)you(B, o' )b g e a(p, s)you(p, s )iy @

o(—p, 8)yov(—p, ") ‘iﬁ?)s ; + u(p, s)vov(—p, s’)diTlA)Slt eHErt

(g, s)y'u(p, s )a ay — v(—p, s)y'v(—p, s )biﬁb”]}
)

- Z/d% p'(agay - bbT) = Z/d?’l’ v (a5 a5+ b3fos), QED. (14.37)
The commutators of the momentum operator with ladder operators are
Pl = da, (P = P PLay = —pan (PUB = —py (1439

and it is easy to see now that the states (14.39) are eigenstates of the momentum operator
(14.37)

Plafo) = [PLaf]jo) = plaffjo),  Piefjo) = [PLef]j0) = pibdfjo)  (14.39)
with eigenvalues p’. Thus, the states
s, =) = 2B, |0) and  |p,s,+) = /2E,b50) (14.40)

are one-particle fermion and antifermion states (in QED they will be one- electron and
one-positron states).

Now we can define the operator of 4-momentum:
pr = (AP Z/d3pp aslas+ b3b3) (14.41)
(in the r.hs. p° = E,). The commutators of the operator of 4-momentum with ladder
operators (14.27) and (14.28) can be combined as
~sT1 sT P 1.8t 75t i~ o ~ DL 7 . 7
[P al] = prayl, [PR6F) = ptby, [Phay] = —ptag, [PbY = —ptby (14.42)
Similarly to the KG case one can prove that P generates shifts in the coordinate space:
eiﬁalzj(aﬁ)eiﬁa = P(z+a) (14.43)

Interesting question: which quantum operator generates Lorentz transformations (rotations
and boosts)?
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15 Quantum generators of Lorentz transformations

The classical Dirac field is Lorentz-transformed according to Eq. (13.18)
— LS,
) = Ayu(a) = (78S () (15.1)
If we are interested in the field at the same point after Lorentz transformation, the formula
is a combination of Eq. (13.18) and Eq. (12.14)

Y (z) = A%lb(A*lx) = <(e’%°"wsﬂ”)5 e’%w#”‘ﬂwwn(x) (15.2)

n

similarly to Eq. (12.49) for vectors. Our aim is to find a quantum operator M’ which
generates this transformation

@@é(@ = e%waﬁMaﬂqﬁg(x)e—%waﬁMaﬂ = (e_%‘“’wsuu)g 6_%‘”””‘]””1!317(:6) (15.3)

n

Similarly to the operator of momentum (14.33) we may try an ansatz
NioB — / B (t, FTC0(t, ) (15.4)

where I'*? is some matrix and /or differential operator 1. To find this operator we can take
small wyg and expand both sides of Eq. (15.3) up to the first nontrivial order in wqg. We
get

lLhs. = 1/35(x)+%wa5[]\2f"‘5,1/;5(x)] 0B ) af 8\ 7
- ; o NG = MY e(x)] = —(Sz7+0en I ) e (x
rhs. = wg(w)—Qwag(ng—i-chnJ B abe () [ 6(@) &n O ()
(15.5)
Substituting the ansatz (15.4) to the Lh.s. of this equation, we obtain
/ [t TG, 2,0 D)] = — (88 + 5™ )e 8, 7) (15.6)

We will first consider this equation at ¢t = ¢’ = 0, find T'*?, and then prove the above
equation at arbitrary ¢ and t'.
First, at t =t/ = 0 we get

(82 + 0e 1) ield) = = [ @[HOXE I 0@ = [ del@) T G0(2)
= () / 257 = DT 0(2) = (I Nenthn(®) = Tg) = (308* +707),,
(15.7)
so our candidate for M2 is
M = /d?’zdﬁ)(zo,?)'yo [So‘ﬁ + Z(Zaa(; —a & B)]zﬂ(zg,é’) (15.8)

131t looks like a bad ansatz since it appears that MeP depends on t but we will show below that for our
solution (15.8) it actually does not depend on ¢
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Let us first prove that the r.h.s. of this equation does not depend on zg =t

dgzw(t 2)y [SO"B +i(2” 8825 —a< ﬁ)]¢( Z)

/d‘3 /d5 881& t,2)y + w(t z)’yoaat) [SO‘B + (2 885 —a+ ﬁ)]iﬁ(t, Z)  (15.9)

—322- Y(2)y 4 imp(z) and therefore

From Eq. (14.22) we see that %zﬁ(z)'yo =

r.hs. of Eq. 15.9 = /d3z (z’m@g(t,;?) — 8622'1;(15’ )y + 12(15 z)'yog ) [SO‘B +i(z* 826 —a <+ ﬂ)]lﬂ(t, )

by parts

0 . 0 0 .
/d3z Ut 2) (Yo +7' 5 +im) (S + i(z“@ —a < B)]v(t, 2)

/d3z
s
J

1Z(t, ) (’y“i + Zm) [So‘ﬁ + (2"

82” — H/B)]sz(t? z_')

9
0z

12 SO‘B—H(Z E)zﬂ—ou—)ﬁ)]( aau—i-zm) + [y* Saﬁ]az + (v aa—oz<—>6)1[1(t,z“)}
= [d= 009Gl g it gs —a e BEED) = 0 (15.10

Finally, let us prove Eq. (15.11) for arbitrry ¢ and . Since out M®® does not depend on
time one may put ' =t in Eq. (15.11)

/ @2 [, AT, 2), ()] = — (S + 8y IP) ek, 7) (15.11)

which is evident since equal-time commutators look exactly like commutators at ¢ = 0 so
one can repeat the derivation of Eq. (15.7) at arbitrary ¢.

Thus, we have proved that with MoB given by Eq. (15.8) the L.h.s. and r.h.s of Eq.
(15.3) coincide for small w*®. By expanding both sides of Eq. (15.3) in Taylor series and
using repeatedly the equation

(M ()] = — (S + 0y TP ) e () (15.12)

one can prove Eq. (15.3) for arbitrary w®5.

We have constructed quantum tensor operator MoB (15.8) which is a generator of
arbitrary Lorentz transformations. Spatial components of this tensor govern the rotations
and thus should determine the quantum operator of angular momentum.

Part XV

15.1 Operator of angular momentum in Dirac theory

Define P
Ji = ZepM* = e / d%q/ﬁ(f)(ixja—+faj’“)¢(f) (15.13)
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Since
ik i ik i —[o9, 0" 0 a0
€ijko’" = 5%’%:[7’,7] = 2€ijk< [ 0 ] k]> = 2 ( 0 ai) (15.14)

the operator (15.13) takes the form

. 1 - NN .0 1 N
J; = ieijkMJ = /d3x qﬂ(:c) (Zeijkxja—xk + §EZ)¢(x) (15.15)
where 2 0 0
i def (0 _ ('
S (38) = (1) s

We will demonstrate that the first and the second terms in the r.h.s. of the equation (15.15)
are orbital angular momentum and spin operators, respectively:

>

= IA)Z—f—S',

=i [#r i@t 0@, S = g [Eed@ni@  057)

N

o
|

To identify L; with orbital angular momentum we will use analogy with the classical
orbital momentum. In classical mechanics

L =) ixp — /d%fxﬁ(t,f) (15.18)

where p(t, &) is a density of the momentum of classical field. For the Dirac field the mo-
mentum is given by Eq. (14.33)

) . ; _ < _ o

P [de1om) = § [d [5600 0 6(e.2) + 030 0 (e, )

= i/d3aj i (t, 2)id")(t, &) + total derivatives (15.19)

We see that the density of the momentum is (¢, Z) = @T(t,Z)iVi(t, ) so the angular
momentum of classical Dirac field is

L = / Br 7 x P (t, 2)iVip(t, Z) (15.20)

Now, when we promote Dirac fields to operators ¥ (¢, &) — (&) we get
L = /d% # x oi(t, 2)iVi(t, ) (15.21)

which coincides with L given by Eq. (15.17).

To demonstrate that the second term in Eq. (15.17) is a spin operator is a bit more
difficult since spin has no analogy in classical mechanics.

We will do it in a different way: consider particle at rest and calculate the average of

the operator S from Eq. (15.17).
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Dirac particle at rest is given by Eq. (14.40)

0,5,-) = v2maZ|0) (15.22)

The orbital momentum of such particle should be zero:
(0,s,—|L|0,s,—) = 2m/d3 450! ()& x ﬁu}(f)agw()) (15.23)
3 d—g d_g / M Sl 4 ST o = / »—»/—»As/-i- S-i-
—m [d 3 / g OO ) 51 ) o) o) o

Let us prove it. First, note that the term ~ dg; in the second square bracket does not

contribute since {d}";, d?} ~ §(p') and we get
(0,5, LT, s (15.24)
3 d?)pd?) ! iP5 sT — ip 7.8 17 ~st
= (= =\ IPL]S — (= =\ ,— DT 4 —ip'x ~
= m/d fEZ/\/ﬁ a3 [0(7, 3)e b5 + u(p, 3)e P a | & x plo(, s e P Tb% a0
Second, by replacing T x p’ — T x V and integration by parts one obtains

(0, s, —|L|0 S, — (15.25)

d—3 d—S / o s
- m/d?’xZ/\/ﬁ [ (P, 5)e e b*—u(pa §)e —iT ;T]x x pu(p', s')e P mb;Ta%T|O>
Repeating the argument that {a, d?} ~ 6(p) we reduce the r.h.s. of this equation to

6 —EG —) = a3 M PP T (> 7 i x 70 A8A§A5'TA5TO
(0,8, —[L[0,s,—) = m UCZ e v(p, $)v(p', s))@ x p{0]agbpbs ' as'|0)

VEEy

(15.26)
The last step is to note that l;f, ; can be replaced by the anticommutator
{6%» B;;T} = 0z(2m)36(p — ') so one gets
(0.5, ~ILI0, 5, ) (15.27)

- mz/d%xx/pv(p, Yol )01 10 = — 0105 e 7 [T L5~ o

since each of the integrals over & and over p vanishes. Thus, as one may suspect, the orbital
angular momentum of a particle at rest vanishes.

Let us apply now the operator S to the state |6, s, —). For example, take S,

S, = /d% e )22 () (15.28)

~r! = INIVENDY R . . N
Z/ a;f + ol (—p, T‘/)bcﬁ) 22 (u(p,T) 5+ (=7, r)bT_Tﬁ)

- 105 —



We get

(0,s,—|5.]0,s,—) = 2m<0|asS a "10) (15.29)
= 2m(0la3(S:, a5'1|0) + 2m(0]agad S.10) = 2m(0fa3(S., a5'][0) + 2mV(0]S.]0)

where V = (21)35(0) is the total volume of space and (0|5]0) is the spin of the vacuum. The
factor 2mV = (2m)36(0) appears due to our normalization of states (p|p/) = 2po(27)35(p'—
p') so our one-particle state |p) describes actually a plane wave with momentum p’ filling
the whole space. A true one-particle state in a box with side L would be described by the
wavefunction L~3/2e~P% see tghe AQM course.

Because vacuum is Lorentz invariant it should have no spin so (0|5.]0) = 0 '* and we

are left with the first term in the r.h.s. of this equation

— ~

Ao - pIN - S
(©,5,—|8.10,5,—) = 2m/d3x (0lag [0/ (7) = 6(2), a3/ ][0)

— Z/2E O’CL* (H /) T’T+?}T(_ﬁr/)[;1;lﬁ)2z(u<ﬁr)&g+,U(_Iir)i)’r"i’ ),a?‘]‘o>

— Z/w (27)26 (D) 0rs (Oladul (5, 1) Sou(p, r)a ZT\0>

LN,
= Zu —u (0, 5){0lagar '10) = VuT(O,s)?u(O,s)

As we discussed above, the factor 2m) is due to our plane-wave normalization so the spin
for one Dirac fermion is

1 Y, =
Sz = 5 -u ul(0,5)==2 5 u(0, s) (15.30)
. . AR §A
For the Dirac fermion at rest u*(0) = \/>(£)\) S0
1 1 1 1 1 0
— A\ T A _ _ — —
= (&Y)'0x¢ = 82_5 forg(g) — (0) and sz__§ forf( 5) — (1>
(15.31)

This means our guess (15.28) for S has correct quantum-mechanical interpretation as a
spin of the particle.

Y41f one computes the v.e.v. of the operator (15.28) there will be an (infinite) contribution coming from

anticommutator {b”’ brt} = 6(0). This is related to the problem of ordering of quantum operators at

s
the same point. When we promote some classical quantities like spin to operators O(z) — O(z) we face
a dilemma: classical fields always (anti)commute but quantum operators do not so we sometimes get an
uncertainty proportional to §(Z — &) = §(0). The way is to avoid it is to define the operator O as a normal

product O = :0:sothe v.e.v. of the operator defined in such a way will always vanish.
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Note that for the antifermion

5 1v<0 s, 45210, s, +) = 2m/d3 (olp5[ w(f) zﬁ(f) b3
= Z / 06 [(uf (7, 7")a "+ vf (=5, )b ) B (u(@, )y + o(—p, )b ), 651 0)

= = e et

— T sirt — =t “z
s S8 @ ) O 0) = — 5l (0,5) SEu(0s)
From Eq. (25.13) we get
0 1
1 i 1
vBp) = vm [ 3], D) = vm | Y (15.32)
1 0
DI " S 2, >
N v(%)T(O)7 (%)(O) - —m, e )(0)7 (*%)(0) - m (15.33)
and therefore
1 1 1 1 1 1 1
——(0, +ys \0 +) = = —— (0, — +\S 0,—=,+) = (15.34)

2mV 2’ 2mV 2
which is a self—con51stency check for our formulas (25.13) for antlfermlon spinors, i.e. that

unlike the fermion case, the spin % up corresponds to non-relativistic spinor ((1)) and spin
—% to spinor (é)
15.2 Charge operator
From Dirac equations (13.20) it is easy to see that
Pjule) = (@) = (") (@) + la)ydd(@) = 0 (15.35)

so the operator

Olt) = eq / B 1 (¢, )b (t, 7) (15.36)

is conserved: iQ(t) = 0 (here e is the negative electron charge). Indeed,

20 = [da i DD = [d 027D -T- DTD)] = 0
el

(15.37)
where the first term vanishes due to Eq. (15.35) and second after integration by parts. In
terms of ladder operators

d—3 d—3 / n . o N
= eel/d x Z/ P ﬁ,s)ewxb% + uT(ﬁ, s)e_’pxdf;] [u(ﬁ,S/)elpw%‘i'v(ﬁﬁ/)e_wx ;T]
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where we used formulas (13.59) and (13.61). Discarding the infinite constant ~ [d 3p{i)§., E;T}
to avoid vacuum charge (see the footnote at page 105), we obtain the charge operator in

the form
Q = eelZ/dgp (a2fas — b'b) (15.39)

It is clear that the charge of state |p, s, —) is €. and the charge of state |p, s, +) is —eq

Qlp:s,—) = 2EQ,a0) = eay/2E,al|0) = calp,s, )

Qlp,s.+) = V2E[Q.b5)0) = —ea2EDL[0) = —ealp,s,+)  (15.40)

16 Dirac propagator and Wick’s theorem for fermions

16.1 Feynman propagator of Dirac particle

T-product of fermionic operators is defined with respect to their anticommuting properties

T{de(2)dn(y)} = 0(zo — yo)de(@)dy(y) — O(yo — 20)n(y)d
T{z&(m)c@n(y)} = 9($0—y0)1/}5(37)1/}n(y) <yo—xo>@§n<y>1§g<x>
T{e(@)n(¥)} = 0(x0 — yo)be @)ty (y) — O(yo — x0)y(y)dbe(x)  (16.1)

From Eq. (14.21) it is clear that
(OIT{Je()da(w)}0) = (OIT{e(x)()}]0) = 0 (16.2)
and <0|T{1j§§(:n)1/i)n(y)}\0> represents the Feynman propagator of a Dirac fermion

adip  m+y
i m?Z—p?—ie

SE(x—y) = (O/T{de(x)iy(v)}[0) = / ePE) (163
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Let us prove this formula
(OIT{ebe ()b () }0) = O(wo — y0)(Oldbe (%) (y)[0) — B(yo — x0) (O]t (y) e (x)[0) (16.4)
d d PN v’ e _ in'y~s
= O(z0 — o Z/ D p 0! [ue (P, )™ a5+ ve (i, )™ [09 (B, Ve by + (7, ") Vi, '] |0)
dgpd3 ! 7'Lp’yA5’ — ~ ./ ’L'p,yA IT ond —ipTs — ’ipg:AST
Yo — Xo Z 0‘ Un(p s')e by +uy(p, s')e a/; ] [ug(pa s)e” PG + ve (P, s)e bﬁ]!0>
d?’ d3 / B s
8(x0 — yo Z/ )ﬂn(ﬁv s )e ipz+ip’ y<0| s T’0>
om0 % [ m Vo7, )2(7 o (01553510)
— —1pr+1 d— 2 x—1 7
= WY / S 7)™~ a —) S / P civr—invye (5, )5y (7, )
a3p . .
S 1000 = 10) (3 + e ) — 0y = a0) (5~ m)eye o)
d3p - s - VI
= /2E‘ [6(:])0 — yo)(m _|_ Epf)/o — fy)gnefl P(xfy)()‘klp(x*y) + e(yo — xo)(m — Epf}/o _i_ﬁ /‘7)6’76@ P(wfy)oflp(wfy)]
a3p - L B L
N / 28, P [8(x0 — y0) (m + Eyyo — - F)eqe ™ Br@00HPED 4 0(yg — o) (m — Eyyg — - 7)gye! Brle w0 ia=0)]

a3 . o
= 0(xo — yO)/QEp (m + %0 —p- r‘y’)gne—ipo(ﬂc—y)o—f—zp(ac—y)
p

pO:Ep

(Tgp 9 SV
O(un — One — e A e (@—Y)o+ip(E—7)
+ 0(yo :z:o)/2Ep (m+p'v0 — P V)ene po=—E,
d3p d3p

= O(xo — £ ip(z—y) 0(un — —ip(z—y)

(wo yO)/2E (m+ P)ene” " — + 0(yo — zo0) 2, (m+ P)ene —

d'p  m+ ip(a—
N / i mP—p?—ic ey 1)

16.1.1 Wick’s theorem for Dirac fermions

The T-product for fermion operators is defined in the same way as for boson operators
(operators are arranged according to their times) but with the factor (-1) for any exchange
of fermion operators. For example

T{d(@)d(y)d(2)} ) (16.6)
= 0(xo0 > yo > Zo)iﬁ(x)l/?(yw(z) ) )
—0(xz0 > 20 > y0)Y (@)Y (2)1(y) + 0(20 > 0 > Y0) () ()Y (y) — O(20 > yo > x0)h(2)1b(y) ()

Normal product for fermions: the recipe is again “same way as for boson operators plus (-1)
for any exchanged fermion operators”.
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PO 2ata aafa A

apapay: = (—1)"az050y = Giap0y (= —a 0;05) (16.7)
P P e Py S S I
Aplpagls, @ = 050505 0 = 1Ay0505 @ = Gy 0505 (= (1(7,(1,(141,,,/(1,,) etc
ayayalayal, : = :alazayamal, : = —:alahazayay : = —alalazayam
pUp’ Lgtp Cg gipUp Ap g gtq Yty Up gtq Yoty Up

b(@)d(y) = T{h@)DY)} — :b(@)dy) -

Taking v.e.v. of this equation we get

b)) = OTED@IWN0 = Srlz—y),

—
~

There is no contraction of two s or two @Z’s because by definition @(m)zz(y) = T{p(x)(y)} — :

(16.9)

Y(@)¢(y) : and

b)) = OTH@IW) —  d@iw):10) = OTEE)HW)I0) = 06.10)
S0 = 0. Due to these properties, it is convenient

due to Eq. (16.2). Similarly, ¥(z)¥(y) =
to depict a contraction by a line with an arrow, same as in complex KG case Because of

OTEHEFH> = y

Figure 16. Feynman propagator for complex KG field

the sign rule, it is convenient before replacing &(x)@z(y) with a contraction to make
several jumps to put these operators in a nearby position ...¢)(x)1(y)..., for example

@I = — @) = —Sre-wde)  (1611)

Finally, Wick’s theorem for fermions is the same as for the bosons:

T{ () (w2 ()b (24)0) (25)....0 (@)
b : + all possible contractions (16.12)

= (@) P(@2)d (23)d (xa)P(ws)...th(wn) -
NB: when replacing contractions z[}(w,)z/j(xk) by ...Sp(zi — zk)... do not forget to
make necessary permutations to put the operators 1[1(3:2) and 1 (z) in adjacent positions
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Part XVI

17 Yukawa theory

The Yukawa theory is a theory of interacting Dirac and (real) KG fields with the Lagrangian

2
L= %8‘“’58% - M7¢2 + 1 (19" 0y — m)1p(x) — g (17.1)

where the first two terms in the r.h.s. are the free KG Lagrangian (3.2), the third term
is a Dirac Lagrangian (13.37) and the third term is an interaction Lagrangian describing
the would-be fermion-fermion-scalar vertex with the coupling constant ~ g (as usual ) =

bete).

Quantization: similar to self-interacting scalar theory
H = Hy+ Hy, Hy = Hxa+ Hp, Hpy = g/d?’:c () (2)9(Z) (17.2)

Interaction representation:

é[(z) _ eiﬁot(z)(g)e—iﬁot ezHthé(g)e—zHth
@@I(Z) — engt,&(g)e—iHot — eiHDt@Z;(g)e_iHDt
1/_}[(2,) eiHotq/_}(z—’)e—’LHot e’LHDtlZ(Z—’)e—’L'HDt (173)
From Eqgs. (6.11) and (14.21) we get
2 iHt, ) (=, —iHt dLgp ipx ipx AT
o1(z) = e p(D)e = 7@ [e7PPaz+ e aﬁ] (17.4)
P po=Ey=/A+ 7

n  GHt e —iHt fszAs ipx7st
Yi(x) = e hp(D)e = Z/\/ﬁ )e 5T v s)e bﬁ]
po=Ep= vV m2+p?

T iHt T —iHt = —z 78 ipx ~ st
(@) = @it = }j/ﬁv el i s)er ]
po=Ep= \Y m24p2

Similarly to the KG case (see Eq. (9.69 and (11.56)) we have an interaction representation

formula for Green functions

(T @2) () (2m) D)6 3} (175)
(O T L (21) 1 (w2)dr (3) b ()1 (1)1 () e i9T 401 (D01 )ir () 0y
(0|T{efzgfd4z¢>z( Ybr(2)dr(2) }0)

where |Q2) is the “true vacuum” of the interacting theory (lowest-energy eigenstate of the
Hamiltonian H (17.2)) and |0) is the “perturbative vacuum” (direct product of KG and
Dirac perturbative vacuums |0)kg|0)p).

This formula is prepared for perturbative calculations: one should expand the ex-
ponentials in the r.hs. in powers of g[d*2¢(z)y(2)1(z) and go ahead using the ladder
representations (17.4) of operators gﬁ, Qﬁ and 12 Because

apl0) = af0) = b30) = 0 and (0la} = (0laf = (O = 0 (17.6)
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one should push all creation operators to the left and annihilation ones to the right using
(anti)commutators

a5, a;,] = (2@35(*— 7) (17.7)

As we discussed above, the result of this operations is given by Wick’s theorem: v.e.v. of
T-product of operators in the interaction representation is given by a sum of all possible
contractions with each contraction being either KG propagator (6.43) or the DIrac one
(16.3). As a result, one gets a set of connected Feynman diagrams (the vacuum bubbles are
canceled between the numerator and the denominator in Eq. (17.5) as discussed in Sect.
9.3).

For calculation of cross sections we need LSZ theorem. It reads (up to renormalization
Z-factors to be discussed later)

Figure 17. LSZ theorem for Yukawa theory

out (D2, 52: Py b .05 58 g s S S ey, RS )|p1751§p/175/1§~ pgm),sgm);qhn;. ™), (m)'kl,.--k(m Nin

n/

= lim lim lim lim lim lim /H dml H dy, () H dz (k) H dx H dme) H dz1

kzgk)2—>M2 k;n)2—>M2 pgl)2—>m2 pél)2—>m2 (])2—>m2 (m)Q

X exp{—iipgi)xgi)—iiq?) (7) sz%k +12p2 (l)—i-zZq m)—i-szn) n)}
=1

=1
jtn—m’—n'm’ 4 Q\T{Hug @) sy (m— P ety () wa U g™ Vo (™™ TT (M2 — k9% (287)
=1 n=1
x [Tea@)m— 4P) pup<p§12r§’>>H (@) m+ ) oo (y H D252y 0) (17.8)
=1 j=1 k=1

Proof: similar to Sect. 8.2 (see textbook by Bjorken & Drell)
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As usual, Eq. (17.8) means that the matrix element of S-matrix is an amputated Green
function (in the momentum space ) on the mass shell.
=

Result: matrix element of the transition matrix M is an amputated reduced Green function
on the mass shell multiplied by @(p, s) for each outgoing fermion, u(p, s) for each incoming

fermion, v(p, s) for each outgoing antifermion, and v(p, s) for each incoming antifermion
LSZ < Peskin’s mnemonic rule

() ). 0o s gl 1) gy

out (D2, 52 D5, Shi Dy 181 5 G5 725 G (m) g(m) o) ) ey K

kS Ipr, st st ™, s a1, v g
= (p2, 52: Dy, s 05y 8™ s qo, oy gd™) S ke kS|
_ 4.5 2 » ’ l "
X T{e zgfd Z¢I(Z)¢I(Z)¢I(Z)}’p1’sl;pfl,s/h' p§m>73§m);q1ar1; --'Q§m)7rgm)§kla'--k§m )>connected (179)

where

]pl,sl;pll,sll;...pgm),sgm);ql,rl;...qim), (m"). ik, H\/QE l_I\/QE(J H \/QE (@) Asl Tb_b)T JL(k)]O)
/ l ( )
<p2,32;p’2,s'2;...pgn),sgm);qg,rg;...qé"), (n). kg,... H\/QE H \/2E(m \/2E 4m) k(n)

(17.10)

are the states in the interaction representation.

As an example, consider fermion-fermion scattering in the lowest order in perturbation
theory

Figure 18. Fermion-fermion scattering in Yukawa theory

S(p1, 5151, 81 — P2, 52; Ph, 85)
s o .
= <p2a 52;]9/2, 5,2’T{€ 9] Z¢I(z)¢1(z)¢1(z)}|p1 51§p/17 5/1>connected

= 4\/By, By By By (0305 T{e 9/ 401 01201(2) )32 5% o) (17.11)

First-order term of the expansion in powers of g vanishes

~4ig\ [y, By, By By (01033077 / d*261(2)0r ()0 ()% o) (17.12)
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since boson operators a and a! commute with all fermion operators so the first nontrivial
term of the expansion of r.h.s of Eq. (17.11) is the second-order term

20\ B By Eps By, 010505 [ 202D (2101 (2101 (2161 ()1 () a3 o o) (17.13)
= —2¢°\/EpEy Ep, By (003 a /d4 d*?' (: dr(2)v1(2)
— =20\ [ By B B 010305 [ d2a'2'61(2)6,(2) i (211 (2)in () () - et o

= —2¢°Dp(z — 2')\/ Ep, By, Ep, By /d4 d*2'(0]a%

I(Z)QASI(Z,)?ZI(Z,)¢[(Z/) : +contractions)aq Taj|0)

J.M\
<
~

<

"8

2

@im

o — —

— 4¢2Dr(z — &)\ [Ep By By By / A2 (01a &% bre(2) by (g re(2): e o)

+ 49°Dp(2 — 2')/Ep B,y Ep, B / d'zd"2'(0lay; a7 :zzlg(z)a,g(z)@n(z')q/}h,(zf);agﬂaﬁl*\m

Now we use

a2 2 (62, dns =2 / 62, [oe(f 9)e By + 8756} = — (7, 52)

P2 \/ﬁ i ’ P ’ P V2Ep,

" T N ) A ip12

ATl et AslT = / e~ G5+ v, (P, 8)e'P* bet ,ds’ﬁ = ¢ un(P1, s1),
Yin()ag, {br(2), a3}y = Z \/ﬁ P, s) 5+ oy (D, s)eP 0], a T} o n(P1, 51)

(17.14)
and get

B

s/ ~ " e
Z‘)‘Z s 1 (2 (2)) - aﬁ,i |0) (17.15)

,/E E /u§ D2, 82)Ug pl,sl)/d 2d* Dp(z — 2/)eP?*~ wlz(O
2921 /Ep/ Ep/ ﬂg(ﬁg,52)un(ﬁ1,31)/d4zd4z’ Dp(z — z')eimz_iplz/<O|&ﬁ2 : Q]Z)IE(Z)Q/_)[”(Z,) : d;”O)
9%\ B, By i (D2, 52) e p1,81)/d4 d*? Dp(z — 2')e!P2=P1)z d;zﬁm(z’)lﬂ[n(z’)&g
9, 2= (= — E.E 4. 340 D I\ ip2z—ip1Z’ Aslz/z\ N7 /\As/lJf
297 1¢ (P2, s2)uy(P1, 51) o, By, d*zd*Z Dp(z—2")e gy Yy (2 )wlg(z)aﬁ,
= 921—65(272,52)“5(51331)/d42d42/ Dp(z — 2)e! PPz tiwe=p)2 g (5 s Yu, (5], 5)
— g% (Pa, 52)uy (1, 51) / d*2d'z Dp(z — 2)e'P2 POt g (5 sh)ue (5, 5)

2- (= - — o d’4p e~ PE=) i(p2—p1)z+i(ph—ph)2’
=49 uf(p2532)uf(p1781)u7](p27SQ)uW(plﬂsl)/ i M2 _p2 —’iﬁe pz=p1 P2mP1

2 _ o o = d4 d4 / Cf4p e_ip(Z_Zl) Z(102 p1)2—i(p1—ph)2’
. — — TP P2
g U&(maSQ)“&(pla31)“77(]32732)“77(171731)/ i 2/ i M?—p? —ie

_ 7/92(27[')4(5(])1 +p/ — o _p/) ﬂg(ﬁg,52)U§(ﬁl,81)’117,(]72,8/2)1677(]71,81) . f(an52)u§(p1aSl)un(p2782)u?7(p1>51)]
1 2 M? — (p1 — p2)? — ie M? — (p1 — ply)? — ie

so we got two diagrams shown in Fig. 19
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pl : p2 pl : p2

-

Figure 19. Fermion-fermion scattering in Yukawa theory in the leading order in g2. Scalar boson
is depicted by a dashed line

NB: Note the relative sign (-) between two amplitudes! (the absolute sign is not im-
portant).
This was the matrix element of the S-matrix, so

M(p1, 5151, 81 — P2, 52; D, 59) (17.16)
_ _92[aﬁ(ﬁ2752)u§(ﬁlvsl)ﬂn(ﬁ2v5/2)“71(171’5,1)  Ug(P2, s2)ue (P, 1)Uy (P, 5)un(P1, 51)
M? —t —ie M? —u —ie

which is amputated reduced Green function on the mass shell multiplied by spinors u(pa2, $2),
u(ph, s5) w(pr,s1) and u(p), s}) in accordance with the general rule on p. 111. Hereafter
we will use Mandelstam variables for 2 — 2 particle scattering:

s = (m+p)? = (2405 ¢t = (m—p2)’ =1 —p5)%  uw = (p1—ph)* = (0 —p2)°
(17.17)
Note that s +t +u = 4m? (for particles with different masses s + ¢ +u = lel m2).

18 Set of Feynman rules for Yukawa theory

Lagrangian (density) of Yukawa theory

L(r) = SOu0@)d9(x) — "5 (w) + D) (0 — () — 99(@)P(x)(x)  (18.1)

Green functions in the momentum space are defined as '°
G(pl,sl;p'l,sll;. pgm),sgm);ql,rl;...qg ™) rgm);k‘l,...kgm ) —>p2,s2;p’2,s’2;...pgn),sgm);qg,rg;...qé ) ré”) ko, ...ky" ))

m'!

m m’ l n’ n'
= /Hda: del H zlk)deg) H dyém)H dz%n)G(xl,...:cgm),yl,. ygm),zl,...zgm ),mg,...xén),yg,...yén),zg,...zé" ))
i=1 i=1 = =

m’

X exp{_ing@ Z ) (J 127431 21 -i-ZZpg JJ2 —i—zz:q2 y2 —|—sz } (18.2)
=1 k=1

=1

5Here label “1” denotes the incoming momenta, label “2” the outgoing ones, and an arrow separates
those two sets of momenta. This is again an unconventional notation (usually G(p1, ...pn) is defined with all
momenta either incoming or outgoing) but I find this notation very convenient for subsequent calculation
of matrix elements of M -matrix.
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WhereG(ml,...xl SYLy oY) 321y e2) T2, Ty Y2y Yy 22, By

tion

G(xl,...:cgm),yl,.

= (@QT{[] b=
=1

(O T{ITi, ¥

(m) (m") (m") (n) (n') (N”))
in the coordinate space given by Eq. (17.5)

y%m% 17"'Z§m )>x2 :L'gn)ay%' yén) 22y -aZ9 ( )

Hw Hé HJ H
e = +
VT ™) Ty dr () T r (o

~—

)30

W;:]\

is a Green func-

(18.3)

HJ 1¢1(y1 VI dr (o) yeiol 412012000y o)

7.

\_QI\_/

(0| T{eio/d"=01(= =)}]0)

Feynman rules for Green functions in Yukawa theory

—i

. Scalar boson propagator = -----se---eeeeeeeee =

5 M e
Dirac fermion propagator = M )
P m“—p-—ie

(Arrow on the fermion line in the direction of the flow of negative charge)

P,=P P, '
Vertex : = —ig (2:rc)46(pl— p,— p3)
P, b,
q°
Integrate over all momenta p, of internal lines  II J Py
(2m)*

Extra factor (—1) for each fermion loop

Negative relative sign between two amplitudes obtained by permutation

of identical external lines corresponding to fermions

No symmetry factors in this theory
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The reduced Green function is defined as (cf. Eq. (9.73))

Gpr, suph, st s s qr, s g™ ek k™ pay s ph, shi S s g ey S S R, RS
= (—qymtmmtntn Lot (N pl 13 gl + 3 k) (18.4)
x G(p1, sl;pll, 5’1; ...pgm), ng); q1,71; q§m ),rgm ); k1, kim ) — pa, SQ;pé, 8'2; ...pgn), ng); q2,72; qén ),rén ); ko, k‘én ))

Feynman rules for reduced Green functions for Yukawa theory

1
1. Scalar b tOF  =e-emmmmemenenes —
calar boson propagator 5 NP7 <ie
2. Dirac fermion propagator - ?74_13
p m°—p°-ie

e

(Arrow on the fermion line in the direction of the flow of negative charge)

P,=P[P, |\
3. Vertex ; = —¢
P, P,

4

4. Integrate over boson loop momenta p II J Py
k) @2rn)4
g
5. Integrate over fermion loop momenta B (—1)11} J % p)lz_ (Extra factor —1 for each fermion loop)
)4

6. Negative relative sign between two amplitudes obtained by permutation

of identical external lines corresponding to fermions

7. No symmetry factors in this theory

Matrix element of M-matrix is a reduced amputated Green function on a mass shell
multiplied by:
8.  u(p,s) for each outgoing fermion, u(p, s) for each incoming fermion, v(p, )
for each outgoing antifermion, and v(p, s) for each incoming antifermion.
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18.0.2 Extra (-1) for fermion loop

Consider an example of two-point scalar Green function in the second order in perturbation
theory for example

ql_p

Gl — ) = /d4x1d4xz e~ (O T{§(x1)d(x2) }Q)

/d4$1d4$2 e—iq1x1+iq2m2 <0‘T{$I($1)(&I($2) *igfd4Z¢>] (2) JJI (= ¢I(Z)}‘0>
(0 T{eio) 4610 (20(=) } o)

2 ~ ~ A~ A o A Fal ~
- g/d4x1d4x2 e"'q”““%“/d4Z1d4zQ<0|T{¢1(.’L'1)<251(:U2)¢1(21)¢1(22)¢Ig(Z1)¢15(21)¢1n(22)¢1n(z2)}\0>

—_—

2
— g /d4x1d4x2 eminei+igaa /dw 221 (1) br(z1) b1 (z2) br(w2) (~ D)o (22)bre (1 e (21) D (22)

2 . d—4k —ik2( 2— 2) d—4k e—ikl(zl—zl)
d4;1? —iq1x1+1q2T 4 4 2 € T2—% 1
1 2%2 d d Z9
-4 / il 2 € / 21 / 7] % k'22 Ze/ Z M2 k% 1

d—4p e—zp 21—22) d—4p/ e—ip’(zg—zl)
/ (m~+ P)ne / % (m+ #)en

—p* e v — i€
2 (2m)* ((h ) 4 tr(m+ p)(m+ p— 4)
- g (MQ—ql—’Le)Q( )/d p(mQ—pQ—iG)[m2_(ql—p)2—i€] (18,5)

By definition (9.73), the reduced Green function is Eq. (18.5) without the factor (—i)(27)*5(q1 —
g2) so we obtain

92 — i6)2 <_1)/d4p tr(m+ ﬁ)(m—i_ %_ gll) (186)

i (m?—p*—ie)[m? — (q1 — p)* —ie]
in accordance with Feynman rules for reduced Green functions in the previous page.

The extra (-1) is a general factor for any fermion loop coming from the fact that one
always needs one extra permutation to replace all ¥’s and 1’s by contractions, for example
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(VT (e (21)be (1) by (22) 1y (22)0c (23) e (23) by (24) iy (24) }1O)

= = (O T{thy (2a)de (21) e (21) by (22) by (22)ubc (25) b (25) oy (24) }0)
= _wx(z4)¢£(zl)¢ (2’1)%(2’2)%(22)1/14(23) (33)¢x(24)
= — tr(SF(24 — ) (Zl — ZQ)SF(ZQ — Zg)SF(Z3 — Z4)) (18.7)

Part XVII

19 Quantum theory of free electromagnetic field

19.1 Reminder: classical electrodynamics

Maxwell’s equations in a free space
VxE = —B, V-B =0 “first pair” (19.1)
V. (e law 0, VxB = E “second pair” (19.2)
In terms of potentials

= VD — ff, ® — scalar potential
= VxA A — vector potential (19.3)

o &=

4-vector potential is defined as A* = (@, A). It is usually (but somewhat confusing) called
an “electromagnetic field”. The relativistic invariant form of Eq. (19.3) looks like

0 0
I = — A" AP 19.4
(@) = gy A @)~ 54 w) (1949)
where
0 —E, —E, —E.
v E, 0 —-B, B
E. "B, B, 0

is called a “field strength tensor”. If F),, is obtained as (19.4) from some potential A, the
first pair of Maxwell’s equations (19.1) is satisfied automatically and the second pair (19.2)
looks like

0

(@) = 0 (19.6)

19.1.1 Lagrangian and Hamiltonian

The Lagrangian (density) for the free electromagnetic field is
1 1,5 -
L(z) = — 1F’“’F,w(a:) — 5(]32 - B?) (19.7)

Proof: Euler-Lagrange equation for (19.7) reproduce Maxwell’s equations (19.6)

oL oL oL oL
= = — M =
oan ™ =0 g (n) = —hwl@) = Oare ) = a (@)

OMF,(zx) =0
(19.8)
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One can choose potentials A, (z) as canonical coordinates, then the canonical momenta are

oL
T (z) = 78Ai() = —A'(z) +9"Ay(z) = E'(z) (19.9)

and the Hamiltonian density for free electromagnetic field has the form

S m@A@) - Lla) = ~F(@) Alw) - Lla) = 7o) (E@) + V(@) - L()
= E(x)- (E(x)+ V®(2)) - 5(E*(x) - B*(x)) = %(EQ( ) + B%(2)) + E(x) - V®(x)

(19.10)

which reproduces the Hamiltonian from E & M textbooks after integration by parts

/d3:137-[t1: = /d3 E2tm gt:z: /d?’:L'E ) - VO(t, T)
1 auss 1 - — 3 —
= 2/ [E%(t,7) + B2(t,7)] —/d33: o(t,7)V - E(t,7) “2 2/d x [EP(t, %) + B*(t, )]
(19.11)
19.1.2 Gauge invariance
It is known that the potentials (19.3) are not unique: the change
A (z) — AF(z )—i—iA( ) (19.12)
Oz,

(where A(x) is an arbitrary scalar function) leaves F*” (19.4) intact so the electric and
magnetic fields E and B will be the same for both potentials in the L.h.s. and in the r.h.s.
of Eq. (19.12).

There are two popular choices for the potential: Lorenz gauge 0* A, = 0 and Coulomb
gauge V-A=0. Lorenz gauge has an advantage of being relativistic invariant but quanti-
zation in this gauge is somewhat complicated so we will use Coulomb gauge.

For a free electomagnetic field we can additionally have A9 = 0. Let us prove by
construction that for a given field E(t, 7), B(t, ) the potential satisfying gauge conditions
V-A=0and V-A =0 does exist. Our guess:

t t
Aess = 0, Al ((t,E) = / dt’ FO(t, %) &  Ages(t, @) = — / dt’ E(t', %)

- T (19.13)
We need to check that the potential (19.13) reproduces electric and magnetic fields E and
B. From Eq. (19.3) we get

. N d [t . .

Eguess(t,T) = — Aguess(t, %) = = / dt' E(t',Z) = E(t,7), (19.14)
. . o 70016 . . t . .
Bguess(t, @) = V X Aguess(t, ) = / dt' Vx E(t',7) = / dt' B(t', ) = B(t,)
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The last check is

t
V- Agyess(t,Z) = —/ dt' V- E(t, %) Causs (19.15)

—0o0

so we have constructed the potential (19.13) satisfying Coulomb gauge conditions.
19.1.3 Expansion in plane waves
Do FY + aiji = 0p(0°A" — 9'4Y) + Bj(ain —0'AT) = QRA' + 8j8in — 8i(8jAj)
= RA 4 9PA - (V-A) = A" = 0 (19.16)

= we have three KG equations 924 = 0 plus additional condition 8; A* = 0. The solution
of these equations is

Z/ d’3k )\ " Ae—ikx+a{\‘*eik$) (19.17)
S Ve g Fo=wi=F]

where eV (E) and e(2?) (1_5) are two polarization vectors orthogonal to k due to Coulomb gauge

(K
K k) L €K) Lk
=1
e (k)
Figure 20. Polarization vectors

condition

OAT) =0 & kKe)k) = k-ék) =0 (19.18)
The canonical momenta m; = —A; are given by similar formula

mi(t,Z) = Ei(t,¥) = i Z/ °k wke?‘(l;)(a%‘»e*ikx—a%‘»*eikx) (19.19)
K3 9 - 2\ - .
i) V2 Z g g ko=wj,=|k|

Sometimes it is convenient to expand the field in the circularly polarized waves rather than
linearly polarized. The vectors of circular polarization are defined as

. 1 . .
ef (k) def —2(5(1)(14:) + z'é(Q)(k‘)) right polarization
é;.L(E) def 12(6(1)(E) — ié@)(lg)) left polarization (19.20)
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and the expansion in circularly polarized plane waves has the form

k- B}
As) = 3 / MR)abe ik 4 M (R)abreto) (19.21)
ATRL) VR ko=wi=|F|

where

P

€

V2

19.2 Quantization of free electromagnetic field

ar = —tax

R def 1, (1) (2) L _
B (ak P ), af =a

e
[ol

7( ot +ia®) (19.22)

As usual, we would like to promote the canonical coordinates and canonical momenta to
operators

AR (t, %) — A“(f), mi(t, &) — #(&), (7°=0) (19.23)
satisfying the canonical commutation relations
[A#(@), A ()] = ['(@), 7 (5)] = [A@), 7 (7)] = 0,
[AN(@), ()] = i66@-75) & | D) = —idyd(E-g)  (19.24)

However, second line of this equation contradicts to Gauss law. Indeed, we would like to

have V - E(f) = 0 just as in a classical field theory, but

A@) @) = —ivgdE—g) = A@.00G) = i) = —ilA@.V-E@)] # 0
Jy
(19.25)
Way out (Bjorken & Drell textbook): impose CCR
[Ar(@), A ()] = [7'(@),© ()] = [A°@),#)] = 0, (19.26)
— N - ro= = def i —ip-(Z—7,
@ w@) = ~iaga-p.  o5E-p L [a% @y PR)e D
The Gauss law is now satisfied since
- 0 L . DiDj\ (-
Al(Z),V-E(@)] = —i-—01 = — /cr3 Si; — =) e~ EY) = 0 (19.27
[A"(Z) (@)] 3y, (Z—9) B P (3i; 2 Je (19.27)

We see that V - E; (¥) commutes with all canonical coordinates and canonical momenta so
it is a usual function (c-number). Similarly, A%(#) commutes with all A* and 7% (see Eq.
(19.26) so A%(Z) is also a c-number. Since both V - l%(f) and A%(Z) are c-numbers, the
conditions V - B () = 0 and A%(ZF) = 0 are consistent with all commutation relations and
we can put them to zero choosing the Coulomb gauge (19.13) 16

16 Later we will prove that Heisenberg operators F*”(t, %) satisfy equations of motion 9, F*¥ () = 0 and
then the Coulomb-gauge representation of potentials A’ (¢, ) = f?oodt'ﬁ' Yi(¢', &) can be proven exactly like
Eq. (19.13).
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19.2.1 Quantization in the Coulomb gauge

As usually, we
e Promote classical fields and classical canonical momenta at t = 0 to operators

e Impose canonical commutation relations (at ¢ = 0)

e Define ladder operators
e Express Heisenberg operators A'(t, &) = ethAi(f)e_iﬁt in terms of ladder oerators
e Define vacuum as the lowest-energy state of quantum Hamiltonian

Construct one-particle states and check that they are eigenstates of Hamiltonian and
momentum operators.

—

Our canonical coordinates are A’(t, #) — A'(Z) and canonical momenta 7' (t, Z) = E'(t, &) —
#(&) with CCR. (19.26)

[A'(@), 7 ()] = 656(Z ) (19.28)

Ay) = @’k eA(ﬂ) dAezl}'i‘+&ATefiE-f
1 - - 7 E E
A=1,2 2|k| ko=|k|
- a3k - TS U
mi(Z) = i / — ke (k) (a%e’kx — aETe i) (19.29)
a=1.27 4/2|k| ko=lk|
Canonical commutation relations for ladder operators are
~ ~ )\/ — —
a3.al] = @m0 d(k ~F)
AN AN ATA AT
[a’]?a’]_ﬂ’/] = [CL;’ 7a£‘/ ] =0 (1930)

- /dgkdsk, e E)e)‘\(l_f'/)wk [dée’]zf — &éTe_“;f &/ye”;,'?7 + d’\/Te_“;”y
; 7 J k » ] .
ATanre) 2Rk F F wr=| R o] =|F
= a3k )\(E)G)\(E) (ezk-(fff/’) +e ik (f,g‘)) Z(Str(f N —») (19 31
o 2 ? J - iJ Yy
A=1,2
because o
ANV kik;
Z e;(k)ej (k) = 6ij — ) (19.32)
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Let us now promote classical Hamiltonian (19.11) to quantum operator

H = ;/d% [52(f)+§2(f)] (19.33)

and express it in terms of ladder operators. We get

: a3k L .

A=1,2 wnelF]
B(Z) = V x jf(f) = Z T « a3k é.A(*)(déeiE‘f L+ Mk
A=1,2 \/m k wr=|F|
= g Z / a3k 7 x A (F) (&ée“;f _ d/ye_“;.m) (19.34)
A=1,2 V2wk k el

and therefore (cf. Eq. (5.18) for the KG theory)

1/ 3 2 (= 2 / 3 /d3kd3k/ A7\ =N 7 “\ (1. / —\
—[d Ew—i—B = d’x wrpwrre (k) -et (K) 4+ (kxer(k)) - (k' x et (k
2 (() MZ:124\/°W gwi € (k) - € (k) + ( (k) - ( (
« (dgezﬁ-a‘c’_&gﬁe ik- x)( 2/’ ik -z d%:Teszf
L
N AN = NN T AT\ (D AN T
= (TR @ e D (R B @ (B - B x @) B x (R
i) 4IF
A AA ~ _‘ =, ¢ —»/ 7 7 =, o T —»/ ¢
+ (a%aET +a2 1) [P (k) - @ (B) + (k x (k) - (k x &' (k)
_ 3 \EI AAAAT | AATANY 3 JOYPON 37.Wk 3 JONPON
- Z/d k T(GEaE +azla) = [d kwkZaETaE + vV [d3k a kwkZaETaE
A A A
where we used
AK)) - (kx & (=k) = (kx @ k)ik x & (k)i = epkier(k)eimnkme, (—F) (19.35)
8jmOkn — SjnOkm) kieh(R)km@y (=) = K& (k) - & (=k) — (k- &\(k)) (k- & (=k)) = K&)' (k)
(recall that k- @ (k) = 0) and similar equation
(k x (k) - (kx & (k) = k*&\k)-& (k) = koM (19.36)
Since
H = /d3k wi Y @Y (19.37)
A we=|k|
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we can define vacuum as a state annihilated by d% 17

azl0) = 0 (19.38)

It is clear that such state is the lowest-energy eigenstate since for any other state |¥)

(wlaw) = Y /d’?’kEkZ(\Il]d%T]nMn\&%]\IQ: > /d3kEkZ|<n]d%|\If)]2>0
A A

all states|n) all states|n)

(19.39)
Let us define would-be one-photon state

g o g /\TA
KA = y/2lkaf0), (19.40)

(Peskin’s normalization is (k, \|k', X') = 2|k|6xv (27)36(k — K’)). Using the commutators
oA A oA 2
[H,61) = [k, [H,6) = —|k[a) (19.41)

we can easily check that the state (19.40) is an eigenstate of Hamiltonian (19.37) with
energy wy, = |k|:

HIk,N) = \2lklHax'0) = \/2/k[H,a21]]0) = /2[k|[F|az'|0) = welk,))  (19.42)

However, as in the KG case, before interpreting (19.40) as a one-photon state we need to
construct the momentum operator for electromagnetic field and check that the state (19.40)
is an eigenstate of the momentum operator with the correct relation between energy and

=,

momentum wy, = V k2.

19.3 Momentum operator for free electromagnetic field
19.3.1 Momentum of classical electromagnetic field

A general formula for stress-energy tensor is

oL
™ = —0"d — g L 19.43
0 g (19.43)
which gives
oL
T = OYAY — g™ L 19.44
WG g (19.44)
uv
= —FHFWQVA® — gL = —FFF", + 794 F&’an — O (FHA")

17 Actually, in free electrodynamics the explicit form of the vacuum wave functional is known (cf. Eq.
(4.55)):

<{A‘(f)}|‘1’0> ~ e_%fdgm B(=)w B(=) = e 321«2 JdPzdy é(z)“i?‘g(‘y)
where 5
1o A3k iy o s 1 -
—B@) = | LEePTB(R) = [dy ———— B(y),
W@ = [ TR = [y i)

but, as usual, we do not need the explicit form of vacuum wave functional - the property (19.38) is sufficient
for calculation of all amplitudes.
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The last term ~ O, (F**A") does not contribute to either H or to P; so one can take
g
TH = — FHORY 4 TF@F&] (19.45)

as a stress-energy tensor. It is worth noting that exactly this form of T#" is obtained as a
variational derivative of Lagrangian with respect to metric tensor G, .
The momentum of a classical electromagnetic field is defined as

Pi(t) = / Bx Tt ) = / Bz (— AR Ay + AFgj ATy Y R / 3z E*0'A; (19.46)

SO

—

Pl = / Pr BE BT ALLF) = — / Bo AF(t,7)V A, 7) (19.47)
Let us prove that this equation coincides with the familiar Poynting form of the momentum
of an electromagnetic field

—

Pl = / Ba B(t,7) x B(t,7) = / Ba Bt 7) x (V x AL, 7)) (19.48)

(1) — / v (B(t,7) x Blt,#) = e / Bz Byt 7)Br(t,7) = esnepim / Bz By(t, )0 An(t, 7)

2(8abim — S By (8, 8)0 A (,7) = /d% By (4, 2)0,4,(t, 7) - /d%E(t )0 Ait, )by Lt (19.49)

F)0A;(t, ) /d3 (V. B (tm))Ak(tx):/d?’xE(tx)aA /

—

which coincides with Eq. (19.50) (recall that A; = —A? = —A4;).

19.3.2 Quantum operator of momentum

As usually, to get a quantum operator we take classical expression at t = 0 and promote
canonical coordinates (A;) and canonical momenta (m; = F;) to operators:

P = /d?’:cAk( T)VAL(T) = /d%« E(Z) x B(Z) (19.50)
After some algebra on can express P in terms of ladder operators (cf. Egs. (5.33) and

(14.36))
=Y /d3k Kalay (19.51)

A=1,2

so one can define quantum operator of 4-momentum as usual:

Pt = =Y /d‘3k Krala (19.52)

A=1,2
Using Eq. (19.52) it is easy to check that
[Praxt] = ke, [PMaR] = — ke (19.53)
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SO
2 S 2 Z At Sy N
Plk,A) = \J2lk[Paxt|0) = y/2[k|[P,axT|0) = \/2lk[kaX|0) = Klk,\)  (19.54)

which means that the state ]E, A) can be interpreted as one-photon state with momentum
k and energy Fj = |k|. The states corresponding to right- and left- circularly polarized
photons are defined as

&, R) = \2lklagt = \/Ik|(@; +ia)o),

kL) = 2|Eya§ = \/“5'(% - z’&E )0) (19.55)

As we shall see later, the circular polarization is related to the helicity of the photon.
Using Eq. (19.53) it is easy to prove that

esz&éesz:p _

—ikx iPr M —iPx A dkx
z e rale = al'e (19.56)

e

and therefore Heisenberg operators for electromagnetic field take the familiar form (cf. Eq.
(5.13)

R a3k R . .
Az(x) = szOA( —zHaco _ Z/ /\ k A/\e—zkzx_i_&%'fezkx) (19_57)

A=1,2 'Qw

. A a3 N . ‘
#i(x) = By(x) = ™0 (z)e Hm0 = iy / wkeﬁ(k)(age—lkx—age““)

wr=|k|

wi=|k|

In addition, from

[Pt Al (x)] = —io"Al(x) (19.58)

we can check (similarly to Eq. (6.16) '® ) that P induces shifts in the arguments of field

operators: X R
ePr Al (e~ = Az + a) (19.59)

so it is indeed a quantum operator of momentum since it describes the response of the
system to shifts of coordinates. In the next Section we will construct quantum operator of
angular momentum and check the spin of of the one-photon states (19.54)

19.4 Angular momentum and spin of the electromagnetic field

19.4.1 Angular momentum of classical electromagnetic field

The angular momentum of classical electromagnetic field is given by (see Jackson)

/d%mx (B(t, #) x B(t,7)) (19.60)

'8 A more simple way to see this is to use Eqs. (19.57) and (19.56).
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Let us prove that it is conserved. From Maxwell’s equations (19.1) and (19.2) we see that

—Jt) = /d31: 7 x (E(t, ) x B(t,7) — B(t,7) x E(t, 7)) (19.61)

1 =, = — hd — 1 = = — — —
=~ [@ 7 x [[VIECDP - (E(t.5)- DE®D) + 5 ¥IB0.7) (B ) 9)B0.7)]
where we used formula 1
x (Vxad) = 56(52)—(5-6)5 (19.62)

Now we need to integrate by parts which is easily done in components
—Ji(t) = — | Pz iz |E,T)|? — Ey(t Ey, - — By(t, %)== By(t,
GO = — [0 ey [ | 0P — Bt 5 Bult8) + 5 o | B2 — Bule, )5 Bu
8ZElzal§l=0 3 — 1 a g — 3 g R -4 R 1 8 =g —\ 12 8 =

= — el | = —=—|E - —(E E ——|B By B

[ e[ |BDP - o (Bt DEt.2) + 5 5 B8P — o (Bt D) Bult,

by parts

- / B eqnlBy(t, 2)B(t, @) + Bi(t, ©)By(t.7)] = 0

19.4.2 Quantum operator of angular momentum

As usual, to get quantum operator we take the corresponding classical quantity (19.64) and
promote canonical coordinates A? and canonical momenta E’ to operators: A*(t, &) — A'(Z)
and E'(t, ¥) — E(Z)

J = /d3:c i x (B(Z) x B(t,7)) (19.64)

It is instructive to rewrite this operator as
Ji = e / PPz ) (E(&) x B(t, %)), = €ijirim / d*z & E)(Z) By (t, )

3 Lz 0 7 3 Lm0 5 L 0 &
= eijkeklmemm d’°x :L’jEl(J})i_,Ar(t,x) = Ez'jk d’°x x](El(a:)—Al(a:) —El(:z:)—_,Ak(x))

0%y,
by parts 3 o 2o o >
= €y | d’x T E(X) A

o (@) + e [ By(@)4(2) (19.65)

which in vector form looks like

@]

+ 5,

O>1

F _ /d%fxﬁkwﬁ, g - /d% B(7) x A(F) (19.66)

Looking at the momentum density (19.46) it is easy to interpret the operator O as an orbital
angular momentum. We will now demonstrate that the second term can be interpreted as

an operator of spin. Y

19 Strictly speaking, we define the operators O and S as normal products of corresponding ladder operators
O :and : S : so that O]0) = S]0) = 0, see the footnote at page 106
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First, let us check the self-consistency of our definition of orbital momentum. Let us
take take photon with momentum & || z° described by d% and check that the z-component
of the orbital angular momentum of such photon vanishes. We get

Bsi0) * 27 (Gy o) = / da [ x BV A)a,a)]|0)
[ (3 B@) 2 Ai(®) — 824 (B) 2 Au()),X1)0)
K an 1 K afl 1 ) k?
o . S R
A B (2B LA M — B P14 (). M
= [ (#01840) (4@, ) - 2Ei@) o (A1) o)
3o (#1152 A3) — mlBi(2). a2 Az
+ [ (BlB@.00) 5 @) - RE@, ) ) 0)
by par I R VI IV
VRS By (#15(F) == [Ai(@), 0] — 2By () = [Ai (2), a2T] ) 0)
0% k 0T k
+ / &z <a?1/1i(f)i[EZ(f) i — 5403 2 (@) a17)0) (19.67)
07> " o1, ’
Using the commutators
R eME) R SoeMk)
[4;(#), a7 = () o E@), )] = k| o E) i (19.68)
2[k| 2[k|
we see that in our & || z case 6%16“’“‘9”3 and %ei‘k‘m vanish so Os|k,\) = 0if k || z. 20

We will now check the interpretation of S given by Eq. (19.66) as a photon spin
operator. Let us apply the operator S5 to state corresponding to photon with right circular
polarization (see Eq. (19.55))

R _ = Rt
|k, R) = \/2|k|aE |0) (19.69)
We will need commutators
) eR(k) . R L eR(k)
[4;(7),ac"] = J(fel o E@),al) = k| J(fe”“ (19.70)
2| k| 2|k

where e = %(é’l +ié?), see Eq. (19.55).

20 We could consider the Poynting vector itself rather than EAkﬁAk as a density of momentum but then
we would get a wrong result that the z-component of the orbital angular momentum of the photon moving
in z direction does not vanish.
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= 5 (ENE) + i3 (R) @ + aXh) — @ (R) +iay (k) @ — aX') Ho)
A=1,2

= VIE Y @F) +iak)ar|oy = JIkl@ +iazhlo) = y/2[klatto) = [k R) (19.71)
A=1,2

A7 A3k o iFE oA iR
Ai(Z) = ej (k) (aze™" +az'e )
a=1.27 1/2|k| wi=[k]
- a3k - Sy T N i
#(Z) = i / — [kle} () (ape™ ™ —afe Ty (19.72)
=127 1/2|k| wi =[]
Similarly one can check that Ss|k, L) = — |k, L) so the operator S3 measures the helicity
of the photon with momentum & | z.
Part XVIII
20 QED
20.1 Classical theory of interacting Dirac and electromagnetic fields
The Lagrangian (density) for QED has the form
1 v Ty .

L(r) = — ZFWFM + (D —m)p, D)(z) = (8# — zeAM) () (20.1)
where € = e€positron = — €electron- 1t is a sum of the free electromagnetic Lagrangian
(19.7), free Dirac Lagrangian (13.37) and the interaction Lagrangian

Lint(z) = ed(z) Al2)d(x) (20.2)

describing interaction of electromagnetic field with the Dirac field.
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The corresponding Euler-Lagrange equations are

oL d oL

@ = gy o GP—muG) =0 (203

0 = Ggg@ = AR —mi) = 0y & G@(D+m) = 0

where %(2)D, = 0%1)(x) + ied(x) A¥(x), and

TP = ) ) = R & PFu@) = —eil)
(20.4)

The first two equations (20.3) are Dirac equations in an “external field” A, and the last
(20.4) is the Maxwell equation with the source.

20.1.1 Gauge invariance

This theory of interacting fields is invariant under gauge transformations

W) - @)
d(z) — e My(z)
Au(x) = Ao )+§aﬂa(x) (20.5)

where a(x) is an arbitrary (scalar) function of coordinates. Let us check that the Lagrangian
(20.1) is gauge invariant. For F),, F*¥ it is obvious since F,,, — F},, (see previous Section)
and for the mass term we get me(x)1p(z) — map(z)e @ i@y (z) = map(z)ih(x). Let us
now prove that the “covariant derivative” D,, is gauge invariant (the better word is “gauge
covariant”)

D) = (oo — iAW) b(e) = (i — e (@) (2
_ Z%(eza($)¢($)) — ’L'e(A“(SL') + é@ua(;p))ela(m)w(z)
= [ () —ieAu()p(@)] = O Dyup(a) (20.6)

Similarly one can prove that Qﬁ(x)Bu — TZ(ZL‘)B“ e~ ynder the transformation (20.5).
Now we see that the term t(x)y* D, (x) — (x)e " *@ei®@)tD ah(z) is gauge in-
variant and so is the Lagrangian (20.1).
The Dirac current is defined as

o
—n

€

3(z) = P@)y"d(@) (20.7)
This current is conserved (even in the interacting theory) since

it (x) = ((%Hw( 2))V' () + P )i bap(x) = () (Du —ieAu(@))y"p(x) + B(2)r* (Dy + ieAu(z)) ()

830“
—

B(@) D (@) + @) D) = G(@)(D —im)u(a) + (@) (D + im)(x) = 0 (20.8)
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where we used Dirac equations (20.3). The charge @ defined as 2!
At < —e [Eritd) = e [d 030000 (20.9)

is conserved:

d - - - > arts
2a) = —e/d3:): [%jg—i—v'j(x,t)—v-j(x,t)] by part —e/d% (1, 7) = 0
(20.10)
In a free electromagnetic theory we used the Coulomb gauge V-A= 0, Ap = 0. In the
theory with the interaction it is impossible to satisfy both of these conditions. Indeed,
suppose V- A = 0 then from Maxwell equation (20.4) we get (® = Ag)

9,0 = G FY = 9;(0'Ag—pA') = —VZAg—0y(V-A) = —V24y = —ej® (20.11)
so one cannot put Ay = 0 if there are sources of the electromagnetic field, so we will drop
Ag = 0 condition 2?2 and use Coulomb gauge

V-A=0 (20.12)

Actually, the field Ag(z) = ®(x) is completely determined by those sources since from
classical electrodynamics we know that

=/
VIO(t,3) = —p(t,d) = O(t7T) = /d3x’ AGE (20.13)

Am|Z — &
where p(t, ) is a density of continuous distribution of charge (this formula is easy to check
using V2= = —4nd(Z — &')). In our case p(t, T) = —ej°(t, T) = —edb! (¢, D) (t, T) so the

]
field o
Aolt,7) = —e/d?’x’w (t, Z)P(t, &) (20.14)

drr|d — 2|

is not an independent dynamical variable.
Thus, the dynamical variables (= canonical coordinates) in our theory are A%(x) and
Y (z). The corresponding canonical momenta have the form

n(t, &) = a—ﬁ.(t,f) = i)l (t,7) (20.15)
O
™ (t,¥) = —(t,%) = —A"(t, %) +0"Ao(t,T) = E"(t,7)
0A
(self-consistency check is 70(t, &) = 25 (t,#) = 0 which agrees with the fact tat A is

A
not a dynamical variable).
The classical Hamiltonian has the form

H(t) = / B {n(t, Bt F) + mlt, D AR (L, 7) — L(t, 7)) (20.16)

_ / B {i (6, D)0t F) + Bn(t, 3)[— B¢, 7) + 0F0(t, 2)] - L(1, D))

e - Tz, o 52/, - 2 - " -
= [ [ulm =7 90t ) + B0 2) + B (1. 2) + B V(6. 2) - oAt 3)
2lrecall that eelectron = —e, see the sign in Eq. (15.36) for quantum charge operator
22 Alternatively, one can drop V-A = 0 condition and use the “temporal gauge” Ao =0
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(20.16) in the form
H(t) = /d3x (W(m — Y-V — ey A(t, T) + %[EQ(t,f) - §2(t,f)}) (20.17)

For future use let us divide E () in the transverse and longitudinal parts

E = -V -®@)—A@x) = E™+ E" (20.18)
E™z) = —V-®(x)

_, N - o 0= -

E(z) = — A=) “transverse” because V - B = &V A =0

Note that E™(z) = V- ®(z) is not an independent dynamical variable since it is determined
by Dirac fields just like ®(x) itself.
We get

—_

1,2 = 1, - = Lz 1.2 T 1=
5[E2+B2] = §(E+V<I>)2+§B2+§(V<I>)2 = (P+B?)+§(vq>)2 (20.19)

so the Hamiltonian takes the form

H(t) = / 3z H(t, ) (20.20)

H(t,Z) = I, D) (m—i7-V — ey A)ip(t, T) + W(t,f)ﬂ?(t,f)}+%(6¢(t,f))2

N =

20.2 Quantization

As usually, we take classical canonical coordinates and momenta (20.15) at ¢ = 0 and
promote them to operators

A@), 7(0,7) = 7(Z) = F'(T)
b(@), 7(0,2) = w(0,7) - W)

In addition, we define the operator A = & by Eq. (20.21)

Q.

Aog(@) = b@) ¥ —e/d?’x’w (20.21)

Am|Z — 7|

We impose the canonical (anti)commutation relations of the usual form (7! = E?)

[A'(#) = o0E—g),  [A@.A@) = [EL@), B
[AY(@), e ()] = [A'@),0@)] = [EF(@),d(@)] = [Ef@),9(F)] = 0 (20.22)
Also, from equations (20.25) we get
[A%(&), A()] = 0 (20.23)
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(because A? commute with 1& and TZJT) and
w00 ogm [ @)@, DT ) )]
@A) = [ty
~ [oow @), @) — ST, B @) H()
! 16777 — [ — 7|

1672|7 — &||j — 7|

Because EN#) = V&(#) = VAZ) commutes with A%(j7), with E¥ () and with itself
(see the two above equations) one can replace Eg’r in the second line in Eq. (20.22) by full
E':

[A'(), B/ (5)] = &356(% ), [AM(@), A" ()] = [E'(@), B (5)] = O,
[A'@), de(@)] = [A'@, 0[P = [BF @), 9] = [BF(@),$(@)] = 0 (20.25)

A

However, A% = ® does not commute with Dirac operators:

M B St — M
dn|z — 7| [@(2), 1 (T)] = — Il — 7] (20.26)

[®(Z), (7)) =

and therefore the in last line in Eq. (20.25) one cannot replace Efr by E;
Since 9;A1(Z) = —V - A(Z) commutes with all canonical coordinates A (evident) and
s/

all canonical momenta 7" (because 9;0}(# — ') = 0 it is a c-number so we can safely set

the Coulomb gauge condition in the operator form
V-A@) =0 (20.27)

- it will not contradict any commutation relations.
The Hamiltonian is obtained by promotion of classical fields in Eq. (20.20) to operators:

A - - 1.2 - 1 -
i = / P [1(@)m — 17V — 7 A@N(@) + S [BL@) + B@)] + 5 (Ve(@)?] (20.28)
The Heisenberg operators are defined as usual

Au(t’ f) = eiﬁtA,u(i;)e—iﬁt’ ﬁ_i (t, :I_f) _ eiﬁtﬁ-i(f)e_iﬁt _ eiﬁtEi(f)e—iﬁt = Ei(t, f)
b(t,7) = eHp@)e . Y, 7) = ellj(z)e (20.29)
It is easy to see that they satisfy the equal-time commutation relations (cf. Eq. (7.14))

(et D), 046D} = 0ey@— ), (et @), (6.9} = (D1(0.2),Dh(t.i)} = 0
‘ (1, (t | = (B8, By = o,

), de(t, )] = (A3, 5, 9] = 0
0 (20.30)

L)) = (AL D), 3 ) = (A 3),
[Ao(t’f)vAi(t7g)] = [Ao(t’f)in(tvg)] = [Ao(t)f)’Ao(t7g)] =
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The two last formulas in the third line require explanation. From Eq. (20.25) and (20.29)

we get
IRt ()it = Gt fu(7) — 0,0(2))e Tt = Ey(t,7) — 0,0(6,7) = — Ai(t, )
(20.31)
because
PANt, D)+ OD(t,T) = Y —i[H, A(D)] + 5;9(F))e (20.32)

— HHET(@) 4+ 0,0(&) et = HE(Z)e T = Ey(t,7) = E'(1,7)

Also, repeating the derivation of Eq. (7.15) we see that

., R - . 1.2 2 1= .
(20.33)
actually does not depend on ¢ (but different parts like HD = —zfd?’wa LX) 61&(1&, )
may depend on t!)
The operators (20.29) satisfy the same equations (20.3) and (20.4) as their classical
counterparts. Let us prove this for Gauss law V- E(t,Z) = p(t,&) = —egly(t, &). First,
from Eq. (20.32) we see that Ei(t,Z) = — 9°Ai(t,Z) + &'®(t,T), same as for classical
fields. Now it is easy to obtain Gauss law in the operator form reads
V-E(t,&) = —0iEi(t,7) = —0,0°A(t,5) +0,0'(1,7) = — (M, AN (F)e ) + 0,0'd(t, &)
= —V(t,7) = —edl(t, D)t 7) = —e°t,T) = p(t, D) (20.34)

Similarly one can check that the operators (20.29) satisfy the same equations (20.3) and
(20.4) as their classical counterparts

" (2) = — cj* ()

(D —m)p(z) =0, P)(ip+m) =0 (20.35)

where j#(z) = @Z(x)’y“@b(:p) and ﬁu = 0, — z'eflu
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Part XIX

20.3 Interaction picture

To quantize electrodynamics in the interaction picture we separate the Hamiltonian (20.33)
in four parts:

f[ = ﬁD+ﬁem+ﬁint+ﬁCoula (2036)
iy = / Bz (@) (m — 7 - 9)d(E)

. 1 2

Hon = 3 / do [22(7) + B2(2)]

Em-—e/fmiww.&maw)

R 1 o 1 . o n R e2 R
Heow = 5 / d’z (V@) = -3 / &’z S(F)V*O(7) = / Cad’y P @YD g0 DO

where in the last line we used equation V2®(Z) = e’ (7)1 (&) following from the definition
(20.21).
Now let us define “perturbative Hamiltonian” as

iy < Ay o+ A, (20.37)
then H = ﬁo + ﬁint + ﬁCoul-
Operators in the interaction representation are defined as usual (note that Eq. (20.30)
= [Hema HD] = 0)

A[(z) = eiHozoA(Z—')efiHozo _ eigcmzoAi(Z)e*iHcmzo
1&1(2) = eiﬁozo&(g)e—iﬁozo — eiﬁnzoﬁ(g)e—iﬁ[)zo
121(2) — eiﬁozolz(z")efiHozo = eiHDZ(]lZ(Z_’)eiiHDZO (2038)

= the expansion in ladder operators is a combination of Eqs. (19.57) and (14.21)
hi(z) = eiHpty(7)e—iHnt — /
121(5) _ eiﬁDtJ)(f)e—iﬁDt — Z/ 2E U —ip:cé% —i—ﬂ(ﬁ, S)eipmd;T]

() (ade ik A ik
Z/\/ﬂ aezx—l-age’x)

A=1,2

$)e a5+ o7, 5)e b

)

pO:Ep

)

pO:Ep

(20.39)

ko=wy,=|k|
20.4 Perturbative series for Green functions

The (exact) Green functions are defined in a usual way (cf Eq. (7.20):

G20, Tl Y1y oy 215 o2n) = (QUT{D(@1), D (1), D (W) oot (ym), AP (21), o AP (2) |0
(20.40)
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where [Q2) is a “true vacuum” of QED (lowest-energy eigenstate of the Hamiltonian (20.36)
and 1, A are Heisenberg operators (20.29).

As usual, we define the “perturbative vacuum” as a direct product of vacuum of free
Dirac theory and vacuum of free electromagnetic theory:

|0) = |0D)|0crm) (20.41)
This vacuum is annihilated by both fermion and photon annihilation operators
~ A _ A . aA

0) = 0 (20.42)

Next, we use the property (9.26)

T—o00(1—1€)

e T gy TP~ T |0y (0), (20.43)

repeat the steps from Eq. (9.31) to Eq. (9.41) and get the Green function (20.40) in the
interaction representation:

(QUT{ (1), (@), (), oot (), A (1), . AP (2)|2) (20.44)
_ OIT{br (1), b1 () Y1 (Y1) e br (ym)s AN (21), o AL (2 )e 72 A Hint (O +He ) 310
(0| T{e—t/dt (Hine(®)+Hc®)}|0)
where
Hing(t) = Mot et — ¢ / &P Dr(t, T)F - Ar(t, )¢, T) (20.45)
~ ~ ~ ~ 2 ~ ~
Ho(t) = et Hepye ot = /d3xd3y ﬂ(tafWI(taf)mﬂ(t,g)wl(@ﬂ) (20.46)

Now we can expand the r.h.s. of Eq. (20.44) in powers of e (< in powers of H; and
lEIC) and use Wick’s theorem to get all possible Feynman diagrams. The contractions are:
1. Feynman propagator of Dirac particle

IS N IS a4 (o m-
dile)ii) = OLGi@biHo) = [CReren UL ey
(20.47)
and
2. Propagator of transverse photon
Ai(2)Aj(y) = (0|T{A}(2) A} (y)}0) = (O|T{ALi(x)A1;(y)}0) (20.48)
a3k AN (L —ik(z— ik(z—
=[5 3 A®EE B0 — )M + 0y — o))
Wk 1o
_ kL (s Rk a1 ey KRN L
a /i—k2—iee (5”7 EQ) B Tk2_|_i66 (g JF?) = Dg(z—y)

where we used Eq. (19.32).
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20.5 Feynman photon propagator and Lorentz invariance of Feynman dia-
grams

Let us introduce the unit 4-vector in time direction n = (1, 0,0, 0) and rewrite the transverse
photon propagator (20.48) as follows

a1 kekY kO o
v, — —ik(z—y) [ pv Mo T} 27
DfY (x —y) / e (g o = (R R —%20)49)

which can be rewritten as a Feynman propagator plus two additional terms

D (x —y) = D’z —y) + Digq(z —y) + D (z — y) (20.50)
y d4k g;ux ikl

Dit(w—y) = [E ey
v adk g™ o (kPR KD Lo

Dty = [TES e (ML )

d4k77u77y —ik(z— a nhn”

v _ — ik(z—y) - _ 3 ik(Z—7) - -

DY (z —y) TR e i6(xo yo)/d k 7 e i6(xo y0)747r‘f—gﬂ

The contribution of the term D{y/(x — y) vanishes for any S-matrix element due to Ward
identity (see Peskin’s textbook). In addition, the term D!" (z —y) cancels the contribution

of the instantaneous term H,. in the Hamiltonian so one can use Feynman propagator

4 v
a*k g,u —ik(z—y)

DWW (x—vy) = [|— 20.51
r (=) i K2 4ie (20.51)
and the interaction Hamiltonian

) = e / B D1t E) Ar(t, D) (¢, ) (20.52)

for the calculation of S-matrix elements (= physical cross sections).

20.5.1 Electron-positron scattering in the lowest order in perturbation theory

Let us illustrate this using simple example of elastic electron-positron scattering in the
lowest order in perturbation theory. Due to LSZ theorem (we can use Eq. (17.8) without
scalar bosons) we get 2

out (P2, $2; G2, T2|P1, $1; 41, T1)in = p?,%gmz d4$1d4y1d4$2d4y2 e~ iP1T1—iq1y1 +ipaTatiqays
X (T (g (p2, 52) (m— P2)entn(@2)the(y2) (Mt o)ty (a2, 72)
X (@) (m— p)aptip(pr, 51)0¢ (a1, 10) (Mt 1) cotho (1) }192) (20.53)
= p?’(grgmz d*zidryydreadtyy e P TP N2 G () so) (M~ Po) ey (Mt go2)wyVy (g2, 72)

<0|T{¢n($2)¢iw(yz)%(wl)@@a(yl)e—ifdt (Hint ()+Ho () }|0)
(0| T{et/dt (Hin(®+Hc(®)}|0)

X (m— P1)aptp(P1,71)0c(q1, 1) (M f1)¢o

23 To save space, we omit the interaction-representation index “I” from the operators in what follows
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First, we consider the ratio in the last line in the second order in e and prove that the
contribution of Hg(t)) cancels with the contribution of the last term in transverse photon

propagator
(O T {2 <y2>%<x1>¢a<yn S e HeO))0) (20.54)
(O[T {1/t (0 He®)}]0)
= <0|T{wn<x2>ww<yz>w<x1>wa<yl>( 5 [ dt Fus®) [t Fras(t) — i [ atiice) Ho
N IS IS A dAzdtsy - = ~ S g N A
= O na2)iulilin)ida(n) (- [ 0E7 AT AN i [atHe®)))o)
By Wick’s theorem we can replace ... A;(2)...A;(2')... by contraction flz(/z)\fl](z’) = Djf(2—
2') and get

- 2 / d'2d" 2 DI (2 — 2) (O T{Wy (w2) v (y2) o (1) (1) (V)98 (2)) (D (2 )1ab(2")) }0)
ie? / dtd®zd*? %ww{wn(mzm(w M@0 8o (1) ((t 2 (8 2) (P (1, )t 7)) HO)
= G [ o - ) visteo - D]

X {01 Tty (2)bes (y2) 0 (1) i (1) (V29 (2)) (2 ) Wb () HO)
- 622 / d*zdy [Djé”(z — )+ Db (z — Z’)]

X (0| T{ty (22) s (y2)n (1) (1) ($(2)740(2)) (=) D(2) }O)  (20.55)

It is an exercise in combinatorics (see Bjorken & Drell) to prove that in any order in per-
turbation theory the instantaneous term Dﬁll;t in the transverse photon propagator (20.50)
cancels with the Coulomb instantaneous term (20.46) in the interaction Hamiltonian so
we can build perturbation theory with the interaction Hamiltonian (20.52) and the photon
propagator D% (z — 2') + D/ (= — 2/).

A the second step we will demonstrate that one can drop the term DIy (z — 2’) when
calculating physical amplitude (20.53). Substituting our result

(O {1by ()00 (20 (1) o (g e (s O e o) (20.56)
(0] T{e~/ @ (im0 +c () }]0) |

= - e2/d4zd4z’ {Dﬁé”(z -2+ D (z— 2 )}

x0T {8 (w2 (o) (o1) o ) (B3 (2)) (B b () HO)
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in the r.h.s. of Eq. (20.53) we obtain

out (P2, 825 G2, 72|P1, 813 41, 71)in (20.57)
= —é lim d*zidryrdrzadty, e P T IB A P2T N R g (n) so) (m— Po) ey (Mt g2)wyVy (g2, 72)
p}.a;—m

X (m— pP1)xptp(p1,71)0¢(q1, 1) (mA+ g’l)ga/d4zd4z' [Dﬁff’(z -2+ D/ (= — z')]
x 3 (O 2)dhu(y2) 7 (1) (1) (B (21 (2)) (B () 0}

By Wick’s theorem, the T-product in the r.h.s. of this formula reduces to the sum of two
contractions

S OIT {22 (0o () (B2 17#4(2)) (97" } 0

= @) (D D) ) Bale) B () (D (2)75(2)) 6 (32)

— (@) (D) (")) G (y2) b (1) (S (274 (2)) D, (1)
= (Sr(w2 — )0 Sp(2 — 21)),, (SP(y1 — 2)WSP(2 — 12))

)
(Sp(xg — 2 Sp(2 — yg))nw (SF Y1 — 2)YuSr(z — xl)) o (20.58)

Performing Fourier integrations, one obtains (k =p2 —p1 = q1 — @2, ' = p1+q1 = p2 + q2)

out (P2, 52; G2, 72|P1, 511, m1)in = — €2(2m)*5(p2 + g2 — p1 — q1)
X lm G (pa, s2)(m— pa)en(m da)wxvx (g2, 72)(m— P1)rptp(p1, 51)0¢ (g1, 1) (mA+ dh)co
—m

RES)

Lotz (o + 5 = B ) (o B 2 (e, )

ik i m? —p3) "i(m? — p? m? —qt) "i(m? — ¢
1 KPEY kP m+ po m— s m— ¢ m+ pi
_ My - — k,u v k‘/y # v
ik'? <g + ];/2 ( + )) <Z(m2 —pg)fy i(m? —q%))nw(i(m2 —q%)/y#i(mZ_p%))U/\]
= i(2m)*%(p1 +q1 — p2 — Q2)
2 | A
X% [@(p2, s2)wulpy, s1)] [0(ar, r)vuv(ae, )] (9W T T ﬁ(kuny * kynu))
&2 KREY K v
- [@(p2, s2)1v(g2, m2)] [0(qr, 1) vuu(pr, s1)] (QW + 7 ;(km Yk )) (20.59)

where k = ps —p1 = @1 — q2, ¥ = p1 + @1 = p2 + ¢2 and we used Mandelstam notations
t=k2 s=Fk>
Now, it is easy to see that due to the properties

U(p2, s2) Fu(pr,s1) = u(p2,s2)[($2 —m) — ($1 — m)|u(p1,s1) = 0

v(q1,m1) Fo(ge,m2) = (g, m)[(dh + m) — (g2 + m)]v(g2,72) = 0

U(pa, s2) f'v(ge,m2) = ( ,82)[(H2 —m) + (g2 +m)|v(ga,m2) = 0

o(q1,m1) Fulpr,s1) = o(q,m)[(dr +m) + ($1 —m)]u(pr,s1) = 0 (20.60)
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the contributions of D{j/ (k) and Djy/ (k') to the r.h.s. of Eq. (20.58) cancel and we get the
result

out (P2, 825 G2, T2|P1, 81 q1, T1)in = 1€%(27)*3(p2 + @2 — p1 — @1) (20.61)
1% uv
X ([’ﬁ(pz,82)%U(p1,81)]gT[B(qhn)’quQ,rz)] - [ﬂ(p2,82)%v(q2,7“2)]%[@(ql,n)wuwl,sﬁ])

Note that for the amputated Green function at arbitrary momenta

G o1 = pav) = T = m)(af ) [ dhondpnatoad'y, (20.62)

% e~ iP1T1—iq1y1 +ipaTatigays <0‘T{1&n(x2)1/;w(yQ)JJ)\(*Tl)l;U(yl)eiifdt (gmt(tHﬁC(t))Hm
(0| T{e~i/dt (Him(®+Hc())}|0)

we can cancel the contribution of the instantaneous term Dfﬁ;

propagator (20.50) with the Coulomb instantaneous term (20.46) in the interaction Hamil-
tonian as demonstrated in Eq. (20.56), but in general we cannot remove Di’fl';t from the

. in the transverse photon

photon propagator. Indeed, from Eq. (20.58) we get

Grro(P1, @1 = p2,q2) = —€e*(2m)"id(p2 + a2 — p1 — @1) (20.63)
v 0
< [ (0 + 5 = S+ k) (ot gt )l lim— o= )l
IV /0
= (7 e = S ) on el el i) )l

and, for example,

K (m+ po)y(m+ p) = (m+ po)[m— pr — (m— po)l(m+ 1) = (m+ p1)(m® = p3) — (m+ pa)(m* — p})
K'Y (m+ o)y (m— ) = (m+ po)lm+ do — (m— p)l(m— do) = (m+ po)(m* — g3) — (m— ¢a)(m* — p})
(20.64)

so we see that the contribution of the term D’VLVV drops out only if all fermions are on the
mass shell (p? = ¢2 = m?). This is a manifestation of the Ward identity which in general

reads as follows

Ward identity:
Suppose we have a general amputated Green function 2* Giy™" .. (k1,...km,p1, .--p1)
with all electron and positron momenta p1,...p; on the mass shell (pl2 = m?), then 2°

k,’éLiGzrﬁ?_yum (k‘l, ...k‘m,pl, ...pl) =0 (2065)

24 Note that sometimes the name “Ward identity” (or “Ward-Takahshi identity” is reserved for a more
general formula relating different off-shell Green functions of which our property (20.65) is a consequence.

Z5This identity is generally not true for individual Feynman diagrams but it restores when we sum over
the diagrams for G at any given order.
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Using Ward identity it is easy to prove (by induction, See Peskin € Schroeder) that
the terms ~ a,k, (or k,k,) in the photon propagator do not contribute to any physical
S-matrix element.

Summarising, we have proved (albeit on a simplest example) that one can use the
Feynman photon propagator (20.51) and the interaction Hamiltonian (20.52) for the calcu-
lation of S-matrix elements (= scattering cross sections). The result for an arbitrary Green
function reads

(QUT{ (1) (@2)P(3) ot () A1) Ayn) ) (20.66)

<0\T{%Z;I(xl)?ZI(l‘z)TZI(CU3)--~-1Z11(£Um)/11(y1)-..AI(yn)eiefd“zdjf(Z)z%(Z)lﬁz(Z)}|Q>
(0| T{eieSd*=01 (1 (2)91(2)1|0)

where fermion contractions are given by Dirac propagator (16.3) and photon contractions
are given by Feynman photon propagator (20.51).
From Eq. (20.61) we see that the matrix element of the transition matrix is

M(p1, 815q1, 71 = P2, 525 G2, 72) (20.67)
17

= 82([13(192,52)71»“(291,51)]%[@(Q1,7‘1)WU(Q2,7’2)] - [ﬂ(p2,82)7uU(Q2,T2)]Lj[ﬁ(m,ﬁ)wu(m,sl)])

which is depicted by two diagrams in Fig. The relative (-) sign is obvious if one redraws

Py By
P~ P, —
q; q,

Figure 21. Diagrams for the elastic eTe™ scattering

these diagrams as

q, 9, 9 9,

It is easy to see now that the two diagrams differ by exchange of the fermion lines with
momenta py and —g; going out from left and right vertex.
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20.5.2 QED interaction vertex

The formula (20.67) tells us that the fermion-fermion-photon interaction vertex is e in
the set of Feynman rules for reduced Green functions. To fix the sign, let us consider
the three-point fermion-fermion-photon Green function in the lowest order in perturbation
theory.

Gk = p ey = Gk, —p,=Qen = / d'zd'yd'z 6_"’“’Z+“”“”J”";’y<QIT{/1“ (2) e () (@DH88)

O T{A" (2)e )by (y > wfd‘lww (wM(w)9(2)}|0)
(0| T{eie/ =@M w)ibtw)} |y

— e / d*zd yd zd w e*“f”m“qy<0|T{A“<z>wg<x>@Z(w) A(ww(w))in(y)}\m + 0(e)

— /d4$d4yd4z e—ikZ'f‘ipZ‘-i-iqy <

= ie/d4xd4yd4zd4w e~ IREHIPTEIQY DY (5 p) [Sp(z — w)ySp(w — y)]&7 + 0(e?)
: " m+ p) m— )

= ie(2m)*(p+q — k)~ y 20.
ie(2m)"0(p +q )z(k2 + ie) ( i(m?2 — p? — ie) (z(m2 —q® - ie))gn (20.69)

so we see that the interaction vertex for the set of Feynman rules in the momentum space
is ie(2m)45 (>  ps).

Let us figure out the sign of the vertex for the set of Feynman rules for reduced Green
functions. The definition of a reduced Green function (9.73) reads

N
Gprpn) = (=¥ @M ( D pi) G (1, o) (20.70)
=1

First, we see that the photon propagator in this set is ]C“‘Q]L;.e:

—iD (k1) (2m) 0 (k1 — ko) = G*(k1, —ka)e, = / dizydi e~ 1z tikez Ap () AV () (20.71)

v v
g* g*

= / dladize AR DI (2 = 2) = (M) — ko) = DR = 5o

k2
Note that the sign is different from the propagator of a massless scalar particle (Eq. (6.43)
with m = 0) because physical photons correspond to g%/ = —05-

Second, from Eqgs. (20.69) and (20.70) we get

g m+ P m— ¢)
k= p,q)en — , ( , 4 ) 20.72
G( P Den e(p+q)2+ze m2—p2—ze%(m2—q2—ze én ( )
Recalling that the Dirac propagator in this set of rules is — ;‘29/ — we see that the fermion-

fermion-photon vertex in the set of Feynman rules for reduced Green functions is e (=
charge of the positron).

20.6 LSZ theorem for QED

To finalize the set of Feynman rules for QED we need the LSZ theorem for matrix elements
of S-matrix. It has the form (up to renormalization Z-factors to be discussed later)
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Figure 22. LSZ theorem for QED

out (D2, 52; Dy, ;8™ 555 g, s g8 S kg, Mgy kST OIAST D py, sus v, st s g g ey A B

m'

= lim lim )121m lim  lim limm /H dzy' @) 1;[ d H () 1:[ dg;(l) Hl dygm) j_[l dz§n)

kik)2—>0 kén)2—>0 pgz —m? pél)2—>m2 qu)Q—VmQ qém)Z kel

g e § _iipgi)xy) _ Zi NONe ZZ NCRC Z.z":p;z)xgz) i z”: L) Zi W)
=1 j=1 = = n=1

n/

l ” - (m) m )x(n) n n n
X Q‘T{Hué p2 3 ( Yd() énwn Yulys ) (m+ Q/Q )wxvx ) T ) H e (n) ( ) k( 12 Ams (Zé ))
m:l
e I m N T A )y 02 50 (k
< TIoem= Ao [T vetat? i) m 7 eobo 07 TL € (1) K724 DH0) - (079
— 1

j=1 k=1

The proof is similar to Sect. 8.2 (see textbook by Bjorken & Drell or Peskin). As in
Yukawa theory, we have @(p, s) for each outgoing electron, u(p, s) for each incoming electron,
v(p, s) for each outgoing positron, and v(p, s) for each incoming positron. In addition, each
incoming and outgoing photon with polarization A brings in the factor e} (k) (convoluted

o
with corresponding Lorentz index from the amplitude (...A*(k)...)).

This LSZ theorem (without Z-factors) is equivalent to Peskin’s mnemonic rule

out (D2, 52; Dy, 83 5™ 555 g, ;S S s kg, Mg kSIS py, sus v, 845 ™ s g, g™ ey, A BTN

= <p2,32;p’2,s’2;...pén),sgn);qg,rg;...qén),r( ). kQ,)\g,...k‘(n ))\ |eXp {ze/d4 D(z A(z)iﬂ(z)}
% [p1y 5104, 81 pU™ 8T s qn s eeg™ U™ e Ay AT AT)

where all the states and operators in the r.h.s. of this formula are in the interaction
representation. The contractions of Dirac ladder operators with fermion fields are presented

— 144 -



in Eq. (17.14)

a ve(z) 2 {az de(2)} = 2 / o 0 (B )™y e ) a ]y = e W s2)

F T s 1 dﬁ ~s1t 7sT1 asity -
¢n(2) aﬁi { 7 Pi } - Z/\/ﬁ S)e zpz S+U77(p7 ) zpzb ]7 Pi } - \/E uﬁ(phsl)?

de(2) bt = {ue(2), 03"} = Z/\/ﬁ Oe(P, 8)e by + g, s)eay ] b = \/ﬁ’ﬁg(qﬁah)
q1

% def - A
b2 2) = brz, / b2 5, s)e P74 as + vy Pty = o, T
79,0 & W) = 3 [ o w0 F B = o @)
(20.74)
and the contractions of photon ladder operators with A* are given by

Do o, def a3k ihzn . etkz -
a%j Auz) S [a%j,A / en ’\2 (e +e™a zT)] = — e (ka)

\/2\14: \/ 2lk2]
. /\A def  » . o A efiklz .
Auz) T =S [Au(2), 0] / aE) (e ®ay +earl) aT] = = ey (k1)

v !k \ 2[F4]

(20.75)

20.7 Set of Feynman rules for QED
Reminder: QED Lagrangian (density)
1 _
L(x) = — ZFWF‘“’ +Y(id —m+eA)Y, (20.76)
Green functions in the momentum space are defined as (cf. Eq. (18.2))

G(p1, s1; -- pgm),sgm);m,?”lb qY”’, (m)'klaA1§--'k(m ),Aﬁm ) %p2782;---pgn),sgm);%,ﬁ;~--Q§n),7“§n);k2,)\2;-«-k‘gn ),AQ” ))

/Hdml de Hdzlk)Hd% H dy? Hdzln xl,...xgm),yl,. ygm)721,---ng”)w%---xén),y%---yén/),zz,...zén”))
X exp{—ingi)xl zZq]) G) sz 2 —i—zZpg (l)—i-zZq m)—i—sz”) ")} (20.77)

i=1

where G(z1, ...xgm), Y1, ...ygm/), 21, ...z%m”),mm _.,x§")7 Yo, _._y§”')7 2, __.zé””)) is a Creen func-

tion in the coordinate space given by Eq. (20.66)

G(afl, ...xgm), Y1, . ygm/), 21, ...z%m/l),mg, ...xgn), Yo, ...yén,), 22, ...zén//) (20.78)
no n' . n'’ X m . m’ R ‘ m/’ . N

= (T{]] ¥ H Dy H AT TT o6 TT A e
=1 m=1 n=1 =1 j=1 k=1

O/ T{ITy i () [Ty rS™) Ty Ar(5™) T2 (o )H] ) T Ar(e)yerel =01y o)
<0’T{ezefd4zwlz 2) }’0>
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Feynman rules for Green functions in QED

—ig®
1 ASAVAVAVAVAVAVAVAU VAN = S S—
1. Photon propagator in Feynman gauge X K tie
2. Dirac fermion propagator = M )
p m-—p-—ie
(Arrow on the fermion line in the direction of the flow of negative charge)
P,=P P,
3. Vertex — ieyu(zn)46(pl_ p,— p3)
P, b,
d*k
4. Integrate over all momenta k. of internal lines I1 J i
1 i (2 T )4

5. Extra factor (—1) for each fermion loop

6. Negative relative sign between two amplitudes obtained by permutation

of identical external lines corresponding to fermions

7. No symmetry factors in QED

— 146 —



The reduced Green function is defined as usual

Gp1,51; 0™ 5 g1, 1 g™ e, A BTN s posar S 8T g, s gS ) R, Mg ST NS

_ (_i)m+m’+m”+n+n’+n”—1(27T)45( Zpgl) + Z qY) + Z kgl) _ Zpg) + Z qél) + Z k.g)) (20.79)

X g(pl,sl;---pgm)asgm);%,ﬁ;---Q§m ), r%m);kl,hl;-..%m )/\Y"’ ) —>P2,52;~'Pgn)7 ng);Q2,7“2;~--qgn ), ré");kz,Az;--.k:é" ))\én ))

Feynman rules for reduced Green functions in QED

g
K Kk 2+ie

1. Photon propagator in Feynman gauge

2. Dirac fermion propagator m +p

P m?—p?-ie

(Arrow on the fermion line in the direction of the flow of negative charge)

P,=PrP,
3. Vertex = ey"
P, P,
d*k
4. Integrate over photon loop momentak  — TI J i
1))t
gt
5. Integrate over fermion loop momenta P, (-1 )IJfI J (Tp)ii- (Extra factor —1 for each fermion loop)
)4

6. Negative relative sign between two amplitudes obtained by permutation

of identical external lines corresponding to fermions

7. No symmetry factors in QED

Matrix element of M-matrix in QED

Matrix element of M-matrix is a reduced amputated Green function on a
mass shell multiplied by:
u(p, s) for each outgoing electron, u(p, s) for each incoming electron, v(p, s)
for each outgoing positron, o(p, s) for each incoming positron, and ef)(k) for each
incoming or outgoing photon.
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Part XX

21 Renormalization in QED

21.1 A problem with UV divergence of Feynman diagrams

A problem: some Feynman diagrams in QED are divergent at large momenta (“UV-
devergent”). Example:

K
L F Y R (52 A WL
m? — p? —ie i m2—(p—k)2—ick?+ielm?—p?—ie
(21.1)
N =)
The expression in braces is a part of so-called “self-energy”
K
a*k dm — 2(p— ¥)

- _¥y — 2 =7 21.2
(v) c / i [m?—(p—k)2—ie(k?+ic) (212)

p—-k

A simple way to calculate (simple) Feynman integrals: Feynman formula

1 1 1
A5 /Od“ (Ao + Ba)y? (213)

where we used convenient notation & = 1 — « (nothing to do with Dirac conjugation!).
Later we will need a more general formula

+b)
do % 1= b 1 ((Z 21.4
/ (Aa + Ba)etb (214)
Using Feynman formula (21.3) we obtain
S(p) = 62/d4k dm + 2(f— p) B e/d4k’ dm + 2(f— P)
P/ = i [m?2—(p— k)2 —ie](—k? —ie) . [m2a— (p— k)2 — k2a — ie]?
_ 62/d4k 4m + 2(F— p) shift k—k-+pa 2/d4 / 4m + 2(f— pa)
i [m?2a— (k—pa)? —plaa —i€? m2a — p2aa — k2 — ie)?
1 4
a*k 1
2 _
= da(dm — 2 21.
c /0 afdm ]504)/ i [mPa—prac — k2 — ie)? (21.5)
How to calculate fﬂm7 Suppose p? < 0, then M? > 0 and
a'k 1 d ko 1
= a’k _ 21.
/ i [M?—k? —ie? / i / (M2 + k2 — k2 — i€]? (21.6)
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For Euclidean integrals

d 00
[t s = T [ 606 (21.7)
I'(5)Jo
SO
. 4 o] 2 o] 2
koZiks / a’k 1 = / d*k, ! _ ! / dk? ke ~ ] / ke pyoo?
i [M2? 4 k2 + k22 [M? + k2)? 1672 )y ¢ (M2 + k2)? 1672 2 k2
(21.8)
where k. = (ki1, ko, ks, k4) is a 4-dimensional vector in the Euclidean space with metric
Gup = Opuw-
If we cut the divergence at some large pyy (“ultraviolet cutoft”), we get
62 1 e ) k‘2 62 1 N2
Y(p) = — [ da (4m — 2pa dk? ¢ = do (4m — 2pa)1 uv.
(v) 16772/0 o (4m ]m)/o ¢ (m? — pPaa + k2)? 16%2/0 o (4m —2pa)In m? — p?aa
(21.9)

The necessity of the cutoff may indicate the existence of some new physics at large momenta.
The best known example is transition from four-fermion weak interaction at low energies
to interaction mediated by W-boson at high energies (my ~ 80GeV).

21.1.1 Example of non-renormalizable theory: four-fermion “V — A” weak in-

teraction

In 50’s weak interactions were described by so-called four-fermion V' — A (= “vector minus

axial-vector”) Lagrangian, a part of which reads

_ Gr
V2

where 7(z) is the neutrino field and G = 1.166 x 107°GeV~2 is a Fermi constant (extra

1 - . .
— is for historical reasons).
5 s fo orica ons)

Lin(z) [P(2)y" (1 = 35)v(@)][P(2)7" (1 = 75)0 (2)] (21.10)

The free neutrino-antineutrino field is described by the Dirac Lagrangian with m = 0
L(z) = v(x)idv(x) (21.11)

which leads to Weyl equations (13.11) and the corresponding decomposition into ladder
operators reads
. d’p g A ipw i
vix) = 2] [v(P)e P az + (e Bﬁ]
. a? o ,
yj(f) = \/%[E(ﬁ)@_zmﬁﬁ +’D(]5')€préz;;]
p
There is no sum over spins since the neutrino has negative helicity so the spinor v(p)
is always left v(p) = 17%1}(]5’) and positive-helicity antineutrino spinor is always right

po=|p|

(21.12)

Po=|p|
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Figure 23. Four-femion scattering. Dashed line denotes neutrino

S(p) = g_(ﬁ)H% The propagator is a massless Dirac propagator and we have ©(p) for
outgoing neutrino, v(p) for incoming neutrino, ¢(p) for outgoing antineutrino, and ¢(p) for
incoming antineutrino.

Let us consider a neutrino-electron scattering in this model. In the leading order in
G the amplitude of v-e elastic scattering in this theory reads

M(p1,815q1 — p1,52;q2) = i;/g[u(m,Sz)’m(l—’Ys)U(m)][U(QQ)’Y“(l—%)u(pl,31)] (21.13)

where ©(q2)(1 — v5) denotes the neutrino spinor and (1 — 75)v(q1) the antineutrino one.
The corresponding cross section is in a good agreement with experiment at low energies of
electrons.

However, let us try to calculate the same cross section in the next order in Gg. The
corresponding “fish” diagram is shown in Fig. 24

9 p,+q,7k d,
A H e

vV . vV

e~ Te~_____. c
g AN

P1 k P2

Figure 24. Four-fermion scattering in the second order in Gp.
and the result is

M(p1, 81591 = p1, 525 G2)
G2 [d'k -
= G [l 5201 =)= 1 =l ol (1 =) P
= [u(p2, s2)7u(1 = 75) e[ (1 — v5)u(p1, $1)]n[0(g2)7" (1 — ¥5)]c[v" (1 — v5)v(q1)]o
» Gy [d'k  Ke (m+ p1+ f— Kleo
2 i —k?2—iem?— (p1+q — k) —ie

)27”(1 —5)v(q1)

(21.14)
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The momentum integral can be calculated gy Feynman’s formula

d4k kf’r] (m+ %1"’ /41— (a d4k k{n(m‘i' ?‘1"‘ /41_ k)(o
/ i —k*—iem?— (p1+aq —k)* —ie / / (m2a— [k — (p1 + q1)0)? — saa — ie) (21.15)
_ / /d“* (K4 afp+ ql])&n(m"‘ [#1+ o= K)o / /d4k Ken Keo
B m2a—k:2 —saa—ze)z m2a— k2 —sda—ie)2

d—4 k2 75 7/)(0 /{73
=—17§n7p /Cfoz/ . ” 5 = ’74 /da/d‘lke ” =
(m?a — k? — saa — i) 0 (m2a + k2 — saa — ie)

_ ’an Yo CU/ / k2 ke - _’ygn('VP)CU/”%deQ _ ’an(’Yp)cauz
6472 (m2a + k2 — sGa —ie)® 64w2  J,.. ¢ 642 UV

Nowadays we know that weak interctions are mediated by W-bosons (and Z-boson)

with myy ~ 80GeV so instead of “fish” diagram of Fig. 24 we have adiagram shown in Fig.
25 where the coupling constant of velV interaction gy is called a “weak coupling constant”.

Figure 25. Four-fermion scattering mediated by W-boson (denoted by curvy line.

The corresponding M-matrix element is

M(p1, 51591 = p1, 525 q2) (21.16)
= [u(p2, 52)7u(1 = 75) e[ (1 — v5)u(p1, 51)]n[0(g2)7* (1 — ¥5)]c [v" (1 — v5)v(q1)]o
gw/d k Key (m+ g1+ fi— K)¢o 1
—k?2 —iem? — (p1 +q1 — k)? —ie (m%,[, — k2 — ie)(m%v —(q1 — q2 + k)2 — ie)

where the integral over loop momenta is now convergent at momenta k% ~ m%V . If we

consider the region of k? < m%v we get the old result
giv / 'k Key  (mt Bt = K)o 1 K2 <miy
. —k?2 —iem? — (p1+ @ — k)% —ie (mdy, — k2 —ie)(mdy, — (1 — q2 + k)% — ie)

~ @'k ey (m+ it - Kl
T omy) 0 —k2—iem? — (p1+q — k)% —ie

(21.17)

2 2 2
multiplied by 4fn VL{W instead of GTW so we can estimate that G, ~ TiTV‘:, (the correct formula

2
3 2 _ 9w
is G = .
F 8m4“, )
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The four-fermion model with Lagrangian (21.10) is an example of so-called “non-
renormalizable” theories which are incomplete at large momenta. The indication of this
incompleteness is the explicit dependence of physical cross sections on the UV cutoff p like
in the above example.

The situation in QED (and other so-called “renormalizable” theories) is more subtle:
one still needs a UV cutoff uyy for calculation of the individual Feynman diagrams but the
cross sections do not depend explicitly on p = pyyv.

How can it be?

21.1.2 Renormalization program in QED

QCD Lagrangian has the form

1
4

The parameters in the Lagrangian are called the “bare mass” mgy and “bare charge” eg. In

Laep(z) = Y(@)[i @ —mo+eo Al@)(z) —  FuF" (21.18)

principle, there is no reason that they should be equal to “physical mass” of the electron
m and ‘physical charge” e (defined as a coefficient in front of Coulomb potential between
charges V(r) = %)

A priori we do not know the relation between mg and m and between ey and e. We've
demonstrated that in the leading order in perturbation theory m = mg and e = ey, but
starting from the next-to-leading order this is no longer true (we have see it for the physical
mass in the KG model, see Eq. (10.18)). In general, m and e can be expressed as an

(infinite) series in coupling constant (= charge e)

m = mo(1 + aiel + agef + ...)
e = eo(1+bied +boep +...) (21.19)

(It is easy to see that the parameter of the expansion is eg rathe than egp). Now, suppose we
calculated a certain cross section using Feynman diagrams following from the Lagrangian
(21.18). Naturally, we will get a cross section as a perturbative series in eg (and mg will be

the mass in the corresponding propagators) 25:

o = eé(a(()o) + egaio) + eégéo) +...) (21.20)
(0)

The coeflicients o, in the expansion (21.21) are the functions of scattering momenta as
well as eg, mo, and the ultraviolet cutoff pyv 27, (It may be demonstrated that in QED
the dependence of diagrams on the UV cutoff uyy is no stronger than logarithmical with a
typical term being ~ ef'(In puZy,)™ with m > n.)

Renormalizability in QED:

If one expresses the cross section in terms of e and m rather than eg and mg

o = el(og+ %oy +etog + ...), (21.21)

26Typically, a cross section starts from eg.

2T The renormalization is not specific to the theories with UV divergencies. Even for a theory where all
Feynman diagrams are finite there may be (finite) difference between parameters of the Lagrangian and
physical masses and charges.

- 152 —



the coefficients ¢; are finite functions of scattering momenta and physical mass m.
Summary: renormalization program in QED

e Write don Lagrangian in terms of bare mass and bare coupling constant
1 -
L= — ZFWF“” + Y @d—mo+eg A

e Calculate Feynman diagrams imposing a UV cutofff pyy for (logarithmically) diver-
gent loop momentum integrals.

e Calculate physical mass m in terms of bare Lagrangian parameters myg, eg

m = mo(1+ ajel + aged + ...) (21.22)

e To relate ey to the physical charge e, calculate the non-relativistic limit of Coulomb
exchange. In this limit the result for Coulomb potential between two electrons will
be

eg 1 b 2 b 2
Vv = — —
(r) 4W( + breg + baeg + ...)

By definition, the coefficient in front of fﬁ is (the square of) the physical charge of

the electron )
e
¢ = — (L bief +bacg + .. (21.23)

2
The coefficients a; and b; are functions of In PE—;’
0

e Inverse equations (21.22) and (21.23):

mo = m(l+cre? + et 4 ..)
eo = e(1+die? +doet +..) (21.24)
1

where the coefficients ¢;, d; are functions of In el

e Get rid of mg in favor of m and rewrite Feynman diagrams as a series in physical
charge e. The resulting expressions for cross sections will not depend on uyy =

perturbative series for cross sections will be finite.

The necessity of the cutoff may indicate our lack of understanding of physics at large
momenta, but the information about this physics at large momenta (like masses of in-
teraction mediators) is screened by the property of renormalizability (unlike the non-
renormalizable theories such as four-fermion model where this information was as explicit

g5 V2

2
8myy,

as Gp =
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22 Renormalization program in QED at the one-loop level

22.1 LSZ theorem and physical mass

As we saw in Sect. 10.3, technically it is more convenient to calculate Feynman diagrams
in terms of ey an physical mass m (rather than in terms of ey and mg). Similarly to the
scalar theory , we rewrite QED Lagrangian as follows

Lorp = — %FWF’“’ + (P —mo+e A = — %FWF’”' + (i P — m)Y + Smapy) + egp A)ip
(where dm = m — myg) so the first two terms will form “new” Ly and the last two terms
“new” Ling:
»CQED = Lo+ Lint (22.1)
Lo = — B + (i §—m), Lo = Smiv + eof Ay

The Dirac propagator for a new Ly is

4
Sp(z—y) = /dL,Me_ip(x_y where m is a physical mass (22.2)
i m?—p®—ie —_—
and we have “old” Dirac-Dirac-photon vertex eg7y, and a new Dirac-Dirac vertex with con-
stant 0m. The “mass counterterm” dm is can be represented as a series in coupling constant
i
om = m(cied + caeg + ...) (22.3)

where the coefficients ¢1, co etc. are fixed by the requirement that the pole of the exact

Dirac propagator G(p) remains at p? = m?.

Gp) = i / 0t P QT () ()} 10) = i / a7 0T (e (2)51 (9) 4 B} |0 ommected

(22.4)
= —— 4+ ﬁ\'\/\/‘/i + ——X——
+ S\N\/‘E X + * S\N\/‘E

O
O
O
O
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where the sum of the one-particle irreducible (1PI) diagrams

- S S ﬁ%@?

is called (minus) self-energy —(p). Let us calculate it in the leading order in 3

4 m _
X(p) = eo/dik[ 2_(;_;)22(% ieﬁ)kz—i—ie) + O(e) (22.5)

From Eq. (21.9) we know that this integral is logarithmically divergent at large k. However,
formula (21.9) was approximate (In uZy, + const?) and we need the rigorous way to cut off
the integrals over large momenta.

Rigorous definition of regularized Feynman diagrams: dimensional regularization and
MS (“minimal subtraction”) scheme

Part XXI

22.2 Dimensional regularization of loop integrals in Feynman diagrams

22.2.1 Step 1: calculation of Feynman integrals in arbitrary dimension of
space-time

Let us start with the discussion of the integration over n-dimensional Euclidean space and

consider the integral
[ (22.6)

- up to some constant C' it is evident from dimensional considerations (this constant defines
the surface “area” of unit sphere in n dimensions). To find this constant, we should go to
spherical polar coordinates in d dimensions. We will need only one mathematical formula
for the element of volume in n-dimensional space

00 T T T 27
/dnp = / p"ldp/ sin" 2 Hn_gdﬁn_g/ sin™ 3 Gn_gdﬁn_g..../ sin 01d01/ do
0 0 0 0 0

(22.7)

where 01, ...0,,_5 are (n-2) polar angles and ¢ is an azimuthal angle. If the integrand depends
only on p? the integrals over angles can be easily performed so we obtain

2

/dnp fp*) = /0 dp pn_lf(pQ)/O sin" 9n2d9n2/0 sin" 3 9n3d9n3--~-/0 sin 01d6; ; de f(p*)

or/2 [ e
= F(n/2)/0 dp p lf(pQ) (22.8)

where 2 (n // % is a surface area of unit sphere in the space of n dimensions. (The quick check
gives 27 for n=2 and 47 for n=3).
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The integral [d ¢p in Minkowski space is defined as a product of integration over pg
and integration over (d — 1)-dimensional Euclidean space of vectors p:

Je

/dpo/ dd 1

(22.9)

Let us calculate now the Feynman integral for ¥(p) in arbitrary number of dimensions

B d
s = [

’Ya[m + (‘75—

Bl Lo

7

—(p—k)?

— i€](k? + ie)

As a first step, we re-derive the formula (21.5)

dm + (d —2)(k— p)

f]() = eo/du.ld[

—(p— k)% —i€](—k? — ie)
dm + (d — 2)(J— ¥)

dk
eo/ da/ 2

a— (k- pa)? — pPaa — ie)?

(ed) (22.10)

dm + (d = 2)(}— §)

- dfjonf 5

ma—

(p— k)2a — k2a — ie)?
k dm+ (d—2)(}— pa)

shift k—ktpar o / / a*

[m2a — p?aa — k? — ie]?

eo/da(dm (d—2)p /dd lk/dko
271 [m2a — paa+k2

where we used frmulas vy, = &, = d and v,7.7" = (2 — d)7a-

k3 — ie]?

Let us assume first that p? < 0, then the poles in py complex plane are located as
shown in Fig. 26 and we can turn the contour of integration on 90° counterclockwise so

(ky)

Figure 26. Wick’s rotation: [dko — i dkg

(22.11)

it will run along the imaginary axis (this is sometimes called Wick’s rotation to Euclidean

space). Introducing new variable ko = iky we get

dky —(d-2)pa
= e da/dd lkr/
0/ 27 [m2a — p2aa + k2 + k2 — i€]?

(22.12)

Now the d — 1-dimensional Euclidean space of k and one additional Euclidean coordinate
kq form the Euclidean space of d-dimensional vectors k = (E, kq) so the integral (22.12) can
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be rewritten as

(22.13)

r@2-3)

1
- 1
D 5[ da(dm — (d—2)pa) | d%k
) = i [ datim — (0= 2)pa) [ ¢ g
1 T(d/2) [ (kz)g_1 1
2 ~ 2 2 _
= da(dm — (d — 2 dk = da(dm — (d — 2
et [ datam — (- 2p) 0 [t o e = [ datim — (a - 2)p)
where we've used Eq. (22.12) and the integral
o 1 () L'(a)l'(b—a)
dt t*7! = 22.14
/0 (t+ B)® Bb—a ( )
It can be demonstrated (by analytic continuation) that at arbitrary p? the result for the
integral (22.13) has the form
~ ! ak 1
S(p) = €§| da(dm—(d—2)pa 22.1
) = e | dotam—(@-2p0) [T (2219)
! re-4
= eg/ da(dm — (d — 2)pa) (2-3) y
0 (m2a — pao —i€)? "2
It should be noted that formally the integral (22.12) id defined only for d = 1,2 and 3,
but the r.h.s of Eq. (22.15) gives us an opportunity to define this integral at arbitrary (ral
or complex) d by analytic continuation. It is easy to see that at d = 4 the r.h.s. of Eq.
(22.15) has a simple pole = (recall that I'(e) = 1 —C 4 O(e) where C' ~ 0.577 is an
Euler constant).
22.2.2 Step 2: definition of UV cutoff uyvy
We define
> p) = 5*72p) (22.16)
and expand X%(p) as a function of d around the pole at d = 4.
d INGEEY 1 d
re--) = 22 = - 2— - = —1)(1) = 0.577... :
( 2) )4 ;1 C+0( 2), C=—y(1) =0.577... (22.17)
S0
nA—d(4)2— 4 d A2
PAmTE e, T oy o)
(m2a — plaa — i€)> 2 2 meo — peod — i€ 2
and we get
& rz-4)
Yi(p) = 0 ~4—‘i/dadm— d —2)pa 2 22.19
W) = '™ | datdm = @=2)p0) — =2t (22.19)
2 1 ~2
ey [Adm—p o [” /4w B d
62 { 2_% 2m+ g + /0 da(4dm 275&)(111 2o — pPac —ic C + 0(2 2))}
2 1 2
ol | (I ey )]
-2 da(dm — 2 | 02—
1672 L2 — 4 m Pt 0 aldm —2ja) nm2a—p2a@—ie+ ( 2)

~2

where 2 = £¢7% = UV cutoff in the “MS scheme”.

7y
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22.2.3 Step 3: minimal subtraction scheme

We define the “regularized self-energy” in the leading order as

2 2

1
re, — 1 d _ _ € — 1
Y% (p) = C1;_1}1}1 (%(p) — pole at d = 4) = 16,2 [/0 do (4m—2pa) In mZ — plan — i€—2m+ ]é]
(22.20)
In general,
5% (p) = mZ1(p?)— #E2(p”) (22.21)
where X1%5(p) = >o0lo € fn(fL—z, Z‘—;) and f,, are scalar logarithmical functions.
Let us return now to the calculation of exact Dirac propagator (22.4)
1 1 1 1 1 1 1 1
d d d
g%p) = — p— (p)— i Ul e e Ll (p)— p
1 1 1 1 1 1 1 1 1
Y (p om + > (p > (p + om om
Ty ATy ATy T R AT A Ay
1
22.22
m— p+ X (p) — om ( )
- 1
Gs(p) = (22.23)

m— p+ X8(p) — om
Now we must find dm from the condition that G*&(p) has a pole at p? = m? (at the physical

mass m). Near p? ~ m? The exact propagator G*&(p) (22.23) can be rewritten as

greg( ) _ 1 _ 1
P T es(p) —om  ml+ St ()]— P+ SnE(p?)] — om
ml + X1%(p?)] — dm+ p[1 + 255 (p?)]

(m[1 + S5 (p2)] — am)® — p[1 + S5 (p2)]2

(22.24)

and it has a pole at p?> = m? only if the denominator vanishes at p?> = m?:

(m[1+ ¥ (m?)] — (5m)2 = m?[1 + 358 (M) = m[l+Z1B(m?)] —dm = m[l + 258(m?)]
= om = m[S®(m?) — 58 (m?)] (22.25)

Note that since ¥ (p?) and ¥o(p?) depend on dm? due to diagrams like 4& , the
equation (22.25) should be solved anew in each order in perturbation theory.
In the lowest order we get

2 1 2 2

SE(p?) = | da o 4
e an? Jo “ nm2a—p264a—ie 82
BE0) = g [ daal . — 2 22.26
2 ) 872 Jo “a nm2a—p2@a—ie 1672 ( )
SO
2 1 2 2 9
o reg, 2 reg, 2 - =) ik 1 B €p 3 7
dm = m[L1%¥(m?) — 258 (m?)] = m8772[/0 do (l—l—a)lanaQ—ﬂ = m@[ilnﬁ—’_ﬂ
(22.27)
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Thus, we have arranged that the exact propagator has a pole at p?> = m?. As we know
from the KG theory, the residue at this pole is so-called Z-factor which enters the LSZ

theorem (see the discussion in Sect 10.3). Let us find this factor (called Zs for historical

reasons) in the leading order in perturbation theory. Near p? = m?

S (p?) = X1B(m®) + (p° — mP) X% (p”) + O@p? — m?)? (22.28)

(2

so the numerator in the Eq. (22.24) behaves as
mll+ DY) — dmet P14+ S50 = (mt )1+ X5 m?)] + O —m?)(22.29)

and the denominator
oz
Op?

2

(ml1 + S5(0%)] — om)? — p?[1 + A = — m?){2m (1 + S ()] - om)
ox5®
Op?

p2=m?2

= [1+35%(m?)]? — 2m?[1 + 55 (m?)]

b+ 0@ - m?)?

p2=m2

= (m*—pH)[1+ Ereg(mQ)]{l + 258 (m?) — 27712(82?g — azgeg) } (22.30)
= p 2 2 op? op? / 1p2=m?2 ’
Thus, the exact propagator near the pole behaves as
2 m2
Gp) " 7L P const (22.31)

m2 — p? — i€

with the residue determined by Eq. (22.30)

82reg 82reg
-1 _ reg/ 2\ o 2 1. 02y
Zy' = 14 35%(m?%) —2m*( op op )p2=m2 (22.32)
In the leading order in perturbation theory we get from Eq. (22.26)
2 1 2 1
_ €o _ I 1 1 4
Zy = —W[/Odaalnm2a2—2—2/0da(a—a)} + Of(ep)
2 12 o2 2 1 1
= 1-—% It -0 O/d - O(ed 22.33
1672 " m?  8n2 +47r2 0 “ (a a) + Ole) ( )

Note that the integral in the r.h.s. of this equation is “infrared divergent” as o — 0.
To calculate it one needs to introduce a small photon mass A2 and then one gets ln’f—;
instead of the IR divergence. This is a typical situation in theories with massless particles:
the emission of a massless particle near the the mass shell is “infrared divergent” at small
momenta so to regulate it one needs an additional “IR cutoff” like a small photon mass.
Fortunately, in our case this IR divergence cancels with the corresponding term in Z; due
to Ward identity so the physical electric charge is “infrared safe”.
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22.3 LSZ for electron scattering

Similarly to the scalar case, Zs is the coefficient of proportionality between 1/3 and @in,outi
. _ 1, . 1,
D) T Z3n(x),  (2) T Z3 ou (@) (22.34)
(the proof just repeats the derivation of Eq. (10.31)). The LSZ theorem (20.53) takes the

form

. o VS 1o
lim [ dzid*a)dizydtal, e P17 T IPITIHIP2T2IPy T
pZ,—m?

(QUT{te (p2, 52)(m— Pa)enthn(w2)tc (P, 5h) (M~ Ph)cotho ()

AR AR .
out<p2732ap2>82|p13517p1331>in =

1
(VZ2)'

X

X (1) (m— B1)apttp(p1, 510 (1) (m— B )it (B, 57) 1)
1

_ lim g (pa, 52)(m— #o)entic(ph, s)(m— ¥s)co

(V) viom

X (m— ]751),\pup(p1,1“1)(m— %)wxux(p/l)Sll)Gncr)\w(Pl,Pa - P2,P/2) (22.35)

where

Gna)\w(plapll — p?ap/2) (2236)
(O T {4 () ()0 (1) (] ) €/ 9 Tt (D} ]0))
(0| T{eifdt Line()}|0)

= sum of all Feynman diagrams with 4 electron tails (22.37)

. VA s
_ /d41’1d41‘/1d4$2d4$/2 e ip121—ip| x| +ip2 T2 +ipy Ty

Similarly to the scalar case (see Eq. (10.32) we can represent the sum of these diagrams as

shown in Fig. 27
where G*™P is a sum of one-particle irreducible diagrams with four electron tails and G(p)

is an exact Dirac propagator (22.4). We get
Groxw(P1: 91 = p2,95) = Gy (02)Go0r (2)G s (P1, D1 = D2, D3)Gx A (P1) G (1)
and therefore
lim (m— pa)en(m— #)coGnorw(P1, 1 = p2, 1) (M= P1)rp(m— #1)uy
— Jim [(m— $)G)] o [(m— BIGEN]  [G00)m— 1)), [0 = )] G (1 = ps1h)

(22.38)

4
= QGZ?:)I;(plapll _>p27p/2)

p;=m?
where we used Eq. (22.31). The matrix element of S-matrix takes the form

4_ _
S(p1, 51391, 81 = P2, 52195, 85) = (V/ Z2) (p2, s2)eu(ph, 5)e Ggrmyy (1, P — D2, ) o (PLy 51ty (P2 51)
(22.39)
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dm Sm / \

Figure 27. Electron-electron scattering. Double line denotes exact propagator G(p)

or, in terms of M-matrix

M(pr, 51391, 81 = P2, 52,0, 83) = Z3(Da, 52)0(Dh, 83)e Gegnpy (D101 — D2, ) o (P18 )y (P 51)
’ (22.40)

where

P, g
Pk

- diagrams with exchange py <> p} in the final state.

The last three diagrams on this figure are still divergent so we need to take care of
these UV divergencies. Let us start with the last diagram displaying the e3 correction to
the photon propagator.

22.4 Photon propagator and Z3

The diagrams for photon propagator are shown in Fig. 28.
Similarly to the Dirac propagator, let us group the diagrams in 1PI blocks as shown below:

Dw/(q) = AMANNANY MAA/\< |_| /;vv\/\/\/w + '\/\/\/\/\4\/|‘_| \\ :vv\/\/\m
N

where
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Figure 28. Feynman diagrams for exact photon propagator D,,, (p)

A e e

is the photon self-energy called “polarization operator” (for a reason discussed in the next

lecture).
In the leading order in 6(2) the polarization operator is given by the diagram

p

Loy _ _ e [ w{y(mt Py (mt #- o)
i(a) = i B 0/ i (m2—p?—ie)lm?— (p— q)* — i€
a-p

In dimensional regularization 2

Loy _ g [@%  tr{y*(mt P (mt P )
IL(a) = — e(2)N4 / i (m2—p?—ie)[m? — (p—q)? — i€
a2 d/ddp Mg — Pu(q = P)v — (¢ — D)y + g - (4 —p)
' (m? — p* —i€e)[m? — (p — q)* — ie]

dp 1
= _42~4_d/ 2 v —Pl)v — Pv\q — vP - - /d
epfi = [m°9u = u(a¢ = P)v = Po(a = D)y + Gup - (4 - 1)) O ) qa ) — Pan —id

shift poptga 462ﬁ4d/ddp/1dangw — (P4 a)ulqd —p)v — (P + q0)u (9% — P)p + G (P + q) - (q& — p)
0 ' [m? — p? — Paa — ie)?

2

linear terms drop 4 2~ 4 d/d— p/ m + q oo —p )gHV + 2pﬂp1’ — QdO‘QMQV (22 41)
[m? — p? — Paa — ie)? .

Using formulas

d r 1 TI(a-4
/dL'p D) _ (a-3) (22.42)
i (M?—p? —ie) (4m)% (M2 — i) %
dp I(a) _ gyy/d‘d P  _  gw 1 Tl—5-1)
P PPar = Zigr T d ) T ==t T d (4m)s (M2 — e

281n principle, the dimension of Dirac y-matrix is 2% but this is an overall factor which we can keep equal

to 4 in practical calculations.
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we obtain

IL;;2 ()
~d—d ol r'(2—¢4 I'(1—9g.m d
= _463M d/ do { ( 2) 5 d[(m2+q2070<)9uv_20_‘0‘qu%]+ ( 2) . ] d(*_l)}
(4m)2 Jo (m? — g?ac —i€)" "2 (m? — 2aa —ie)' 72 "2
~d—d ol '(o—¢d (m? — ¢*aa)l(2 — ¢
= — 463“/ do { ( 2). o_d [(m® + ¢*aa) g — 2004,0] = gy ( 2 zd)
(4m)2 Jo (m? — ¢?aa —ie)*" 2 (m? — g*aa —ie)* 2
pi-d ol aal'(2 — 4
= 8(quav — ¢ eR / dov 2-5) —y (22.43)
(4m)2 Jo (m? — ¢*aa — ie)* 2
The regularized polarization operator (in the MS scheme) is obtained by subtraction of the
pole at d =4
~4—d pl ~ d 2 2
o aaf(? — i) @0 q'u,ql/ —q g,UJ/
iE(a) = 8(4uts — 49w )ed /da -
W( ) (quav Guv) 0(471’)% 0 (m? — ¢?aa — Z.E)Q_g 1972 _ %

2 1 2
_ 2 €0 _ W
= (quy —q g;w)Qﬂ_g/O do aarln m2 — aa — ie (22.44)

SO

Hiteug(q) = (quqv — QQQW)Hreg(q2)

reg( 2 6% ! = M2 4
18 (q*) = 27, da aaln R — + O(ep) (22.45)

The “transverse” structure of polarization operator
W = (g — gua®)(g?) (22.46)

is actually due to the gauge invariance of QED.

Proof
1. Proof #1: from Ward identity ¢*I1,,(q) = 0 = IL(q) ~ (quq — qu2).
2. Proof # 2: from conservation of current 9*j,(z) = 0:

Define
fLule) = 1 [t QT ()50} (22.47)
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P = [ (GLNQTGTONR) = ~ [d QT o))
= [t e 5 [0(a0) (250050 (0)19) + 0(-20) (DL (0 V]

= — [t e [oGe0) QLo 0)19) + 0(—20) 2L 0o(a)|9)]

= [t e o) (@) )19 + 6(—0) @, 0)i0) )]

= [da@iwd @), b DO ~ [t e [Ban) (9105, (2)5,0)12) + (o) (i 0)0"], (2 1)
= [ Q@) SO 10D E) ~ HOAGD). D) 0@

o

= — QRO (0) - PO (D)Q) = 0 (22.48)

and therefore

Mw(q) = (quav — ¢°9u)(q?) (22.49)

It is easy to see that

M,,(q) =

@@@@@

= ’V\'{ \, + < \\M + ’\/\4\ hanf / \ +
N4 \ / N4 \ AN 7/

" T

where we used the formula

(qute — P9ue) (@ — 65) = — P(quay — P9uw) (22.50)

Photon propagator

Do) = e+ wvw % e
A \ g

g g N g
= W+ TR(g” - PP = T+ ("¢~ ¢TI

q? q? q q?
2 2
_ G w2 oqun @) Y auqv  11(q%)
_ n _ _ 22.51
q? @'a"—a'g )1 +11(q?) Pl +1(¢%)] ¢t 1+11(¢?) ( )
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Due to Ward identity, the longitudinal part (second term in the r.h.s.) does not contribute
to any of the S-matrix elements

=

we can use the exact photon propagator in the form

Guv
Do (q) = —— I 92.52
wl® = BT (22.52)
As¢> =0
2 1
p,, =30 I - 99.53
w7 q?> 1+11(0) ( )

NB: D, (q) has a pole at ¢*> = 0 = photon remains massless in all orders in perturbation
theory. It is a consequence of gauge invariance.
After regularization

>0 Z3
Dreg — guyqﬁ
1 62 MQ
Zyg = ——— = 1 —1I"8(0) = 1 — —9_In—
57 1+ 11re(0) ©) 1272 m?
2 2
_ €0 H 4
= Z3 = 1- 1271_2 lnﬁ + O(Co) (2254)

22.5 LSZ for Compton scattering

Similarly to the case of KG and Dirac fields (see Eqs. (10.31) and (22.34)) , v/Z3 is the
coefficient of proportionality between Heisenberg operators and in-and out- operators

Ai(w) 5% Z2 Ai(2),  Al(w) "2 23 Al () (22.55)

The LSZ formula (20.73) for Compton scattering (with Z-factors taken into account) has
the form

out (P2, 525 k2, A2|p1, 515 k1, A1)in
= lim /{72]{‘2 >\2 (EQ)@AI (El)/d4$1d4y1d4:1:2d4y2 e—ipl.rl—ik121+ip2$2+ik‘222
1%

p2—m?2,k2—0

(22.56)

X T QT {iig (p2, 52) (m— Pa)enthy(w3) A7 (22)hx (1) (m— P1)apttp(p1, 51) A¥ (21) }|O)
1 . _ v
= 77 p?%ggl’ﬂk?_}o Kksen? (ka)ept (k1)te (p2, s2) (m— Pa)en(m— B1)rpttp(p1, 1) Glyx (p1, k1 — p2, k2)
where
GZK(pl, ki — P2, kg) (22.57)

(O T{ahy () n (1) A¥ (29) AW (21 )i 4t Lt (D)} 0)

_ /d4$1d421d4$2d422 e—ip11‘1—ik‘1 z1+ip2xatikazo L
(O[T {e /4 LD} 0)

= sum of all Feynman diagrams with two electron and two photon tails (22.58)

- 165 —



Similarly to the case of electron scattering (see Fig. 27), one can sum up self-energy

insertions and write the Compton amplitude as a product of four exact propagators and
the four-particle 1PI Green function:

- \
s .

Figure 29. Compton scattering. Thick wavy line denotes the exact photon propagator D, (p) and
double line the exact Dirac propagator G(p)

o
=

Here G®"P is a sum of one-particle irreducible diagrams with two electron and two
photon tails and D(p) is an exact photon propagator (22.4). We get

Gﬁi(pl, ki — pa, ko) = le(kz)pwl(kl)gnn' (PZ)(gamp)ZIK/ (p1, P71 — P2, P5)Gn(P1)
and therefore

lim E2k2 (m— ﬁZ)EnGZK(Pla k1 — p2, k2)(m— p1)xp

p2—m?2,k2—0

lim k%DW/(kﬂk%DVu'(kz)[(m— Ifz)g(m)]{n, [g(pl)(m— ]51)} (Gamp) "y (pl,p1 — D2, Ph)

p?—m? k?—0

= Z3Z3(G™)) (p1, k1 — pa, ko) (22.59)

p?=m? k?=0
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where we used Eqgs. (22.31) and (23.27). The matrix element of S-matrix (22.56) takes the
form

S(p1, 513 k1, A = P2, 525k, Aa) = ZoZgey! (kn)e)? (ko) i(pa, 52)e (G )y (p1, ki — pa, k) uy(p1, 51)

p?:mQ,k?ZO
(22.60)
or equivalently (cf. Eq. (22.64))

M(p1, 815D, 81 = P2, 52i 95, 85) = Z2Z3u(p2, 52)cu(ph, 85)e'Gegrpy (D1, P — P2,15) L Un(P1, 51) Wy (PY, 51)

(22.61)

2__
p;=m

where

gmr = HWWWM

+ diagrams with exchange of incoming and outgoing photons.

22.6 Physical charge

It is natural to define physical charge of the electron as the coefficient in in Coulomb

potential

62

v = — 22.62
() = = (2262)
at large distances r — oo (which corresponds to the limit ¢ — 0 in the Fourier transform
of Coulomb potential V() = Zé)

The set of non-relativistic diagrams for electron-electron scattering is given in Fig. 30

: + : : + ,
: : : T P hs
-+ — ‘ é é
Coulomb exchange Second iteration Third iteration
in the leading order of Coulomb exchange of Coulomb exchange

Figure 30. Non-relativistic diagrams for ee scattering. Dashed line denotes Coulomb potential
(22.62)

e2

= 4m?5g, g, dsys, =  Fourier transform of the Coulomb potential (22.62)

2
(22.63)
To express this physical charge in terms of the parameters in the Lagrangian we should

Here

consider the electron-electron scattering in QED), take the non-relativistic limit p; < m and
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the limit ¢ — 0 to get the large-distance behavior of Coulomb potential (in the c.m. frame

q= (O,CD)

The matrix element of transition matrix (22.64) has the form

M(pr, 51501, 81 = P2, 52, P, 85) = Z3U(pa, $2)eU(Ph, 55)erGeenmy (P15 D1 — P2, Ph) o (P 51 )ty (P 51)

Z (22.64)
where in the non-relativistic limit

-1 T Lo X
\///—>—///

S

Coulomb exchange Next-to—-leading order
in the leading order corrections to Coulomb exchange

Second iteration Small in the NR limit
of Coulomb exchange

- diagrams with exchange p, < p}, in the final state.

In § — 0 limit the sum of the corrections to Coulomb exchange gives free propagator
multiplied by Zs:

D, 2 A
+ é + % + ... = ’y“uq;q)’)/y q_—>>0 ’YugMQQ 3’YV (22.65)

and therefore
A P

Second iteration ,
Ggame Z3 * * * of Coulomb exchange ~ ~ Po<>P,
PP, (22.66)

22.6.1 The exact QED vertex and 7

Definition:
A (p1,p2) =

(22.67)
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la=g-p,

= sum of all 3-point 1PI diagrams without *.
Property (another Ward identity)
0

AM(P,P) = _c‘)TJM

Let us prove it in the lead[i(ng order in perturbation theory.

S(p) (22.68)

A (py, pa) = _ . /@‘k7 m+ pi— ¥ ™t po— K %ﬁ
’ P, P, 0 & "“m2—(p1 —k)2—ie "m2— (py— k)2 —ie " k2
— — (22.69)
_p2
dk m+ p— K m+ p— K g°h
A = ¢f o 22.70
= M(p.p) 60/ i m2—(p—k:)2—ieﬂyum2—(p—k)2—i6’mk2+ie ( )
On the other hand
) ) dk m+ p— K g’
Yy = 2 . 22.71
Opy (p) 8pueo/ ) mz—(p—k)z—i675k2+ie ( )
ak Vu m+ p— K g*?
2(p—k
60/ ;e [ 2—(p-— k:)2—iejL (» )“[mQ—(p—k)Q—ie]2]76k2+ie
dk ’Yu(m —(p—k)*) +2(p - k)u(m+ p— k) g’
= r.h.s. of Eq. (22.
60/ i e 2 — (p — k)2 — ie]? W s of Bq. (22.70)
d p-k _ p-k Xﬁ p-k
Graphically d > - — s —
Pr
H 1 p-k S p-k
— q _ o

Using this property, the Ward identity (22.68) can be easily proved in an arbitrary
order in perturbation theory.
For completeness, let us present the explicit form of A(p,p) in the leading order

k.
AE(p,p) = § By = (22.72)
DS e s
1 2 2 1 _ _
= o[ [ daar & |- & /d aa(4m — 2pa) ,_d
8%27“/0 aanwﬁa—;ﬂ@a—ie 8772pu 0 am2a—p2a@—i6 + O( 2)
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u(p,

22.6.2 Physical electric charge

From Eq. (22.79) we see that in the limit ¢ — 0 we need the contribution of the QED
vertex I',(p1,p1). The QED vertex function is defined as follows:

p
I'y(p1,p2) = >— 2 = sum of all 3 — point 1PI diagrams = ~,+A,(p1,p2)
(22.73)

S p1 _p
The corresponding term in the M-matrix (22.64) at ¢ — 0 is proportional to

%ﬂ(pl»@)ru(l’lapl)u(ma s1)u(ph, S'Q)W“U(plv81)+q12ﬂ(291a52)%(291,291)“(2917Sl)ﬂ(pﬁvsé)F“U(phSl)
(22.74)
From “Ward identity #2” (22.68) we get
re re 9 e
L) = v+ A20p) = W — aTwE ¢(p) (22.75)
) 0 creg 9

= Yu — W[mzieg(pZ)_ Iﬁjgeg(p2)] _ ’)’M[l—i-deg(pz)] _2pﬂ[m87p221 (p2) ﬂainEreg( )]

and therefore

TR pulp.s) = 1+ 5500 o, u(p.s) ~ 200, r) m S ST~ 5 550 (.o
L S50 o, (. 5) ~ 2mp [ 5 S%0) — S50ty o

20,1+ S 02))0rs — i, [ SETHG) - 5 0o

2pudos ([14+ S5 — 4m? [aapzzieg@%—a‘;zzeg(p%]) = sy’ (22.76)

where we used Eq. (22.31) and normalization of spinors (25.22).
Historically, the coefficient of proportionality between the exact vertex I';, on the mass

shell and bare vertex v, was called Z;° ! so we have proved that

2_,,2

u(p, 8" \UyE(p, p)ulp,s) =" Z7 'ulp, 8" )yuu(p, s) (22.77)

and therefore we’ve got the result
71 = Zy (22.78)

which is also called “Ward identity” 2.

Now we are in a position to assemble the final one-loop result for the Coulomb potential.
The matrix element of M-matrix in the non-relativistic case is given by Eq. (22.74). In
the limit g =p; —p2 — 0

29We have obtained this result keeping in mind the leading-order diagrams in Eq. (22.79) but the
derivation itself is valid in all orders in perturbation theory.
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Second iteration ,
of Coulomb exchange PRl

(22.79)

P, , =P
P, p, =P -1
_ -1 1 2 1
Since at ¢> — 0 D %\—/“zp D - (Z]_ -1) ? and ﬁ: - (Zl -1) —i’-
1 271

the equation (22.79) takes the form

G = 7, %+ g -

7,772 Second iteration .
3“1 of Coulomb exchange - Py,

(22.80)

Thus, the matrix element of M-matrix of electron-electron scattering in the nonrela-

G (p1,py = p1 — ¢, Py +q) =

tivistic limit and at ¢ — 0 takes the form

L
/ / / / -
M(p1, s1;P1, 81 — D2, 52 D3, 53) = 222 2,7, 2 % lq + Iterations of Coulomb exchange - p, <> p,
B, =R+

_9_ _ € . .
= 23737, 2%])%82)%@6@1,81)“(29’2,5'2)7“16(19’1,8’1)(1% — (p2 ¢ ph) + iterations
2
€
= _4m2qjgzgzgzl—2 — (74 p1 —ph) + iterations (22.81)

Comparing this to the non-relativistic expression for Coulomb potential (22.63) we see that
the physical charge of the electron is expressed in terms of the parameters of the Lagrangian
as

e = 73737722 = Zsed (22.82)

where we used “Ward identity # 37 Z; = Zs, see Eq. (22.78).
In the leading order in perturbation theory Zs is given by Eq. (23.27) so

2 2

e = Zzef = eg(1— 1;3r2 In %) + 0(ep) (22.83)
If we now express €3 in terms of e?
2 2 § I 4
eg = e (1+ 52 In W) + O(e) (22.84)

we will discover that the dependence on the UV cutoff p disappears from physical cross
sections. Let us illustrate that on the example of Compton scattering.
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22.6.3 Compton scattering revisited

We rewrite the M-matrix for Compton scattering

M(p1, 815D, 81 = P2, 52i D5, 85) = Z2Z3u(p2, 52)cu(ph, 85)e'Gegrpy (D1, P — P2,15) p2_m2un(p1781)un/(p/175/1)
Z (22.85)

in terms of physical charge e
ed = ZiZ,°7; e? (22.86)

and get
M(p1, sl;p/l, st — p2,52;p’2,s/2) = Z%Z{lﬁ(pg, sz)gﬂ(pé, Sé)g/ggggn/(phpll - p27pl2) ) 2“77(171»51)“77’(?,175/1)

p;=m

(22.87)

where G*™P is given by the same set of diagrams but with physical charge e in each vertex.

+ diagrams with exchange of incoming and outgoing photons.

Now, rewriting Z12Z2_1 as

73zt = T (Zil “ORETE (212 — = 14227 =1) = (Zy — 1) 4+ O(e?) (22.88)
1

we can redraw the diagrams for M-matrix as follows (for simplicity, we do not display
diagrams with exchange of incoming and outgoing photons)

M(p1, 5157, 81 — P2, 523 Dh, 55) = R (22.89)
2&—)(—{ + ﬁ—{ + %_‘Zh_wi\-* ﬁ—m—% + m + o(eG)
7 s S e
HW T =Y *R * m roeD

It is easy to see that the expression in each parentheses is UV finite (and the last
diagram is finite by itself). Indeed, consider for example

+

+
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\ 3
-1 p +k

/Zﬁwzl-n?—il

7k P

Y
1
'k m+ pr— K m+ pit+ fi— K _
3 o 1
= a - - - (Z 1 22.90
6/142—1—7367mQ—(jm—k)2—ze’y“m2—(p1—i-k1—k)Q—ze’y (21 ) ( )
_ 63/ d*k m+ p1— K m+ pr+ fr1— K o
K2 tde “mZ— (p1— k)2 —ie "m2 — (p1+ k1 — k)2 — e |
B 63/ a4k Y m-+ ]él— K N m-+ ﬁl—I— kl— K o
k2 +ie "“m2— (p1 — k)2 —ie "m2 — (p1 + k1 — k)2 —ic P em2 2550

where we have used the definition of Z; factor as a vertex on the mass shell and at zero
momentum transfer (22.77). It is clear now that the UV divergence at k — oo, present in
each of the integrals in the r.h.s. of this equation, cancels in their sum. Similarly one can
demonstrate that the UV divergence in the self-energy diagram in the last line in r.h.s. of
Eq. (22.89) is canceled by (Z3 — 1) subtraction:

1 e2 m+y u? ]d
—[sm—srEp)] = (Zy—1) = 0 TPt By e
m—]é[ém (p)] (Za ) S22 2[2mn +2m+m
1 12 %
- 9m—pa)l N 1 -
/Oda( m—pa) nm2a—p2ao7—ze . /daa n—— /da @)
2l 2 1
s 1 eg m+ Y _ a( p?)
~ 0 - Lo TP o9m— pa)ln (1 + 0 P 92.91
772/0 do (a a) + St mZ— g2 ), da(2m— pa) n( - )} (22.91)

where we used Eqgs. (22.25), (22.33) and (22.26). We see now that the r.h.s. of the above
equation does not depend on the UV cutoff ;1 (and does not have a pole as p?> — m? which
means that our dm is correct at this order of perturbation theory).

The general statement is that in each order in perturbation theory the matrix elements
of M-matrix become UV-finite after re-expressing ey in terms of physical charge according
to Eq. (22.86). This property is called renormalizability of the theory. Most of the quantum
field theories describing Nature are renormalizable (e.g. all ingredients of the Standard
model have this property). A well-known exception is a theory of gravity which, being
quantized in a usual way, leads to the non-renormalizable theory.

22.7 Effective coupling constant

Let us calculate physical electric charge for a certain heavy fermion like muon. If the mass
of this fermion is M we get from eq. (22.83)

2 2

€2 = e2(1- 60 S In M2)+0(e0) (22.92)

It is more revealing to express the charge of heavy fermion in terms of physical charge of
the electron rather than eg. We get from Eqs. (22.83) and (22.93)
2 2 2 o2 M2

wyq_ ¢ L N L 4
5.2 ——In m2)(1 192 In MQ) =e (1+127r2 In m2)+0(e) (22.93)
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It can be demonstrated that a more accurate version of this equation looks like (e(m) = e
- charge of the electron)

e?(m)

2 _
e(M) - 1762(m)1 M2

+ O(eM)(m)) (22.94)

127.‘-2 m2
We see that the strength of the electromagnetic interaction increases with the mass of
the interacting particles. This property is characteristic of all quantum field theories except
non-Abelian gauge theories like QCD or a theory of weak interactions. In such theories
there is an asymptitic freedom - the strength of the interaction decreases with the mass of
the particle. In QCD, for example,

2(m)

g
14 b2y M2 O(g4)

1672 m?2

g*(M) =

(22.95)

—

where b = 11 — %n ¢ (ny = “number of active quarks” which is 3 for JLab energies). Unfor-
tunately, before discussing QCD and asymptotic freedom in detail we need to elaborate on
the renormalization program.

23 Renormalization in QED in terms of “renormalized fields”

There is technically more convenient renormalization program in QFT formulated in terms
of so-called ‘renormalized fields” whose propagators have poles at physical masses with unit
residues. (The relevant discussion can be found in Chapter 10 of Peskin &€ Schroeder).

As a starting point, we rewrite the QED Lagrangian changing the notations 1[} to 1/3(0)
and Au to AELO)

R 1 oy - A
L = — ZFISS)F(O)H‘V + 1[)(0) (Zﬁ —mg + eoA(O))@Z)(O) (231)
(from now on the fields in the Lagrangian (23.1) ﬁ(o) and flu to 121,(?) will be called “un-

renormalized fields”). Next, we rewrite this Lagrangian in terms of “renormalized fields” 1[1
and /1,, defined as

~ def _—1 . ~ def 1 .

b)Y 2@, Az A @) (23.2)
(the constants Z and Z3 will be specified below)

~ 1 ~ ~ ES 1 ..

L= — ZZSFWF’“’ + Zop (i) — mo + egZ3 A) (23.3)

At the next step we rewrite this Lagrangian in terms of physical mass of the electron m
and physical charge e

£ = — (TP 4 2069 — )b+ ZredAd — mi (234)

where dm = m — mg and )
7 =2L2,72 (23.5)
e
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Finally, we split the Lagrangian (23.4) into three parts: free Lagrangian (with physical
mass), interaction Lagrangian (with physical charge) and counterterm Lagrangian

L = Lo+ Lint + Lt

1 - ~ 2 ~ ENEUUIN

['O = - ZFMVFuV + ¢(lﬁ - m)i/% Lint = 6¢A¢a
+

! ) (21— VedAd,  (236)

<

Ect = (Z3 - 1)Fw/ﬁwy + (Z2 - 1)1/](@@ - m)

4

Now we calculate Feynman diagrams with this Lagrangian using some suitable cutoff for
UV divergencies (usually dimensional regularization) and adjust parameters Z;, Z5, and
Zs in any order of perturbation theory in such a way that the terms coming from the
counterterm Lagrangian cancel the divergencies of Feynman diagrams obtained with usual
Lagrangian ﬁo +ﬁint. 30

Note that we build the interaction representation using Ly so for the purpose of ob-
taining the set of Feynman diagrams both Lint and Le; constitute an interaction terms so,
for example, for Compton scattering amplitude one obtains

N VT e (O (w2) o (1) A (29) At (21 )i A oL (@) +Lex ()]} )
<Q|T{¢n($2)¢/\($1)14 (ZQ)AM(zl)}KD - cllg)r}l <0|T{elfdd2[ﬁmt($)+ﬁct(I)]}’0)

(23.7)
where all the fields in the r.h.s. are in the interaction representation. The ladder operators
are defined in a usual way as coefficients of the expansion of fields in the interaction rep-
resentation in plane waves so the commutation relations between ladder operators will be
the same. Thus, the Feynman rules for QED are as given on p. 145 (with physical electron
mass m and physical charge e) plus new interaction vertices coming from the counterterm

Lagrangian

om -(Z,-1)(m-p) e(Zl—l)Xﬂ (Z3 -1)(kpk,, - Iy k?)
——>— — ANV
p p p p g pP-q k k
— — — — — —

a7

Figure 31. Vertices coming from the counterterm Lagrangian.

Now we shall specify the equations for counterterm coefficients Z1, Zo and Z3. As we
mentioned above, Zs and Z3 are to be determined from the conditions that the residues at

the poles of exact Dirac and photon propagators are equal to 1 and dm should be obtained

2

from requirement that the pole of Dirac propagator remains at p?> = m?, same as before

30Tn a general QFT with divergent diagrams one can always add counterterms to the Lagrangian in such
a way that they cancel the UV divergencies appearing in Feynman diagrams with original Lagrangian.
However, for renormalizable theory the number of this counterterms is finite (three for QED, as seen from
Eqg. (23.41) whereas for a non-renormalizable theory the number of these counterterms is increasing with
the order of perturbation theory making this theory an unusable theory with infinitely many coupling
constants.
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(see Eq. (22.27):

k2—0 1

p21>m2 m+ p '
k2 +ie

o T E— D(k
. D

(23.8)

Let us find dm, Zs and Z3. First, to get dm we express the exact Dirac propagator as in
Eq. (22.4)

G(p) = ! = 2 - 2
m—p+E(p) —om  m[l+X1(p?)]— Y1 + Xa(p?)] — dm
_ o m[L+ 5 (p?)] - omt Pl1 + Ea(p?)] (23.9)
(m[1+ 1 (p2)] = 0m)” — p2[1 + B (p?)]2

but with self-energy X(p) = m¥i(p?)— pX2(p?) including “new” vertices coming from
counterterms in Fig. 31 proportional to (21 — 1), (Z2 — 1), and (Z3 — 1)

. PR

23.10

(6m counterterm is treated separately, as before, see Eq. (22.4)). From the condition
that the denominator in Eq. (23.9) vanishes at p?> = m? we have the same equation

m = m[El(mQ) - 22(m2)] (23.11)

but the first-order expressions for ¥1(m?) and ¥(m?) should now include the contribution
of (Z3 — 1) counterterm. Fortunately, this counterterm is proportional to m— # so it brings
equal contributions to ¥; and Y9 which cancel in their difference in the r.h.s. of Eq. (23.11)
and therefore we can recycle the old result (23.21) with physical charge e in place of ey (see
also Eq. (22.26))

2 2 1 2 2
) = e/d 1 a _
) 272(4 — d) e 0 “ ana—pQ&a—ie 872

" 2 2 [l 2 o2
P = ———+— | daal — 23.12
2 (") 8m2(4 —d) + 871'2/0 R plaa —ie 1672 ( )

and get

3me? €2 2
£+

om = m[Zl(m2)—Zg(m2)] = m—i—m@ blnm

(23.13)

Next, let us find Z from the first requirement in Eq. (23.8). From Egs. (22.31) and
(22.32) we know that

m+ P

—1
j| —S 5 + const
p2=m?2 me — p° — 1€

Gp) " 14 Sa(m?) — 2m2 (2L - 052

(23.14)
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so the first condition Eq. (23.8) yields

0¥, 0%s

B =2 (G~ o)

e (23.15)
The first-order self-energy is given by two first diagrams in the r.h.s. of Eq. (23.10). The
first diagram was calculated in Sect. 22.2.3 (see Eq. (23.12)) while the second is

—(Zy — 1)(m— p) so we get

, 2 2 [l 2 2
by = ——+— | dal - — Zy—1
1) 272(4 — d) +47T2/0 “ nm2a—p25za—ie 8z T (2= 1)
2 2 [l 2 o2
S(p?) = —5—— + = [ daal — Zy—1) (23.16
2(p") 87r2(4—d)+87r2/0 o an i 16n2 T P21 (2310)
which leads to 3!
2 2 2 2 [l 1
Zo—1 = — In— +2 — | da (— — 23.17
2 8n2(d — 4) 1671'2( 2 +2)+ 471'2/0 “ (a o) ( )

(cf. Eq. (22.33)). Let us now find Z; from the requirement that the exact electron-elector-
photon vertex gives exactly ey, at the mass shell and zero momentum transfer:

a(p, s )Cu(p, p)ulp,s’) = et(p, s )vuulp,s) = 2pudsse (23.18)

In the first order in e? the exact vertex is given by the diagrams in Fig. 32. If we keep

k_
q) = ey es ¥y, e e(z,-1)Y,
l?,(p,p o= ] f P-d * P f P-q * P E p-
— fa — q — — |[Sa —

Figure 32. Exact vertex function in the first two orders

the notation A(p,p — ¢q) for the set of diagrams in Eq. (22.67) (A, = sum of all 3-point
1PI diagrams without v* and without (Z; — 1)y,) in the leading order we obtain from Eq.
(23.18)

2_m2 ~
a(p, s")Au(p p)ulp,s) " =" —(Z1 = Dulp ) pup.s) = —2Wuder(Z1— 1) (23.19)
Due to Ward identity (22.68) 32
0

Au(p,p) = _879#

(23.20)

31 As we mentioned after Eq. (22.33), the integral over a in the r.h.s. of this equation is “infrared
divergent” so to calculate it one needs to introduce a small photon mass A\? and then one gets const =
In ’)’f—; + %. Fortunately, due to Ward identity this IR divergence cancels with the corresponding term in Z;
so the physical electric charge is “infrared safe”.

32we have replaced ©(p) by X(p) 4 (Z2 — 1)(m— ¥) in Ward identity since we redefined ¥ to include the
(Z2 — 1) counterterm so 371§ which enters the Ward identity (22.68) is X218 = Xjew — (Z2 — 1)(m— )
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(see Eq. (22.75)) so

u(p, ) Au(p, p)u(p,s) = [1— Zy+ Sa(p)]tlp, r)yuulp, s) — 2puti(p, r) [mE'1(p%)— #5'2(p%)]u(p, s)

= 2pbe (1= Zo+ Sa(p?) — 4m? [21(0%) — T2(p)] )

(see Eq. (22.76). At p> = m? the two last terms in the r.h.s. cancel due to Eq. (23.15) and

we obtain

2_m?2

w(p,r)Mu(p,p)ulp,s) =" = 2pube(Zo — 1) (23.22)

which gives due to Eq. (23.19)
Z1—1 = Zy—1 = 1 = Zo (2323)

- same result as before. Thus, we do not need a new parameter for the vertex counterterm:
the Ward identity ensures that the vertex counterterm is e(Zs — 1)7,. The condition
I'y(m,m) = =, preserves the property that the physical charge is equal to e in all orders
in perturbation theory. In practical calculation our condition I',(m,m) = 7, means that
I'u(p,q) =Tu(p,q) — Tp(m,m) + ~y, and therefore instead of the (UV divergent) diagrams
for the vertex I'(p, ¢) we can calculate the difference of the diagrams for I'(p, ¢) and I'(m, m)
which is UV safe so the dependence of p disappears.

For future use, let us present the explicit form if A,(p,p) in the leading order (cf. Eq.
(22.72)

k
—

o
'
~

p
N

}
1 _e<
}

U

m2a — p2aa — ie m2a — p*ad — ie
Finally, let us discuss Z3 and the effective charge. From conservation of current
0"ju(x) = 0 we obtained the result (22.52)

[y
Duw(q) = "= (23.25)
w ¢*[1 + 11(¢?)]
which ensures that the pole stays at ¢> = 0 in any order of perturbation theory keeping the
photon massless. To get the expression for Z3 in e? order we consider two first diagrams
for the polarization operator

_ . g2
q (Z3-1)(a,9,- 9°9py)

H,‘W(q) - + AN + O(e4) (23.26)
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and use the second requirement (23.8) that the residue in the pole should be kept equal to
1 which means that H(q2)‘q2:0 = 0. We obtain

()| oy = TP oy +(Za—1) =0 = (Z—1) = —1°Y0) (23.27)

and recycling the old result (22.43) we get

e? 2 u? }

Zs—1 = [7— L
3 d—4 2

5o (23.28)

Finally, to get the relation between physical charge and eg in the Lagrangian we recall the
definition (23.5) and “Ward identity #3” Z; = Z and obtain

2 1.2 . .2 e? 2 p? 4

60 = Z3 e >~ e (1 — 127‘(‘2 [m —In W}) =+ O(e ) (2329)
To compare physical charge of a heavy fermion with mass M to the charge of the electron
e one should repeat our whole renormalization program for this heavy fermion. The result
will be the Eq. (23.29) with the different physical mass M:

2~ e2(M)(1— 6;;%) [ﬁ—ln ]\“;D + O(H(M)) (23.30)

Since eg in the Lagrangian is the same we get

[ 2 Il
e? 1- 6127r2 [ﬂ —In W] 4 e? M? 4

62(M) - ] o2 |: 5 ln M2:| + O(e ) = ].— ]_271'2 IHW -+ O(e ) (2331)

1272 |d—4 0 T m?

which gives the same rule for running coupling constant
e*(m)
GQ(M) = m + 0(64) (2332)
1= G In

as we obtained in the previous Section, see Eq. (22.94)

23.0.1 Final set of Feynman rules for reduced Green functions in QED in terms
of renormalized fields

In each order in perturbation theory, the counterterms should be obtained from the condi-
tions that

e the pole of exact Dirac propagator stays at p?> = m? (defines dm) with the residue 1
(defines Z5 — 1)

e the pole of exact photon propagator at ¢> = 0 has residue 1 (defines Z3 — 1)

e the electron-electron vertex in the non-relativistic limit at momentum transfer ¢ — 0

is equal to physical charge e (defines Z; — 1)
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—— mp—le Dirac propagator (with physical mass m)
,VWVTW\, 2 +ic Photon propagator (in Feynman gauge)
p M p-q . .

p— — eXH Vertex (with physical charge e)

)8

i P gm Mass counterterm

—X—a—

p p

—= - -(22-1)(m-p) Z2 counterterm
k. L 2

ANVONN (Z5 '1)(kﬂkv' gﬁvk ) Z; counterterm

p -9

— —

e(z,-1)Y¥ Vertex counterterm
q), Lo

Figure 33. Feynman rules for diagrams with renormalized fields

It can be proved that the Feynman diagrams obtained from the rules in Fig. 33 are UV
finite - the UV divergencies are canceled by counterterms order by order in perturbation

theory.
Let us summarize the leading-order counterterms
(%m = = %?’sz)+€2[31n;:;+2} + O(e)
Zi—1=Zy—1 = 8772(22—4) - 12;(1 “—2+9+1 ”;22)
Zy—1 = 1;; [Til “In :;} (23.33)

where A is an IR cutoff (“photon mass”), see the footnote on p. 176. With these countertems
all one-loop Feynman diagrams are finite. For example, it is easy to see that the one-loop
diagrams for Compton scattering (22.89) are finite since the subtractions in parentheses,
which were coming before from the expansion of Z;Z; 273 factor in Eq. 22.89, will be
provided now by the counterterms in Fig. 33.

Note also that LSZ theorem is Eq. (20.73) with renormalized fields ¢ and A (and
without any Z-factors) so the Feynman rules for reduced Green functions in Fig. 33 are
supplied by usual rules for matrix elements of M-matrix:
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Matrix element of M-matrix is a reduced amputated Green function on a mass shell
multiplied by: u(p, s) for each outgoing electron, u(p, s) for each incoming electron, v(p, )
for each outgoing positron, v(p, s) for each incoming positron, and ef‘L(k:) for each incoming
or outgoing photon.

23.0.2 Renormalization at a Euclidean point

The renormalization scheme which we worked out in previous Sections works well in many
theories, but unfortunately not in QCD. The problem is that the fields in QQCD Lagrangian
are quarks and gluons but there are no “physical” quarks and gluons - the physical states
are hadrons (bound states of quarks and gluons). There is, however, a modification of the
renormalization procedure that works for QCD and in preparation for QCD discussion in
next Section we will develop it here using the familiar example of QED. (A detailed analysis
can be found in Peskin Ch. 12.2).

The basic idea that instead of defining coupling constant(s) and Z-factors at the phys-

2 we perform the renormalization at a certain Euclidean point p> = —M?

ical mass p?> =m
and repeat the program of previous Section: rewrite this Lagrangian in terms of “renormal-

ized fields” ¢y and Au defined as

A def _—1. A def 1 .
D) = Zy g (), AM@) = 252 Af (@) (23.34)
so that 1 R )
L= — ZZ?,F,Wfﬂw + ZoY (i — mo + eg Z3 A) (23.35)
and the counterterms are obtained from the requirement that
22 22 1
Gp) "B IMEE gy s L (23.36)
mi; — P k
and from the condition that the electron-electron-photon vertex 33
g2
Tu(p,p) “ =" emyu + other structures (23.37)

where my; = m(M) and ey = e(M) are some parameters (depending on M) related to
physical charge and physical mass by formulas

my = m(1+a164+a266—|—...), 6%\/[ = e+ bret + boe® + ... (23.38)

(The coefficients a,, and b, will turn out to be UV finite, typically (ln %—j)n)
Next, as before, we rewrite bare Lagrangian (23.35) in terms of mj; and e); as follows

A~ 1 A A ES ~ 2 A A 2 A
L= = ZsFuF" + Zy(ip —mar)d + Zien Add — Smi) (23.39)

33 As we saw from Ward identity (22.68), the exact vertex I',(p,p) has the general matrix structure
Yy, + bpu + cpuP, see Eq. (22.75). In previous Section, when we performed subtractions on the mass shell
, we used the condition %(p, s)T,(p, p)u(p,s’) = ephyst(p, s)vu(p,p)u(p,s’) to fix the coefficient in front of

the proper structure. Now at p> = —M? we do not have spinors u(p, s) (they are defined as solutions of
2

phys
to enr, in other words I',(p, p) = emyu + bpu + cpup (the structure «, can be singled out for example by

taking tr{I", %} where the vector n = (1,0,0,0) is orthogonal tp p).

Dirac equation for p? = m2,.) so we will require that the coefficient in front of the v, structure is equal
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where dm = my; — mo and

1
Z = 27,72, (23.40)
SV

and split the Lagrangian (23.39) into three parts: free Lagrangian (with mass mys), inter-
action Lagrangian (with charge ejs) and counterterm Lagrangian

L = Lo+ Lint + Lt
1. . A “ A a A
Lo = — JFwF" + (0 —ma)t,  Line = entp A,

a3

Lo = M= DR 1 (22— 1060 = man)b + (21— DeadAd, - (23.41)

Feynman rules for this Lagrangian (for reduced Green functions) are presented in Fig. (34)

p 1

—_—— W Dirac propagator (with mass m(m))

MWV Kk2+ie

Photon propagator (in Feynman gauge)

> Xﬁe(M) Vertex (with charge e(m))
p p
—_ — gm Mass counterterm

= — -(Z,-1)(mw) -p) Z, counterterm

k
Ve o~ (Z3 -1)(kyk, - 9y k?) Z, counterterm

+§—>— (Zl -1) XH em) Vertex counterterm
I,

Figure 34. Feynman rules for diagrams with renormalized fields

Now we calculate Feynman diagrams with this Lagrangian using some suitable cutoff
for UV divergencies (usually dimensional regularization) and adjust parameters Z, Zs, and
Zs3 in any order of perturbation theory in such a way that the conditions (23.39) and (23.40)
are satisfied. Similarly to the previous case (renormalization on physical mass and charge)
the terms coming from the counterterm Lagrangian cancel the divergencies of Feynman

diagrams obtained with usual Lagrangian ﬁo +Lint-
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Let us demonstrate how this scheme works at the one-loop level.
First, we need to calculate counterterms. We start with Zs. The exact Dirac propagator
is given by Eq. (23.9)
1 ma[1+ 21(p?)] — dm+ [l + So(p?)]

9p) = my— p+ X1(p) — dm B (mM[l +X1(p?)] — 5m)2 — p?[1 + X2(p?))? (23.42)

where 3(p) is given by the same diagrams as in Eq. (23.10) (with mjs and ejps in place of
m and e) so we can recycle Eq. (23.16):

b = — 4+ 2| dal - == Zs —1

1) 272(4 — d) +47r2/0 “ nmfwa—dea—ie 82 + (-1

b = —2 4+ 2| daal — Zo —123.43
2(p”) 8m2(4 —d) +87T2 0 oo nm%woz—p%za—ie 1672 + (22— 3343)

2 A2
Now we will find ém and Zy from the condition G(p) " = M m”?ﬂ%,
M

The expansion of the numerator of Eq. (23.42) near p? = —M? yields

see Eq. (23.36).

2_o_nAf2
marll+ S ()] = omet P+ To()] TE mar[l+ Si(=M?)] = dmet Pl + Ba(-M2)] + O + M?)
= (mu+ P+ Zo(— M)+ muy[S1(—M?) — Zo(—M?)] — 6m + O@p* + M?) (23.44)
so from the requirement that the numerator should be proportional to mp;+ ¥ at p> = —M?>
we see that
omo_y, (—M*) =%y (-M?) = %‘4[3—1 /lda(1+a) In “2] + O(ely)
may 2 - 8n2la—d 2 ), m2a + M?aa M

(23.45)
Next, the denominator in Eq. (23.42) behaves as

(marL+21(p?)] = om)” = p*[1+T2(p?)]? = (m; + M1+ Da(—M)]* + O(p* + M?)

(23.46)
SO L p .
p2_)_M2 myr 2 2
O M 23.47
and therefore to get the condition (23.36) we need ¥o(—M?) = 0 which gives
2 2l 2 2
e e _ w e
Zo—1= ——7M M| 4oal M 23.48
2 s2d—d) 8n2)y “ " mZa+ MPaa | 167 (23.48)

2 .
3 1s
given by diagrams in Fig. 32. As in previous Section, we denote the sum of all three-point
1PI diagrams without ey, and without (Z; — 1)epy, by A(p,p — ¢q) and get from Ward

identity (22.68)

Let us now find the vertex counterterm. The exact vertex up to the first order in e

0 [S(p)—(Ze=1)(mp— B)] = yu(1—Z2)+7u52(p%)—2pu [mar E'1(p%)— $'2(p)]

Au (P7 P) = - 87)/*
(23.49)
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see Eq. (23.20) and the footnote # 32 on page 176.

Au(p,p)

2

2

1

In the explicit form (see Eq. (23.24))

(23.50)
L o(2- g)

e? 1 1 v ] e aa(dmpy; — 2pa)
_M2rm+/daozln 5 - .},7M2pﬂ : ——
8 4—d 2 my 0 — praa — i€ 8T 0 mi; & — pPaq — i€
Since at p? = —M? from Eq. (23.47) we have ¥o(—M?) = 0, the equation (23.49)
reduces to
2 _M2
Au(p,p) ¥ e = (1= Z2) — 2pu[muE 1 (- M?)— pS/2(—M?))

(23.51)

This equation agrees with Eqgs. (23.50) and (23.48), (23.43) in the first order in perturbation

theory. Now, from the condition

emYu +em(Z1 — 1)y, + A(p, p)

we get Z1 = Zo as before.

emYu + other structures (23.52)

Finally, to get the Zs — 1 counterterm we should use the second requirement (23.36).

The exact photon propagator is

(Z3-1)(a,,9,,- a%9,y)
[AVAVAVAVAY  TAVAVAVAVAVA

+

9pv

q

2

— ¢?¢g*?)[1%(¢?) + (Z5 — 1)] gq%(fﬂq(S —¢*¢"°) [1°(¢%) + (Z5 — 1)]

Guv

q
DHV(Q) = Hf\/vvvvv;, + +

Guv g

_ # + %(qaqﬁ o q29a5) [Hold(qZ) + (Zg o 1)]
g

+ f(q“qﬁ

_ 9w + (q"q" — quw/) HOld(q2) + (Z3 -1
q2 1+ Hold(qQ) + (23 _ 1)

T @+ IM(¢2) 1 (Z5 - 1)

where I1°(¢?) is given by Eq. (22.43) (with “new” ey and mpy)

(23.53)
9sv

+ ..
e

+ quqy X smth

pi-d ol aal'(2 — ¢
oM (g) = 8e3, - d/ dor — (7 2? — + O(ely)
(4m)2 Jo (m3; — ?ar — i€)* 2
TG TR s + 0(el)) (23.54)
= ————+ == o aaln e .
672(4—d) 2m2 ), (m? — ?aa — ie) M
We see that in order so to satisfy second of the conditions (23.36) we need
2 2l 2
___yyold/, 2 _ M v ~ H 4
Zs—1 = —1" )"12:*1‘/12  6m2(d—4) 272 ), daaaln m? + M?aa + Ole)
(23.55)
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Let us present all counterterms in this scheme

eir ir [ W cir 4
Zy—1 = Zy—1 = —M M [ g, 5] 0
L 2 sn2(d—4) 8n2)y “ M mZat MPaa 1672 T (€3r)
& [ 2 \
Z3—1 = —M M [ gogam—Fr 40 23.56
’ 6n2(d —4)  2n2 Jy O aae T OleW) (23.56)

If one now takes M? = 0 in the above equations one obtains the counterterms for regular-
ization on the mass shell (23.17) and (23.27). Note that here counterterm Zs is IR - finite,
quite unlike the renormalization on the mass shell where Zs given by Eq. (23.33) needs IR
cutoff. This is the reason why the renormalization with subtractions at the Euclidean point
is very convenient for dealing with theories with massless particles (like QCD) since in such
scheme all counterterms are IR-finite so the UV and IR divergencies are disentangled.

It is easy to see that the counterterms (23.56) subtract all UV divergencies in one-loop
diagrams obtained with Fig. 34 Feynman rules. For example, in the case of Compton
scattering (22.89) we get

M(p1, 5150, 81 — P2, 52; P, 85) = (23.57)

= = - R e G o AT

! 37’%5 e e R + 0fe’)

It is easy to see that the expression in each parentheses is UV finite (and the last
diagram is finite by itself). Indeed, consider for example

k1
AN k,
;%_ P Ky
o + (Z1 -1) L
A ,
1
B L R Vi o ll N Vi L . oll SR ey
MJi(k2 +ie) "“m2, — (p1 — k)2 —ie "m3, — (p1 + k1 — k)% — e ! a
_ o % m+ pi— K my+ pit -,
M52 +ie) T m2 = (pr — k)2 —ie "mZ, — (p1 + k1 — k)2 — ic

1 I 2 1
—e3 — — / da @ln o +
MTu 8n2(d —4) 8x2 ), m%,a+ M2aa 1672
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_ 611)’\4/ dk [ my+ pr— y my+ P+ fi— K a
i(k2+ie) L'm2, — (p1 — k)2 —ie "'m2, — (p1 + k1 — k)2 — ie

my+ pr— K my+ prt+ fi— K o
“mi, — (p1 — k)% — iery“m?v[ — (p1 + k1 — k)? —ie

]

p%:MQ,k%%O

1 1! p? !
N T Sy VA |
+ enA(py pl)p?:M2 Wlgr@—a) 8 )y “ " 20+ M2 | 167

where we have added and subtracted

A _ 2 / dak my+ pr— K may+ pr— K a
MJi(k2 +ie) "“m2, — (p1 — k)2 — iefmm%\/[ —(p1— k)2 — ie |

at p? = M?2. It is clear now that the integral over k in the r.h.s. id UV divergent at d — 4
since the leading term at k — oo cancels in the difference of the integrands. As to the last
term in the r.h.s. of this equation, from the explicit form of A,(p,p) (23.50) it is equal to

€2, U aa(dmy — 2pa)
87r2p“ m?\/ja + M?2aq — i€

which is finite.

Srimilarly, repeating the calculation in Eq. (22.91) one can demonstrate that the UV
divergence in the self-energy diagram in the last line in r.h.s. of Eq. (23.57) is canceled by
(Z3 — 1) subtraction so the amplitude of Compton scattering (23.57) is finite.

Finally, let us discuss relation between e(M) and physical charge e. From Eq. (23.40)
(and Z; = Z3) we see that

¢ 27 2 [1 P & /1d Aal v + O] (23.58)
= e = e —_— — — o aaln —5——F—— e .
M 043 O T 6n2(d—4) 272 ), (m? + M2aq) 0
On the other hand, in the previous Section we’ve got the relation between ey and physical
charge e
2 2
2 _ 2 € 2 M 4
2 = e (1 -3 [ﬂ ~In WD + O(eh) (23.59)

(see Eq. (23.29). Comparing these two equations we obtain

9 e? 1 m? + M?aa
ey =

211+ ﬁ da Goln ————— + O(et) (23.60)

Again, we see that at large M the “effective charge” e(M) increases.

Part XXII

24 QCD

QCD is a theory of interacting quarks and gluons. The eight gluons are described by
A, - 8 real massless vector fields (like 8 different photons). It will be convenient to use
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matrix notation: A, = Ajt* where t* are 8 Gell-Mann matrices- Hermitian matrices with
properties Trt® = 0, Trt*t’ = %5‘“’ (for the explicit form, see any textbook).

The matrices t* are the generators of SU(3)group - the group of unitary 3x3 matrices
Q with det Q = 1. An arbitrary SU(3) matrix can be parametrized as exp(i Y5 wt®) where
w? are real numbers. The group SUs is non-Abelian since in general Q19 # Q9.

The three quarks are described by the three-component SU(3) spinor ¢§ (the quark of
each color k has the additional Lorentz (bi)spinor index £ similarly to the gluon which has
color index a and vector index ). Also, there are different quarks which can be described
by an additional index called flavor. For now, six quarks are known: w (up), d)down),
s(strange), ¢ (charm), b (beauty) , and ¢ (top).

The QCD is an example of so-called Yang-Mills theories which are generalizations of
QED to the case of non-Abelian gauge group (another example is the Weinberg-Salam
theory of weak interactions).

24.1 Lagrangian and non-Abelian gauge symmetry

Let us recall gauge invariance in QED. The Lagrangian (density) for QED is given by Eq.
(20.1)

L) = — (FuF™ 00D —m)y,  Duple) = (B —ieAu())bla)  (241)

It is invariant under Abelian gauge transformations (20.5)

o) =
P(x) = e Di(z)
Ay(z) — AM(:U)—I—éaﬂa(x) (24.2)

(Abelian because multiplication by e!® forms and Abelian group Uy).
The QCD Lagrangian is similar to Eq. (24.1)

1 - ‘
L= —iTr GG + Z Vi(iD —mg)is (24.3)

flavors

where

G = 0,A, —0,A, —ig[A,, A,
D, =0, —igA, (24.4)

and g is called QCD coupling constant. The Gell-Mann matrices t* satisfy the relation
[t9, %] = ifabete (24.5)

where f9¢ are SU(3) structure constants. They are totally antisymmetric in all indices and
satisfy the Jacobi identity

fabmfcdm+facmfdbm+fadmfbcm =0 (246)
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Using Eq. (24.6) one can rewrite G, as
a a a abc pb pc
g "G, = 0, Ay — OV A}, + gf " A A, (24.7)

In what follows I will omit the summation index (as usual, the summation of the repeated
indices will be implied).

Non-Abelian gauge invariance:

P(x) = Qz)p(z) (24.8)
f

A(x) — Q(m)Au(x)QT(a:)+;Q(az)au(ﬁ(:r)

Let us prove that the QCD Lagrangian (24.3) is invariant under the above transforma-
tions: Locp — Lqcep-
First, we prove that G, (z) — Q(2)G ., (2)Q1 (z):
G'(z) — 0,(QA,Q +ig7'00,07)
—ig(QAQ +ig7100,01) (A, QT +ig71Q0,9") — (1 ¢ v)
= (0,2)AQ" +Q(0,A,)Q + Q4,00 +ig~1(9,02)9,01
+ig7100,0,Q —igQA,A,Q +Q(9,01)04,01
+ QA,0,Q +ig710Q(0,0")Q0,9" — (1 v)
= Q(9,A, —igA,A)Q — (u & v) = QG0
( we used the property 29,07 = —(9,0)Q)
Next, we prove that D, (x) — Q(z)D,¢(x):

D,p(x) — [@L — ngA#(x)QT(x) + Q(x)(@uQT(x))] Q(z)Y(x)
= Q@) (z) — igQ(z) Ap(2)Y(z) = Q) Dpip(z)
Finally,
Tr G* (2)G(z) — Tr Q(z)G* (z) ( )QUx) G ()82 ( ) =Tr G" ()G, (),

)
b(2) D (x) = p(2) QN @)y Q2) Dyt () = d(x) D)
mip(2)i(x) = map(2)(x)Q (2)1(2) = mi(2)y ()

so the Lagrangian (24.3) is invariant under transformations (24.8).
Classical theory: non-linear equations

(DMG;LV =—g Z ¢qt ’71/‘[}7

flavors
(D = mg)g() =0, BT +my)thy(z) = 0 (24.9)
(here (DHG,,)" = MGy, + gf"bCAb“wa).
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To solve the non-linear equations (24.9) is very difficult. Up to now, only a few explicit
solutions of D*G,, = 0 (for “pure gluodynamics”) are known, the most famous example is
the so-called instanton

A? — }na (:E_xo)u
© g " (x — 20)2 + p?

with the finite action 872 (and “topological charge” #e‘“’aﬁfd‘lx G (2)Gos(x) = 872).

24.1.1 Energy-momentum tensor in QCD
From Noether theorem on gets (cf Eqgs. (19.44) and (14.28) )

oL c _oc
T — o A e 4 O _ gL 24.10
G T o0,00 VT a0,0 9 (24.10)

= — GUOAL + iy, Dy — gL

g ) <~ <~
= — GG, + gTGa&]ng + iw(’m DY +~, D* )i + total derivative

so the symmetric form of energy-momentum tensor is

_ - -
w(l‘) (’Yu D" +Y D# )¢($)

(24.11)
It is easy to see that energy-momentum tensor (24.11) is gauge invariant since it is made
of fields G*”, ¢ and D2 which are only “rotating’

17 ac av g;U'V a a ?
T = = 2Tr GU(2)GV(w) + T T G () Ge, (x) + 1

G (z) — Q)G ()0 (z), (24.12)

b() = Qa)(a), D'(x) - Qa)D(), D) —» F@)Qa), D) D - $x) D

24.2 QCD quantization

Announcement of the result:
Perturbation theory - like QED: free Lagrangian = 8 issues of electrodynamics labeled by
a = 1 =+ 8 plus three free Dirac fields
= Feynman rules are the same, except now we have the self-interaction of gluons.
This is almost true - Ward identity in QCD is different = ghosts.
QCD Lagrangian can be written as a sum of three terms

L = Lr+Lp+ Lin (24.13)
1 a auv _
EF = —Z F/WF # y FuuzauAy_auAu (24'14)
Lp = > i —mp)y (24.15)
flavors
_ 2
Lo = 209 Tr{P"A"[Au AT} +9 3 g Aty — ST {[A, AJ[A%, 4]} (24.16)
flavors

Or, another representaion of Li,:

_ 2
L = g Y G Ay — gf*™ (A ALAG — T ponpeinag AL AT A (24.07)

flavors
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(Recall [t %] = i fabete).
As in QED, we choose the Coulomb gauge: the canonical coordinates are the quark
fields wgf (x) and potentials Af(x) satisfying the Coulomb gauge condition

O AY(z) = —V-A%z) = 0 (24.18)

and the canonical momenta are (cf. Eq. (20.15))

oL
(&) = (%) = W} (t7) (24.19)
a = oL = a = ja = a = abc Ab pc a =
T (t, %) = 0Aai(t’x) = -Gt T) = —Aj(t,T) + 9 A5(t, T) — gf " AgAf(z) = &E'(t,T)
The gluon field strength £ = —GY is sometimes called the “chromoelectric field” (and

B; = %60ijijk “chromomagnetic field”)

A = / @ [m(t, ) At 7) + i (4, B) 01, B) — £(8,7)] (24.20)
1 2 . - .
= / d3x[§[5“-5“(t,f)+8“~Ba(t,:f)] + W [mok! — io™5 -V — gty - Ak (t, @)

(cf. Eq. (20.17) for QED). As in QED, the scalar potential Af(z) = ®(x) is not an
independent variable but is expressed through equation of motion (Gauss law)
DiGio = - gl[)ta’)/o?/) (2421)
PN [5abv2 - ngabC(A'c . ﬁ) o QZfacnfbdnA'm . /Yd]Ag _ gzﬁta,mw - gfabcA’b . gc

as

(t,2) — fobe v . Ae(t, &)

Am|Z — &

ktpa ol
A7) = @°(15) = —g Y [dta Y

flavors

+ 0(g?) (24.22)

Classical QCD Hamiltonian in Coulomb gauge is a sum of 8 QED Hamiltonians (20.20)
with the new interaction terms due to gluon self-interactions (24.16)

. 1.5 & L. 1= .
H(t) = /d3x [Q[Etar - EL(t,Z) + B* - BY(t,7)] + §V<I>“(t, Z) - VoI (t, T) (24.23)
T maH oM gty - Al (1 7) + gAY AL AL, E) 4 g O AL AL A A (1, )
where a = 1+8 for gluons and k£ = 1,2, 3 for quarks (and flavor index f = 1, 2... for quarks)

24.3 Interaction picture

To quantize QCD in the interaction picture we repeat the procedure of Sect. 20.3 for QED.
To this end we need to separate the Hamiltonian (24.23) in the free part and interaction
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part. As a first step, we separate field strength G}, (chromoelectric and chromomagnetic

fields) in the Abelian part and non-Abelian parts:
GY, = Fi +gf"™ALAS,  Fi, = 0,A%—perv (24.24)
gai — p% —gfabcAgAf, E* = _ Az +aiA07 Bai — p& +g€OijkAbjACk, B% = EOijkajAak

)

Next, as in QED, we separate the Hamiltonian (24.23) in four parts (cf. Eq. (20.36)):

H = Hquark + Hgluon + Hint + HCOU17 (2425)
Howre = 3 [ ¥/t 8)(m ~ i7 - )0t (0,2
flavors

Houon = 5 [ @ [A(0.2)- 20(0,7) + B(0,3) - Bo(t,7)
Eay — A . . 2 . .
How = [d% [ g0 7 B (0,3) + g0 A ALAS(1,7) + & fon e a2 A7 4% 0, )]
1 n — a abc e =
Hoon = 5 [ (B2 = & [@o ay@[uier(e.) - jooodt - Ao, 2)

. g2
= / drd’y [ Y(E T) — fOOA AN m)JﬁW ' (69) - A A )+ O()
where in the last line we used equation (24.27).
To quantize the theory with the Hamiltonian (24.25) we, as usually, promote canonical
coordinates at t = 0 to operators ¥*/(0,Z) — ¥/ (&) and Ai(t, &) — A%(Z) satisfying
canonical commutation relations (20.22)

WE @0 1 @) = dey(@ = 93", (W @00 @) = W@ @) = o

[A%(F), (Bu) ()] = 826°6(7 — §), [A" (@), flj( j)] = [EZ@).EL@)] = o,

A(@), 3! @) = [A@), 0@ = (EWi@, M @) = [(EW)p@), M @) = 0
(24.26)

Note that we imposed CCR between canonical coordinates and transverse Abelian parts
of canonical momenta (E™)?(Z) = —A%. As in QED, the scalar potential AZ is not and
independent dynamical variable since it is determined by quantum version of Eq. (24.27).

fo(7) — 0(7) = —g 3 [ater L) A B

Ap(Z) = o4T) = 7 7] +0(g%) (24.27)

flavors

The expansion in ladder operators is constructed similarly to Eq. (20.39):

: (24.28)

N A a3k R T No_ihd
(A[)a(.fﬂ) ethgluonAa(—»)e—thgluon / 6)\(]{7) (dg)\ez T + GAT o1 :c)
z )\;2 V2w g wor=IF]
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Similarly to QED, the commutation relations between ladder operators
[Azz)\ &li/\ T]

_ 3¢/ i sab s\
ihag ] = (2m)°0(k — K')d*d (24.29)
kfs Alf's'ty _ rpkfs plf's'ty _ 3skisff! 55
{a;",ap "'} = {b; ", by "'} = (2m)°6%6M 0596 (P—P)
with all other (anti)commutators being 0) lead to s (24.26
h all oth b lead to CCRs (24
The quantum version of Coulomb-gauge QCD Hamiltonian (24.25) reads

E[ = f{quark + ﬁgluon + I—AIint + I:—,Coul; (2430)

A~

Fouante = / Bz M (@) (m — 17 - )k (@)

Aeoy = / Bz (DAS(T)? = —g P Ag(f) [wta@z}(f)— fabe i . Ae(z)

~

= [ery it @ - R A @
The Heisenberg operators are defined by usual formulas

Aut,@) = MA@ e, 70(tE) = SMR@)e T = TN (T)e T = Bt )
H(t,) = TR @ gw) = MR (@)e (24.31)

Wkt ) — oAb )] + O(g?)

It is easy to see that the Heisenberg operators satisfy the equal-time commutation rela-
tions (24.26) (cf. Eq. (7.14)), and, repeating the argument of Eq. (7.15) we see that
H(t) = fd%lﬁl(@b(t, Z), A(t, 7)) does not depend on time. In addition, after some algebra
it can be demonstrated that Heisenberg operators satisfy the same equations of motion
(24.9) as their classical counterparts (cf. Eq. (20.34)):

(D'G)" = —gz¢kf )y

(i D —myp)* (z) = 0, 1!7(2'17 +mp )t (z) = 0 (24.32)
where ﬁuzﬂ’;(x) = [0,k — zgt“fla(x)]zﬂ}(m) (As we noted above, the flavor index f is just
a label so it can be put up or down as seems convenient).

To build the interaction representation, we define “perturbative Hamiltonian” as

A d f A~ A
HO = quark + Hgluon (2433)

then I;[ = ﬁD + f{int + ﬁCoul'
Operators in the interaction representation are defined as usual (note that Eq. (24.26)
= [Hquarka Hgluon] = O)

A%i (Z) — eizo Hy Aai (Z)efizo Hy — eizo Hgluon AZ (Z)efizo Hgluon
7&[(2) _ eiﬁozoqﬁ(g)e—iﬁozo — eiZOHquark&(E’)e—izoﬁquark
i];f(z) — eiﬁozoikf (Z_‘)efilfl()zo — eiZOHquark/lef(g)efizoﬁquark (2434)
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These operators can be expressed in terms of ladder ladder operators similarly to Eq.
(20.39):

)

pOZEp

1;][? (QL') _ eithuark 1[}l~cf <f)e_ithuark _ Z / 2E S)e—ipx&;kf + v (ﬁ, S)eipxl;;kﬁ]

@?g(f) — eithuarkrlef(f)efitﬁquark — Z/

vg P, s)e "pxlA);kf —i—ﬁg(ﬁ,s)eipxd;kﬁ]

)

J2E,

pOZEp
N o R A ask o A ik
(Af)za(x) — eltHgluonA?(f)efthgluon — Z/ )\ k (d%)\ Zk;t+ AQ 7, I) (2435)
sre) V2Wk g K ko—=wi,=|K|

Now we define |Q2) as a true QCD vacuum (= lowest-energy eigenstate of Hamiltonian
(24.30) and |0) as a “perturbative vacuum” which is lowest-energy eigenstate of Hy. Since
Hj can be represented as

ﬁO = ﬁgluon +ﬁquark (2436)
_ /a‘3k e ZAGL)\TAa)\ n Z /d3p Ef(AskaAskf_i_bskabskf)
wi, =] s,k,flavors E,}:: m?chiﬁz

(cf. Egs (19.37) and (14.16)) we see that the perturbative vacuum is annihilated by %A,
d;.kf and B;kf :
a0y = a0y = b0y = 0 (24.37)

Similarly to QED, the states

_ ./ _ ~aAf _ / 2skf
|k’a> - QWk, |k7$7f> - 2EfaE |O>’ |k7$af> - 2Efbﬁ |O> (2438)

are one-gluon, one-quark and one-antiquark states. Similarly, one can define states of
multiple free quarks and gluons as an eigenstates of H,. 3

The Green functions in QCD are defined as matrix elements of T-product of operators
switched between true-vacuum states

G(m,...x(m),y,...y("),z, ...z(l)) (24.39)
s 2k, m’ - n n’ e
= (QIT{]] & ") T o5 ' H YMACRRIIY)
m=1 n/=1 I'=1
To find the perturbative expansion of these Green functions we will use our old trick (9.29)
1 .

34There are no free quarks or gluons in Nature. The observed particles are hadrons which are (unsepa-
rable) bound states of quarks and gluons. Despite that, sometimes it is convenient to pretend that there is
no confinement and calculate cross sections of production of quarks and gluons. For example, the ampli-
tude of eTe™ annihilation into hadrons can be calculated at high energies as as a square of M-matrix of
transitions between electron-positron and quark-antiquark (and gluon in higher orders in g?) states. The
usual lore is that quarks and gluons transfer to hadrons with probability 1 and the kinematical properties
of a high-energy process are not affected by this “quarks+gluons — hadrons” transition
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which is correct in any theory with non-degenerate vacuum. Repeating the usual steps, we
get

m’ n l
@T{ T &5 ) TT o5 ") TT A ()39 (24.41)
m=1 n/=1

'=1

n 2kn/ n' ~ap / —i ] ]
NI, s "N, AI,ZMN(Z(Z))B Jdt (Hi(H)+He () 1]0)

(0| T{et/dt (H(t)+Hc(®)}|0)

’

m/ Akm/ m
<0‘T{Hm:1 ¢[fm/ (x(

where H 7 and ﬁc are f[mt and ﬁCoulomb made from interaction-representation operators
(24.35).

Now we can expand the r.h.s. of Eq. (24.48) in powers of e (< in powers of H; and
lﬁIc) and use Wick’s theorem to get all possible Feynman diagrams. The contractions are:
1. Quark propagator

A/\ilf/ ~ 2901 ’ d—4 : me+
Gl @), (v) = OIT{E (@)e] (y)}0) = oMo!! / TP minta—) L (5449)
i my —p° — i€
and
2. Propagator of transverse gluon (cf Eq. (20.48))
Ai(@)Al(y) = (O/T{AL(2)AL()}[0) = Gup(0|T{A%(x) AL(y)}|0) (24.43)
a3k T k(o ik(z—
= Oap | 7 e?(k:)e?(k)(e(xo_yo)e k(z y)+9(y0_xo)€ k(x y))
Wk 1o
ik 1 . iR g
_ gab [ —ik(z—y) [ ,ij — 5§D (e
g / i K2 tie (97 + ;;‘2) 0" Dix(z —y)

(in what follows we omit index “I” of the interaction representation). This transverse prop-
agator can be expressed as (20.50)

Dy (x —y) = D'(z —y) + Digpa(@ — y) + Dig (z — y) (24.44)
v o k(o
DEe=v = [Ty
g < ktkr KO
MY (o _ fzk‘(:vfy)( S N7 Vb )
DW(LU y) i k?QJriEe ]22 E2(k n +k n )
a'k " k(e . a ‘ nhn”
pv o _ ik(z—y) _ - 3 ik(Z—y) _— -
D (x—y) = /z T e = id(xo yo)/d k P e = i6(xo yo)iﬁlﬂa‘:’—gj\

where 7 = (1,0,0,0). In QED, the contribution of D! canceled with the terms arising
from the expansion of Coulomb term Hg in Eq. (24.48) and the contribution of Dy
vanished due to Ward identity (20.65). In QCD the situation is more subtle: the Ward
identity is (slightly) different so the contribution of longitudinal unphysical gluons is not
canceled in the gluon loops.

It was proved (using functional integrals) that a good way to memorize these need-
to-be-subtracted longitudinal remnants in gluon loops is to introduce a new term in the
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Lagrangian
AL = ¢&(—0,D")""c" = —5”(m)82c”(x)+igém(a:)tfnnﬁu(AZ(x)c”(x)) (24.45)

with the condition that new “ghost” massless scalar particle ¢ live only in loops (and there
are eight of them, a = 1 + 8). In addition, there is a factor (-1) for any ghost loop so
one may consider the ghost particle as a scalar fermion (the spin-statistics theorem is not
applicable to ghosts since they are not physical particles).

Summarizing, we can use the photon propagator Diy for gluons, take away H¢ from
the exponential in Eq. (24.48), and introduce the ghost particles (24.45) which can live only
in loops. A good way to memorize this is to write down the “Lagrangian in the Feynman
gauge"

24.3.1 QCD Lagrangian for practical calculations in Feynman gauge
The Lagrangian for QCD practitioners is Lqocp + (gauge-fixing term = f%(‘?“Aza”Aﬁ) +
ghost term (24.45)
1 LV 7 . / 1 QM a Qv a = s L\mmn n
Lp=—5Tr GuG" + > (i —mg)y — SO ALY A + &(=0, D)™ (24.46)
flavors
It can be rewritten as a sum of free Lagrangian and interaction Lagrangian
L(z) = Lo(z)+ Lint(z) (24.47)
1 ke f _
Lo(z) = §A;a2Aa~(m) + P (g — mp)yph — 9%
f

B 2
Linle) = g3 TRAGY — groe(onam)abag — L poim pein qo ab 4w A 4 igemie, 0F (Ac”)
flavors

The interaction representation of Green functions is

m’ n l
@] &5 @) T &5 ) TT Agt )31 (24.48)
m=1 n'=1 =1

m! Ak“m/ m! n ikn, n 1 ~ap / ifd4z (L (2
(O T{T In=1 w[fm, (z(m) [l Tﬁ[fﬂ, (y™)) || 7 A[Ll, (20)e Jd'z (Lam D}|0)

(O T{ei/ 4= L)} |0)

where all the operators in the r.h.s. are in the interaction representation, L, is given by
Eq. (24.47) and the propagators

~ /\Q ’ ~ 2 01 / d_4 —ip(x— m +

W@ ) = OTEE@H W = 07 [Tl ML (5449

AT . . 4 uv )

HE@A) = O @HWH) = 5 [TE I e pey)
€

IR w [@%k =1

follow from the Feynman-gauge Lagrangian Ly in th Eq. (24.47). In addition, the operators
¢ and ¢ are fermions, so they anticommute (and there is (-1) for any ghost loop as usual for
fermions).
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24.3.2 Feynman rules for QCD

Let us summarize Feynman rules for reduced Green functions in QCD. (As usual, the
reduced Green function is defined as G(p1,...pn) = (—i)" 1 (2m)*6(X_pi)G(p1, ..., Pn))

Feynman rules for QCD

m-;-ie Quark propagator
MY Sab
g .
KZtie Gluon propagator in Feynman gauge
Sab
Ghost propagator
-p?-ie
g Xﬁtsl Quark-gluon vertex
igf abc% Ghost-gluon vertex
. . ab .
-igf C[(pl- P2y * (P, -Py) i Oy * (P3P G ] Triple gluon vertex
_gZ[fabmfcdm acm_ bdm )+fadm fbcm (

(92 Gvg = Gug ) * 11 TGy 93 o G Iy IuvIng Iuadug))

Four-gluon vertex
Figure 35. Feynman rules for reduced Green functions in QCD

As usually, there is also [ @ for each gluon loop and — [ @ for each quark and ghost
loop.

Thus, as in QED, we have perturbation theory for Green functions. However, unlike
QED, we do not observe quarks and gluons (in the initial or final stages of a scattering
process). Instead, we see only hadrons in our detectors. This property is called “color
confinement”.

Color confinement: only particles which are singlets with respect to color SU(3) group
can be observed. Colored particles are confined within their interaction range (~ 1 fermi).

How to calculate the mass of, say, p-meson in QCD: take some current j,(x) with
quantum numbers of p-meson (e.g. wy,u(z) — dvy,d(z) for p°) and calculate
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i [T @i )9) - (24.51)

O D qD D

The “polarization operator” IT1(p?) must have a pole at p> — m and the residue in this
pole is (Q2|p)|?. If somebody some day will calculate II(p?) exactly, he/she will find a pole

1) P Ol

24.52
_ p2 — e ( )

and determine the mass of the p-meson. For now, no one has an idea tow to do that.
Instead: approximate calculation in the Euclidean space using lattice simulations.

const

M(p?=-P%) ~ —
(p ) m2 + P2

(z) ~ e ™l (24.53)
Thus, one calculates the correlation function (24.51) in the Euclidean theory using lattice
simulations of the functional integral for this correlation function and matches the behavior
of this function in the coordinate space to e=™elzl,

To calculate scattering amplitudes of hadron-hadron scattering in QCD is much more

complicated. A typical meson-baryon scattering in QCD looks like

Meson: bound state oq quark and antiquark

|

o

00009 \unu

i

kR

onnn

DOOQNE

N
IR

00008

DOOOK

Baryon: bound state of three quarks

Figure 36. A cartoon of meson-baryon scattering in QCD

To get this amplitude we use factorization theorems to reduce it to simple matrix
elements which can be calculated on the lattice.
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24.4 Asymptotic freedom in QCD

25 Appendix

25.1 Dirac matrices and spinors in spinor representation

The set of Dirac matrices in the spinor representation is:
0 ot
= (5u 0 ) (25.1)

Here o# = (09, 7), " = (09, —7), where ¢ is a unit matrix and o, oy, and o, are Pauli

matrices. In the explicit form:

Do) (%) (%) P (5F). o
where
w=(89). w=(08). @=(07). =(5%) @3
The ~5 matrix has the form:
-1 000
75 =iy = (_I 9—) ={ 2 90 (25.4)
0 001
and it anticommute with all matrices v*:
Vs = —v57" (25.5)
Master property of «y-matrices:
VYo + VWV = 29w (25.6)
Consequences:
dd=a,a= a? for any 4 — vector a
dyu d = 2a, d—ua°
YY" = =27
Va8V = 49ap
VYo V8V = =297 Va (25.7)
Traces:

Tr {7y} = 490
Tr {vu Yol = 4UGuw9rp + GupGvr = Gurgup)
Tr {775} = 0
Tr {717 7pY5 = diuwap
Tr {7 YV YeTn} = 4(9W(gxpggn + Gpegnn — 9redpn) — 9ur(Gupden + Gpe vy — Guedpn)
+ Gup(Gurgen — Guedon + 9reGvn) — Gue(Gongur + Gun9ap — Gup9an)
+ Gun(GrpGve + Gpegur — g,\ggup)> (25.8)
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—e%123) Trace of any odd number of

where € is totally antisymmetric symbol (ep123 = 1 =
y-matrices is zero.

Useful formula:

Eurape™™ = =2 (950 - 897 (25.9)
Complex conjugation:
W=v%10 A= (25.10)

and therefore

(@@ vpr A 0@)) " = @D )Yy ()
(@)Y @) " = 5O Y- 10 () (25.11)

The explicit form of the spinors with definite z- component of the spin in the rest frame

=1

)\:j:% is:
u(%)() _ (\/ﬁ (1) ) _ 1 (m+po—p-0) [1)
T (s 2(po +m) \ (m+po+5-3) (
0 S (0
_1 VDo § 1 (m+po—p-9)(q
WD) = _ .
() (\/15(1) ) e o) (m+p0+ﬁ_5)§?§ (25.12)
N <—¢m(%> 1 (memrro)(Y)
v'2(p) = _ 0 = e -
V() 20+ m) \ (m+po+55) (1)
| s (]
WD) = ( \/ﬁ_(ol) ) _ 1 (m + po PH 3<01) (25.13)
—p3(p) 2(po +m) (—m—po—P‘U)<0)
and
a®(p) = 2(pi+m) ((1,0)(m + po + 7~ 3); (1,0)(m + po — - 7))
Mé%ﬂz%£+m«Qmm+m+ﬁ6Mme+m—ﬁﬁD (25.14)
5@@%—im;ﬂmKﬁwm+m+ﬁ5H&UFm—m+ﬁﬁD
72)(p) = 2(p01+m) ((1,0)(=m —po — p"- 7); (1,0)(m +po — p- 7)) (25.15)

Here u*(p) and 7*(p) are the spinors corresponding to electron and positron (respectively)
with spin A (in the rest frame) and @*(p) ,v*(p) are the Dirac conjugate spinors.
The spinors for the states with definite helicity A = :I:% are:

Wiy = L (mapo—lph)w™\ ey L ((mpo+ [p)w®
(») 2(po +m) <(m + po + [P)w™® ) ’ (7) 2(po +m) ((m +po — [pl)w® >
(25.16)
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By L ((mepo— Y gy 1 (m+ po — [p)w™
) 2(po + m) ( (m + po — |p)w® > ’ ) 2(po + m) < (=m —po — [p])w™ >

(25.17)

where two-component spinor w has the form:

—ior 9 —ia qiy (0
(1 _( € cos (5) 2) _ ( —e "“*sin (5)
¢ <62(¢a) sin (5) )7 “ '@~ cos (9) (25.18)
where 6 and ¢ are the polar and asimuthal angle of the momentum p and the phase « is

arbitrary (it is convenient to choose @ = ¢ as in Eq. (13.53)).
Let us present also the explicit form of the Dirac conjugate spinors with definite helicity:

i) = s (Wm0, i+~ 1)
1 1
al~2l(p) = NCITERD) (w@”(m +po—1p), w®@T(m +po+ yﬁ)y) (25.19)
and
) = e (T = ), om0~ 7))
1 1
ol2l(p) = m (w(m(—m —po—p), WM (m+ po— |ﬁ|)) (25.20)
where

Wt = (e cos Q, eila—0) sine
2 2

, 0 . 6
W = (—ew‘ sin 2 '@ cos 2) (25.21)

Properties of spinors:
1. Orthogonality

@ (p)uX (p) = 2mdxy = —5*(p)v (p)
a* (p)yHu (p) = 0 (p)y" o™ (p) = 2pH0an
@ (p)oX (p) = 0 = o*(p)u¥ (p) (25.22)

2.Completeness

St (@)

) — (p)ﬁé(p)> = bap
Y oae12 Ua(P)uy(p) =

(m+ Plas
Yac12%aP)U3(p) = (B —m)ap (25.23)

If s5,, is a four-vector of spin of the particle, then
u(p, s)y vsu(p, s) = —0(p, )y v50(p, s) = 2ms,, (25.24)
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and also

walp s 9) = (FE ) iste ) = (5 m)

af
(25.25)

For the particle with helicity 3 the 4-vector of spin is s#(p,h = 1) = (@ 2P0y and for the

m’ |plm
particle with helicity —3 it is s*(p,h = —1) = (—%, —‘g%)

Check of @*(p)y%v* (—p) = (P u* (—p) = O:

1 1 — =\ — = O UO (m+p0+ﬁ&)(é)
2)(_m h W((170)(m+p0+p'0>7 (170)(m+p0_p'0)) (0.0 0 ) ((_m — o —I-ﬁ O')((l))
2)(—p) = w((@ 1)(m~+po+p-a); (0, 1)(—771—]?0-1-1?'0))(00 0 ><(m—|—po—p U)((l))
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